- *ld_algorithm*: algorithm to use for local discretization, with the following options: "MDLP", "BINQ", "BINU". - *ld_proposed_cuts*: number of cut points to return. - *mdlp_min_length*: minimum length of a partition in MDLP algorithm to be evaluated for partition. - *mdlp_max_depth*: maximum level of recursion in MDLP algorithm.
27 lines
1.1 KiB
C++
27 lines
1.1 KiB
C++
// ***************************************************************
|
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
|
// SPDX-FileType: SOURCE
|
|
// SPDX-License-Identifier: MIT
|
|
// ***************************************************************
|
|
|
|
#ifndef AODELD_H
|
|
#define AODELD_H
|
|
#include "bayesnet/classifiers/Proposal.h"
|
|
#include "bayesnet/classifiers/SPODELd.h"
|
|
#include "Ensemble.h"
|
|
|
|
namespace bayesnet {
|
|
class AODELd : public Ensemble, public Proposal {
|
|
public:
|
|
AODELd(bool predict_voting = true);
|
|
virtual ~AODELd() = default;
|
|
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing) override;
|
|
std::vector<std::string> graph(const std::string& name = "AODELd") const override;
|
|
protected:
|
|
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
|
void buildModel(const torch::Tensor& weights) override;
|
|
private:
|
|
nlohmann::json hyperparameters = {}; // Hyperparameters for the model
|
|
};
|
|
}
|
|
#endif // !AODELD_H
|