#include #include #include "GridSearch.h" #include "Models.h" #include "Paths.h" #include "Folding.h" #include "Colors.h" namespace platform { std::string get_date() { time_t rawtime; tm* timeinfo; time(&rawtime); timeinfo = std::localtime(&rawtime); std::ostringstream oss; oss << std::put_time(timeinfo, "%Y-%m-%d"); return oss.str(); } std::string get_time() { time_t rawtime; tm* timeinfo; time(&rawtime); timeinfo = std::localtime(&rawtime); std::ostringstream oss; oss << std::put_time(timeinfo, "%H:%M:%S"); return oss.str(); } GridSearch::GridSearch(struct ConfigGrid& config) : config(config) { this->config.output_file = config.path + "grid_" + config.model + "_output.json"; this->config.input_file = config.path + "grid_" + config.model + "_input.json"; } void showProgressComb(const int num, const int total, const std::string& color) { int spaces = int(log(total) / log(10)) + 1; int magic = 37 + 2 * spaces; std::string prefix = num == 1 ? "" : string(magic, '\b') + string(magic + 1, ' ') + string(magic + 1, '\b'); std::cout << prefix << color << "(" << setw(spaces) << num << "/" << setw(spaces) << total << ") " << Colors::RESET() << flush; } void showProgressFold(int fold, const std::string& color, const std::string& phase) { std::string prefix = phase == "a" ? "" : "\b\b\b\b"; std::cout << prefix << color << fold << Colors::RESET() << "(" << color << phase << Colors::RESET() << ")" << flush; } std::string getColor(bayesnet::status_t status) { switch (status) { case bayesnet::NORMAL: return Colors::GREEN(); case bayesnet::WARNING: return Colors::YELLOW(); case bayesnet::ERROR: return Colors::RED(); default: return Colors::RESET(); } } double GridSearch::processFile(std::string fileName, Datasets& datasets, HyperParameters& hyperparameters) { // Get dataset auto [X, y] = datasets.getTensors(fileName); auto states = datasets.getStates(fileName); auto features = datasets.getFeatures(fileName); auto className = datasets.getClassName(fileName); double totalScore = 0.0; int numItems = 0; for (const auto& seed : config.seeds) { if (!config.quiet) std::cout << "(" << seed << ") doing Fold: " << flush; Fold* fold; if (config.stratified) fold = new StratifiedKFold(config.n_folds, y, seed); else fold = new KFold(config.n_folds, y.size(0), seed); double bestScore = 0.0; for (int nfold = 0; nfold < config.n_folds; nfold++) { auto clf = Models::instance()->create(config.model); clf->setHyperparameters(hyperparameters.get(fileName)); auto [train, test] = fold->getFold(nfold); auto train_t = torch::tensor(train); auto test_t = torch::tensor(test); auto X_train = X.index({ "...", train_t }); auto y_train = y.index({ train_t }); auto X_test = X.index({ "...", test_t }); auto y_test = y.index({ test_t }); // Train model if (!config.quiet) showProgressFold(nfold + 1, getColor(clf->getStatus()), "a"); clf->fit(X_train, y_train, features, className, states); // Test model if (!config.quiet) showProgressFold(nfold + 1, getColor(clf->getStatus()), "b"); totalScore += clf->score(X_test, y_test); numItems++; if (!config.quiet) std::cout << "\b\b\b, \b" << flush; } delete fold; } return numItems == 0 ? 0.0 : totalScore / numItems; } void GridSearch::go() { // Load datasets auto datasets = Datasets(config.discretize, Paths::datasets()); // Load previous results json results; auto datasets_names = datasets.getNames(); if (config.continue_from != "No") { // Continue previous execution: // Load previous results & remove datasets already processed if (std::find(datasets_names.begin(), datasets_names.end(), config.continue_from) == datasets_names.end()) { throw std::invalid_argument("Dataset " + config.continue_from + " not found"); } if (!config.quiet) std::cout << "* Loading previous results" << std::endl; try { std::ifstream file(config.output_file); if (file.is_open()) { results = json::parse(file); } } catch (const std::exception& e) { std::cerr << "Error loading previous results: " << e.what() << std::endl; } // Remove datasets already processed vector< string >::iterator it = datasets_names.begin(); while (it != datasets_names.end()) { if (*it != config.continue_from) { it = datasets_names.erase(it); } else break; } } // Create model std::cout << "***************** Starting Gridsearch *****************" << std::endl; std::cout << "input file=" << config.input_file << std::endl; auto grid = GridData(config.input_file); auto totalComb = grid.getNumCombinations(); std::cout << "* Doing " << totalComb << " combinations for each dataset/seed/fold" << std::endl; // Generate hyperparameters grid & run gridsearch // Check each combination of hyperparameters for each dataset and each seed for (const auto& dataset : datasets_names) { if (!config.quiet) std::cout << "- " << setw(20) << left << dataset << " " << right << flush; int num = 0; double bestScore = 0.0; json bestHyperparameters; auto combinations = grid.getGrid(); for (const auto& hyperparam_line : combinations) { if (!config.quiet) showProgressComb(++num, totalComb, Colors::CYAN()); auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line); double score = processFile(dataset, datasets, hyperparameters); if (score > bestScore) { bestScore = score; bestHyperparameters = hyperparam_line; } } if (!config.quiet) { std::cout << "end." << " Score: " << setw(9) << setprecision(7) << fixed << bestScore << " [" << bestHyperparameters.dump() << "]" << std::endl; } results[dataset]["score"] = bestScore; results[dataset]["hyperparameters"] = bestHyperparameters; results[dataset]["date"] = get_date() + " " + get_time(); results[dataset]["grid"] = grid.getInputGrid(); // Save partial results save(results); } // Save final results save(results); std::cout << "***************** Ending Gridsearch *******************" << std::endl; } void GridSearch::save(json& results) const { std::ofstream file(config.output_file); file << results.dump(4); } } /* namespace platform */