22 KiB
22 KiB
<html lang="en">
<head>
</head>
</html>
LCOV - code coverage report | |||||||||||||||||||||||||
![]() | |||||||||||||||||||||||||
|
|||||||||||||||||||||||||
![]() |
Line data Source code 1 : // *************************************************************** 2 : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez 3 : // SPDX-FileType: SOURCE 4 : // SPDX-License-Identifier: MIT 5 : // *************************************************************** 6 : 7 : #include "Node.h" 8 : 9 : namespace bayesnet { 10 : 11 31339 : Node::Node(const std::string& name) 12 31339 : : name(name) 13 : { 14 31339 : } 15 9 : void Node::clear() 16 : { 17 9 : parents.clear(); 18 9 : children.clear(); 19 9 : cpTable = torch::Tensor(); 20 9 : dimensions.clear(); 21 9 : numStates = 0; 22 9 : } 23 150429643 : std::string Node::getName() const 24 : { 25 150429643 : return name; 26 : } 27 59262 : void Node::addParent(Node* parent) 28 : { 29 59262 : parents.push_back(parent); 30 59262 : } 31 17 : void Node::removeParent(Node* parent) 32 : { 33 17 : parents.erase(std::remove(parents.begin(), parents.end(), parent), parents.end()); 34 17 : } 35 17 : void Node::removeChild(Node* child) 36 : { 37 17 : children.erase(std::remove(children.begin(), children.end(), child), children.end()); 38 17 : } 39 59235 : void Node::addChild(Node* child) 40 : { 41 59235 : children.push_back(child); 42 59235 : } 43 5087 : std::vector<Node*>& Node::getParents() 44 : { 45 5087 : return parents; 46 : } 47 77571 : std::vector<Node*>& Node::getChildren() 48 : { 49 77571 : return children; 50 : } 51 64124 : int Node::getNumStates() const 52 : { 53 64124 : return numStates; 54 : } 55 32864 : void Node::setNumStates(int numStates) 56 : { 57 32864 : this->numStates = numStates; 58 32864 : } 59 429 : torch::Tensor& Node::getCPT() 60 : { 61 429 : return cpTable; 62 : } 63 : /* 64 : The MinFill criterion is a heuristic for variable elimination. 65 : The variable that minimizes the number of edges that need to be added to the graph to make it triangulated. 66 : This is done by counting the number of edges that need to be added to the graph if the variable is eliminated. 67 : The variable with the minimum number of edges is chosen. 68 : Here this is done computing the length of the combinations of the node neighbors taken 2 by 2. 69 : */ 70 45 : unsigned Node::minFill() 71 : { 72 45 : std::unordered_set<std::string> neighbors; 73 117 : for (auto child : children) { 74 72 : neighbors.emplace(child->getName()); 75 : } 76 108 : for (auto parent : parents) { 77 63 : neighbors.emplace(parent->getName()); 78 : } 79 45 : auto source = std::vector<std::string>(neighbors.begin(), neighbors.end()); 80 90 : return combinations(source).size(); 81 45 : } 82 45 : std::vector<std::pair<std::string, std::string>> Node::combinations(const std::vector<std::string>& source) 83 : { 84 45 : std::vector<std::pair<std::string, std::string>> result; 85 180 : for (int i = 0; i < source.size(); ++i) { 86 135 : std::string temp = source[i]; 87 279 : for (int j = i + 1; j < source.size(); ++j) { 88 144 : result.push_back({ temp, source[j] }); 89 : } 90 135 : } 91 90 : return result; 92 45 : } 93 32894 : void Node::computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double laplaceSmoothing, const torch::Tensor& weights) 94 : { 95 32894 : dimensions.clear(); 96 : // Get dimensions of the CPT 97 32894 : dimensions.push_back(numStates); 98 94914 : transform(parents.begin(), parents.end(), back_inserter(dimensions), [](const auto& parent) { return parent->getNumStates(); }); 99 : // Create a tensor of zeros with the dimensions of the CPT 100 32894 : cpTable = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing; 101 : // Fill table with counts 102 32894 : auto pos = find(features.begin(), features.end(), name); 103 32894 : if (pos == features.end()) { 104 8 : throw std::logic_error("Feature " + name + " not found in dataset"); 105 : } 106 32886 : int name_index = pos - features.begin(); 107 11221522 : for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) { 108 11188649 : c10::List<c10::optional<at::Tensor>> coordinates; 109 33565947 : coordinates.push_back(dataset.index({ name_index, n_sample })); 110 32200749 : for (auto parent : parents) { 111 21012113 : pos = find(features.begin(), features.end(), parent->getName()); 112 21012113 : if (pos == features.end()) { 113 13 : throw std::logic_error("Feature parent " + parent->getName() + " not found in dataset"); 114 : } 115 21012100 : int parent_index = pos - features.begin(); 116 63036300 : coordinates.push_back(dataset.index({ parent_index, n_sample })); 117 : } 118 : // Increment the count of the corresponding coordinate 119 22377272 : cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + weights.index({ n_sample }).item<double>()); 120 11188649 : } 121 : // Normalize the counts 122 32873 : cpTable = cpTable / cpTable.sum(0); 123 43422258 : } 124 69151761 : float Node::getFactorValue(std::map<std::string, int>& evidence) 125 : { 126 69151761 : c10::List<c10::optional<at::Tensor>> coordinates; 127 : // following predetermined order of indices in the cpTable (see Node.h) 128 69151761 : coordinates.push_back(at::tensor(evidence[name])); 129 198453273 : transform(parents.begin(), parents.end(), std::back_inserter(coordinates), [&evidence](const auto& parent) { return at::tensor(evidence[parent->getName()]); }); 130 138303522 : return cpTable.index({ coordinates }).item<float>(); 131 69151761 : } 132 732 : std::vector<std::string> Node::graph(const std::string& className) 133 : { 134 732 : auto output = std::vector<std::string>(); 135 732 : auto suffix = name == className ? ", fontcolor=red, fillcolor=lightblue, style=filled " : ""; 136 732 : output.push_back(name + " [shape=circle" + suffix + "] \n"); 137 1840 : transform(children.begin(), children.end(), back_inserter(output), [this](const auto& child) { return name + " -> " + child->getName(); }); 138 1464 : return output; 139 732 : } 140 : } |
![]() |
Generated by: LCOV version 2.0-1 |
</html>