182 lines
7.6 KiB
C++
182 lines
7.6 KiB
C++
#include <iostream>
|
|
#include <torch/torch.h>
|
|
#include "GridSearch.h"
|
|
#include "Models.h"
|
|
#include "Paths.h"
|
|
#include "Folding.h"
|
|
#include "Colors.h"
|
|
|
|
namespace platform {
|
|
std::string get_date()
|
|
{
|
|
time_t rawtime;
|
|
tm* timeinfo;
|
|
time(&rawtime);
|
|
timeinfo = std::localtime(&rawtime);
|
|
std::ostringstream oss;
|
|
oss << std::put_time(timeinfo, "%Y-%m-%d");
|
|
return oss.str();
|
|
}
|
|
std::string get_time()
|
|
{
|
|
time_t rawtime;
|
|
tm* timeinfo;
|
|
time(&rawtime);
|
|
timeinfo = std::localtime(&rawtime);
|
|
std::ostringstream oss;
|
|
oss << std::put_time(timeinfo, "%H:%M:%S");
|
|
return oss.str();
|
|
}
|
|
GridSearch::GridSearch(struct ConfigGrid& config) : config(config)
|
|
{
|
|
this->config.output_file = config.path + "grid_" + config.model + "_output.json";
|
|
this->config.input_file = config.path + "grid_" + config.model + "_input.json";
|
|
}
|
|
void showProgressComb(const int num, const int total, const std::string& color)
|
|
{
|
|
int spaces = int(log(total) / log(10)) + 1;
|
|
int magic = 37 + 2 * spaces;
|
|
std::string prefix = num == 1 ? "" : string(magic, '\b') + string(magic + 1, ' ') + string(magic + 1, '\b');
|
|
std::cout << prefix << color << "(" << setw(spaces) << num << "/" << setw(spaces) << total << ") " << Colors::RESET() << flush;
|
|
}
|
|
void showProgressFold(int fold, const std::string& color, const std::string& phase)
|
|
{
|
|
std::string prefix = phase == "a" ? "" : "\b\b\b\b";
|
|
std::cout << prefix << color << fold << Colors::RESET() << "(" << color << phase << Colors::RESET() << ")" << flush;
|
|
}
|
|
std::string getColor(bayesnet::status_t status)
|
|
{
|
|
switch (status) {
|
|
case bayesnet::NORMAL:
|
|
return Colors::GREEN();
|
|
case bayesnet::WARNING:
|
|
return Colors::YELLOW();
|
|
case bayesnet::ERROR:
|
|
return Colors::RED();
|
|
default:
|
|
return Colors::RESET();
|
|
}
|
|
}
|
|
double GridSearch::processFile(std::string fileName, Datasets& datasets, HyperParameters& hyperparameters)
|
|
{
|
|
// Get dataset
|
|
auto [X, y] = datasets.getTensors(fileName);
|
|
auto states = datasets.getStates(fileName);
|
|
auto features = datasets.getFeatures(fileName);
|
|
auto className = datasets.getClassName(fileName);
|
|
double totalScore = 0.0;
|
|
int numItems = 0;
|
|
for (const auto& seed : config.seeds) {
|
|
if (!config.quiet)
|
|
std::cout << "(" << seed << ") doing Fold: " << flush;
|
|
Fold* fold;
|
|
if (config.stratified)
|
|
fold = new StratifiedKFold(config.n_folds, y, seed);
|
|
else
|
|
fold = new KFold(config.n_folds, y.size(0), seed);
|
|
double bestScore = 0.0;
|
|
for (int nfold = 0; nfold < config.n_folds; nfold++) {
|
|
auto clf = Models::instance()->create(config.model);
|
|
clf->setHyperparameters(hyperparameters.get(fileName));
|
|
auto [train, test] = fold->getFold(nfold);
|
|
auto train_t = torch::tensor(train);
|
|
auto test_t = torch::tensor(test);
|
|
auto X_train = X.index({ "...", train_t });
|
|
auto y_train = y.index({ train_t });
|
|
auto X_test = X.index({ "...", test_t });
|
|
auto y_test = y.index({ test_t });
|
|
// Train model
|
|
if (!config.quiet)
|
|
showProgressFold(nfold + 1, getColor(clf->getStatus()), "a");
|
|
clf->fit(X_train, y_train, features, className, states);
|
|
// Test model
|
|
if (!config.quiet)
|
|
showProgressFold(nfold + 1, getColor(clf->getStatus()), "b");
|
|
totalScore += clf->score(X_test, y_test);
|
|
numItems++;
|
|
if (!config.quiet)
|
|
std::cout << "\b\b\b, \b" << flush;
|
|
}
|
|
delete fold;
|
|
}
|
|
return numItems == 0 ? 0.0 : totalScore / numItems;
|
|
}
|
|
void GridSearch::go()
|
|
{
|
|
// Load datasets
|
|
auto datasets = Datasets(config.discretize, Paths::datasets());
|
|
// Load previous results
|
|
json results;
|
|
auto datasets_names = datasets.getNames();
|
|
if (config.continue_from != "No") {
|
|
// Continue previous execution:
|
|
// Load previous results & remove datasets already processed
|
|
if (std::find(datasets_names.begin(), datasets_names.end(), config.continue_from) == datasets_names.end()) {
|
|
throw std::invalid_argument("Dataset " + config.continue_from + " not found");
|
|
}
|
|
if (!config.quiet)
|
|
std::cout << "* Loading previous results" << std::endl;
|
|
try {
|
|
std::ifstream file(config.output_file);
|
|
if (file.is_open()) {
|
|
results = json::parse(file);
|
|
}
|
|
}
|
|
catch (const std::exception& e) {
|
|
std::cerr << "Error loading previous results: " << e.what() << std::endl;
|
|
}
|
|
// Remove datasets already processed
|
|
vector< string >::iterator it = datasets_names.begin();
|
|
while (it != datasets_names.end()) {
|
|
if (*it != config.continue_from) {
|
|
it = datasets_names.erase(it);
|
|
} else
|
|
break;
|
|
}
|
|
}
|
|
// Create model
|
|
std::cout << "***************** Starting Gridsearch *****************" << std::endl;
|
|
std::cout << "input file=" << config.input_file << std::endl;
|
|
auto grid = GridData(config.input_file);
|
|
auto totalComb = grid.getNumCombinations();
|
|
std::cout << "* Doing " << totalComb << " combinations for each dataset/seed/fold" << std::endl;
|
|
// Generate hyperparameters grid & run gridsearch
|
|
// Check each combination of hyperparameters for each dataset and each seed
|
|
for (const auto& dataset : datasets_names) {
|
|
if (!config.quiet)
|
|
std::cout << "- " << setw(20) << left << dataset << " " << right << flush;
|
|
int num = 0;
|
|
double bestScore = 0.0;
|
|
json bestHyperparameters;
|
|
auto combinations = grid.getGrid();
|
|
for (const auto& hyperparam_line : combinations) {
|
|
if (!config.quiet)
|
|
showProgressComb(++num, totalComb, Colors::CYAN());
|
|
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
|
double score = processFile(dataset, datasets, hyperparameters);
|
|
if (score > bestScore) {
|
|
bestScore = score;
|
|
bestHyperparameters = hyperparam_line;
|
|
}
|
|
}
|
|
if (!config.quiet) {
|
|
std::cout << "end." << " Score: " << setw(9) << setprecision(7) << fixed
|
|
<< bestScore << " [" << bestHyperparameters.dump() << "]" << std::endl;
|
|
}
|
|
results[dataset]["score"] = bestScore;
|
|
results[dataset]["hyperparameters"] = bestHyperparameters;
|
|
results[dataset]["date"] = get_date() + " " + get_time();
|
|
results[dataset]["grid"] = grid.getInputGrid();
|
|
// Save partial results
|
|
save(results);
|
|
}
|
|
// Save final results
|
|
save(results);
|
|
std::cout << "***************** Ending Gridsearch *******************" << std::endl;
|
|
}
|
|
void GridSearch::save(json& results) const
|
|
{
|
|
std::ofstream file(config.output_file);
|
|
file << results.dump(4);
|
|
}
|
|
} /* namespace platform */ |