Files
BayesNet/src/Platform/GridSearch.cc

182 lines
7.6 KiB
C++

#include <iostream>
#include <torch/torch.h>
#include "GridSearch.h"
#include "Models.h"
#include "Paths.h"
#include "Folding.h"
#include "Colors.h"
namespace platform {
std::string get_date()
{
time_t rawtime;
tm* timeinfo;
time(&rawtime);
timeinfo = std::localtime(&rawtime);
std::ostringstream oss;
oss << std::put_time(timeinfo, "%Y-%m-%d");
return oss.str();
}
std::string get_time()
{
time_t rawtime;
tm* timeinfo;
time(&rawtime);
timeinfo = std::localtime(&rawtime);
std::ostringstream oss;
oss << std::put_time(timeinfo, "%H:%M:%S");
return oss.str();
}
GridSearch::GridSearch(struct ConfigGrid& config) : config(config)
{
this->config.output_file = config.path + "grid_" + config.model + "_output.json";
this->config.input_file = config.path + "grid_" + config.model + "_input.json";
}
void showProgressComb(const int num, const int total, const std::string& color)
{
int spaces = int(log(total) / log(10)) + 1;
int magic = 37 + 2 * spaces;
std::string prefix = num == 1 ? "" : string(magic, '\b') + string(magic + 1, ' ') + string(magic + 1, '\b');
std::cout << prefix << color << "(" << setw(spaces) << num << "/" << setw(spaces) << total << ") " << Colors::RESET() << flush;
}
void showProgressFold(int fold, const std::string& color, const std::string& phase)
{
std::string prefix = phase == "a" ? "" : "\b\b\b\b";
std::cout << prefix << color << fold << Colors::RESET() << "(" << color << phase << Colors::RESET() << ")" << flush;
}
std::string getColor(bayesnet::status_t status)
{
switch (status) {
case bayesnet::NORMAL:
return Colors::GREEN();
case bayesnet::WARNING:
return Colors::YELLOW();
case bayesnet::ERROR:
return Colors::RED();
default:
return Colors::RESET();
}
}
double GridSearch::processFile(std::string fileName, Datasets& datasets, HyperParameters& hyperparameters)
{
// Get dataset
auto [X, y] = datasets.getTensors(fileName);
auto states = datasets.getStates(fileName);
auto features = datasets.getFeatures(fileName);
auto className = datasets.getClassName(fileName);
double totalScore = 0.0;
int numItems = 0;
for (const auto& seed : config.seeds) {
if (!config.quiet)
std::cout << "(" << seed << ") doing Fold: " << flush;
Fold* fold;
if (config.stratified)
fold = new StratifiedKFold(config.n_folds, y, seed);
else
fold = new KFold(config.n_folds, y.size(0), seed);
double bestScore = 0.0;
for (int nfold = 0; nfold < config.n_folds; nfold++) {
auto clf = Models::instance()->create(config.model);
clf->setHyperparameters(hyperparameters.get(fileName));
auto [train, test] = fold->getFold(nfold);
auto train_t = torch::tensor(train);
auto test_t = torch::tensor(test);
auto X_train = X.index({ "...", train_t });
auto y_train = y.index({ train_t });
auto X_test = X.index({ "...", test_t });
auto y_test = y.index({ test_t });
// Train model
if (!config.quiet)
showProgressFold(nfold + 1, getColor(clf->getStatus()), "a");
clf->fit(X_train, y_train, features, className, states);
// Test model
if (!config.quiet)
showProgressFold(nfold + 1, getColor(clf->getStatus()), "b");
totalScore += clf->score(X_test, y_test);
numItems++;
if (!config.quiet)
std::cout << "\b\b\b, \b" << flush;
}
delete fold;
}
return numItems == 0 ? 0.0 : totalScore / numItems;
}
void GridSearch::go()
{
// Load datasets
auto datasets = Datasets(config.discretize, Paths::datasets());
// Load previous results
json results;
auto datasets_names = datasets.getNames();
if (config.continue_from != "No") {
// Continue previous execution:
// Load previous results & remove datasets already processed
if (std::find(datasets_names.begin(), datasets_names.end(), config.continue_from) == datasets_names.end()) {
throw std::invalid_argument("Dataset " + config.continue_from + " not found");
}
if (!config.quiet)
std::cout << "* Loading previous results" << std::endl;
try {
std::ifstream file(config.output_file);
if (file.is_open()) {
results = json::parse(file);
}
}
catch (const std::exception& e) {
std::cerr << "Error loading previous results: " << e.what() << std::endl;
}
// Remove datasets already processed
vector< string >::iterator it = datasets_names.begin();
while (it != datasets_names.end()) {
if (*it != config.continue_from) {
it = datasets_names.erase(it);
} else
break;
}
}
// Create model
std::cout << "***************** Starting Gridsearch *****************" << std::endl;
std::cout << "input file=" << config.input_file << std::endl;
auto grid = GridData(config.input_file);
auto totalComb = grid.getNumCombinations();
std::cout << "* Doing " << totalComb << " combinations for each dataset/seed/fold" << std::endl;
// Generate hyperparameters grid & run gridsearch
// Check each combination of hyperparameters for each dataset and each seed
for (const auto& dataset : datasets_names) {
if (!config.quiet)
std::cout << "- " << setw(20) << left << dataset << " " << right << flush;
int num = 0;
double bestScore = 0.0;
json bestHyperparameters;
auto combinations = grid.getGrid();
for (const auto& hyperparam_line : combinations) {
if (!config.quiet)
showProgressComb(++num, totalComb, Colors::CYAN());
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
double score = processFile(dataset, datasets, hyperparameters);
if (score > bestScore) {
bestScore = score;
bestHyperparameters = hyperparam_line;
}
}
if (!config.quiet) {
std::cout << "end." << " Score: " << setw(9) << setprecision(7) << fixed
<< bestScore << " [" << bestHyperparameters.dump() << "]" << std::endl;
}
results[dataset]["score"] = bestScore;
results[dataset]["hyperparameters"] = bestHyperparameters;
results[dataset]["date"] = get_date() + " " + get_time();
results[dataset]["grid"] = grid.getInputGrid();
// Save partial results
save(results);
}
// Save final results
save(results);
std::cout << "***************** Ending Gridsearch *******************" << std::endl;
}
void GridSearch::save(json& results) const
{
std::ofstream file(config.output_file);
file << results.dump(4);
}
} /* namespace platform */