Compare commits
71 Commits
Author | SHA1 | Date | |
---|---|---|---|
baa631dd66
|
|||
d0955d9369 | |||
2d34eb8c89
|
|||
0159c397fa
|
|||
0bbc8328a9
|
|||
35ca862eca
|
|||
26eb58b104
|
|||
6fcc15d39a
|
|||
9a14133be5
|
|||
59c1cf5b3b
|
|||
8e9090d283
|
|||
02bcab01be
|
|||
716748e18c
|
|||
0b31780d39
|
|||
fa26aa80f7
|
|||
3eb61905fb
|
|||
ca0ae4dacf
|
|||
b34869cc61
|
|||
27a3e5a5e0
|
|||
684443a788
|
|||
6d9badc33b | |||
015b1b0c0f
|
|||
7bb8e4df01
|
|||
53710378de
|
|||
c833e9ba32
|
|||
f5cb46ee29
|
|||
fa35681abe
|
|||
b0bd0e6eee
|
|||
d43be27821
|
|||
a2853dd2e5
|
|||
0341bd5648
|
|||
22b742f068
|
|||
2584e8294d
|
|||
291ba0fb0e
|
|||
80043d5181
|
|||
677ec5613d
|
|||
cccaa6e0af
|
|||
2e3e0e0fc2
|
|||
8784a24898
|
|||
54496c68f1
|
|||
1f236a70db
|
|||
ef3c74633c
|
|||
7efd95095c | |||
0e24135d46
|
|||
521bfd2a8e
|
|||
e2e0fb0c40
|
|||
56b62a67cc
|
|||
c0fc107abb
|
|||
d8c44b3b7c
|
|||
6ab7cd2cbd
|
|||
b578ea8a2d
|
|||
9a752d15dc
|
|||
4992685e94
|
|||
346b693c79
|
|||
164c8bd90c
|
|||
ced29a2c2e
|
|||
0ec53f405f
|
|||
f806015b29
|
|||
8115f25c06
|
|||
618a1e539c
|
|||
7aeffba740
|
|||
e79ea63afb | |||
3c7382a93a
|
|||
b4a222b100
|
|||
23ef0cc5f7
|
|||
793b2d3cd5
|
|||
ae469b8146
|
|||
f014928411
|
|||
c4b563a339
|
|||
49bb0582e6
|
|||
b4c5261e01 |
57
.devcontainer/Dockerfile
Normal file
57
.devcontainer/Dockerfile
Normal file
@@ -0,0 +1,57 @@
|
||||
FROM mcr.microsoft.com/devcontainers/cpp:ubuntu22.04
|
||||
|
||||
ARG REINSTALL_CMAKE_VERSION_FROM_SOURCE="3.22.2"
|
||||
|
||||
# Optionally install the cmake for vcpkg
|
||||
COPY ./reinstall-cmake.sh /tmp/
|
||||
|
||||
RUN if [ "${REINSTALL_CMAKE_VERSION_FROM_SOURCE}" != "none" ]; then \
|
||||
chmod +x /tmp/reinstall-cmake.sh && /tmp/reinstall-cmake.sh ${REINSTALL_CMAKE_VERSION_FROM_SOURCE}; \
|
||||
fi \
|
||||
&& rm -f /tmp/reinstall-cmake.sh
|
||||
|
||||
|
||||
# [Optional] Uncomment this section to install additional vcpkg ports.
|
||||
# RUN su vscode -c "${VCPKG_ROOT}/vcpkg install <your-port-name-here>"
|
||||
|
||||
# [Optional] Uncomment this section to install additional packages.
|
||||
RUN apt-get update && export DEBIAN_FRONTEND=noninteractive \
|
||||
&& apt-get -y install --no-install-recommends wget software-properties-common libdatetime-perl libcapture-tiny-perl libdatetime-format-dateparse-perl libgd-perl
|
||||
|
||||
# Add PPA for GCC 13
|
||||
RUN add-apt-repository ppa:ubuntu-toolchain-r/test
|
||||
RUN apt-get update
|
||||
|
||||
# Install GCC 13.1
|
||||
RUN apt-get install -y gcc-13 g++-13
|
||||
|
||||
# Install lcov 2.1
|
||||
RUN wget --quiet https://github.com/linux-test-project/lcov/releases/download/v2.1/lcov-2.1.tar.gz && \
|
||||
tar -xvf lcov-2.1.tar.gz && \
|
||||
cd lcov-2.1 && \
|
||||
make install
|
||||
RUN rm lcov-2.1.tar.gz
|
||||
RUN rm -fr lcov-2.1
|
||||
|
||||
# Install Miniconda
|
||||
RUN mkdir -p /opt/conda
|
||||
RUN wget --quiet "https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-aarch64.sh" -O /opt/conda/miniconda.sh && \
|
||||
bash /opt/conda/miniconda.sh -b -p /opt/miniconda
|
||||
|
||||
# Add conda to PATH
|
||||
ENV PATH=/opt/miniconda/bin:$PATH
|
||||
|
||||
# add CXX and CC to the environment with gcc 13
|
||||
ENV CXX=/usr/bin/g++-13
|
||||
ENV CC=/usr/bin/gcc-13
|
||||
|
||||
# link the last gcov version
|
||||
RUN rm /usr/bin/gcov
|
||||
RUN ln -s /usr/bin/gcov-13 /usr/bin/gcov
|
||||
|
||||
# change ownership of /opt/miniconda to vscode user
|
||||
RUN chown -R vscode:vscode /opt/miniconda
|
||||
|
||||
USER vscode
|
||||
RUN conda init
|
||||
RUN conda install -y -c conda-forge yaml pytorch
|
37
.devcontainer/devcontainer.json
Normal file
37
.devcontainer/devcontainer.json
Normal file
@@ -0,0 +1,37 @@
|
||||
// For format details, see https://aka.ms/devcontainer.json. For config options, see the
|
||||
// README at: https://github.com/devcontainers/templates/tree/main/src/cpp
|
||||
{
|
||||
"name": "C++",
|
||||
"build": {
|
||||
"dockerfile": "Dockerfile"
|
||||
},
|
||||
// "features": {
|
||||
// "ghcr.io/devcontainers/features/conda:1": {}
|
||||
// }
|
||||
// Features to add to the dev container. More info: https://containers.dev/features.
|
||||
// "features": {},
|
||||
// Use 'forwardPorts' to make a list of ports inside the container available locally.
|
||||
// "forwardPorts": [],
|
||||
// Use 'postCreateCommand' to run commands after the container is created.
|
||||
"postCreateCommand": "make release && make debug && echo 'Done!'",
|
||||
// Configure tool-specific properties.
|
||||
// "customizations": {},
|
||||
"customizations": {
|
||||
// Configure properties specific to VS Code.
|
||||
"vscode": {
|
||||
"settings": {},
|
||||
"extensions": [
|
||||
"ms-vscode.cpptools",
|
||||
"ms-vscode.cpptools-extension-pack",
|
||||
"ms-vscode.cpptools-themes",
|
||||
"ms-vscode.cmake-tools",
|
||||
"ms-azuretools.vscode-docker",
|
||||
"jbenden.c-cpp-flylint",
|
||||
"matepek.vscode-catch2-test-adapter",
|
||||
"GitHub.copilot"
|
||||
]
|
||||
}
|
||||
}
|
||||
// Uncomment to connect as root instead. More info: https://aka.ms/dev-containers-non-root.
|
||||
// "remoteUser": "root"
|
||||
}
|
59
.devcontainer/reinstall-cmake.sh
Normal file
59
.devcontainer/reinstall-cmake.sh
Normal file
@@ -0,0 +1,59 @@
|
||||
#!/usr/bin/env bash
|
||||
#-------------------------------------------------------------------------------------------------------------
|
||||
# Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
# Licensed under the MIT License. See https://go.microsoft.com/fwlink/?linkid=2090316 for license information.
|
||||
#-------------------------------------------------------------------------------------------------------------
|
||||
#
|
||||
set -e
|
||||
|
||||
CMAKE_VERSION=${1:-"none"}
|
||||
|
||||
if [ "${CMAKE_VERSION}" = "none" ]; then
|
||||
echo "No CMake version specified, skipping CMake reinstallation"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# Cleanup temporary directory and associated files when exiting the script.
|
||||
cleanup() {
|
||||
EXIT_CODE=$?
|
||||
set +e
|
||||
if [[ -n "${TMP_DIR}" ]]; then
|
||||
echo "Executing cleanup of tmp files"
|
||||
rm -Rf "${TMP_DIR}"
|
||||
fi
|
||||
exit $EXIT_CODE
|
||||
}
|
||||
trap cleanup EXIT
|
||||
|
||||
|
||||
echo "Installing CMake..."
|
||||
apt-get -y purge --auto-remove cmake
|
||||
mkdir -p /opt/cmake
|
||||
|
||||
architecture=$(dpkg --print-architecture)
|
||||
case "${architecture}" in
|
||||
arm64)
|
||||
ARCH=aarch64 ;;
|
||||
amd64)
|
||||
ARCH=x86_64 ;;
|
||||
*)
|
||||
echo "Unsupported architecture ${architecture}."
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
|
||||
CMAKE_BINARY_NAME="cmake-${CMAKE_VERSION}-linux-${ARCH}.sh"
|
||||
CMAKE_CHECKSUM_NAME="cmake-${CMAKE_VERSION}-SHA-256.txt"
|
||||
TMP_DIR=$(mktemp -d -t cmake-XXXXXXXXXX)
|
||||
|
||||
echo "${TMP_DIR}"
|
||||
cd "${TMP_DIR}"
|
||||
|
||||
curl -sSL "https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/${CMAKE_BINARY_NAME}" -O
|
||||
curl -sSL "https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/${CMAKE_CHECKSUM_NAME}" -O
|
||||
|
||||
sha256sum -c --ignore-missing "${CMAKE_CHECKSUM_NAME}"
|
||||
sh "${TMP_DIR}/${CMAKE_BINARY_NAME}" --prefix=/opt/cmake --skip-license
|
||||
|
||||
ln -s /opt/cmake/bin/cmake /usr/local/bin/cmake
|
||||
ln -s /opt/cmake/bin/ctest /usr/local/bin/ctest
|
12
.github/dependabot.yml
vendored
Normal file
12
.github/dependabot.yml
vendored
Normal file
@@ -0,0 +1,12 @@
|
||||
# To get started with Dependabot version updates, you'll need to specify which
|
||||
# package ecosystems to update and where the package manifests are located.
|
||||
# Please see the documentation for more information:
|
||||
# https://docs.github.com/github/administering-a-repository/configuration-options-for-dependency-updates
|
||||
# https://containers.dev/guide/dependabot
|
||||
|
||||
version: 2
|
||||
updates:
|
||||
- package-ecosystem: "devcontainers"
|
||||
directory: "/"
|
||||
schedule:
|
||||
interval: weekly
|
12
.github/workflows/main.yml
vendored
12
.github/workflows/main.yml
vendored
@@ -1,12 +0,0 @@
|
||||
name: CI
|
||||
on: push
|
||||
|
||||
jobs:
|
||||
tests:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- run: sudo apt-get install ninja-build cmake
|
||||
- run: ninja --version
|
||||
- run: cmake --version
|
||||
- run: g++ --version
|
5
.gitignore
vendored
5
.gitignore
vendored
@@ -39,4 +39,9 @@ cmake-build*/**
|
||||
puml/**
|
||||
.vscode/settings.json
|
||||
sample/build
|
||||
**/.DS_Store
|
||||
docs/manual
|
||||
docs/man3
|
||||
docs/man
|
||||
docs/Doxyfile
|
||||
|
||||
|
13
.gitmodules
vendored
13
.gitmodules
vendored
@@ -3,11 +3,6 @@
|
||||
url = https://github.com/rmontanana/mdlp
|
||||
main = main
|
||||
update = merge
|
||||
[submodule "lib/catch2"]
|
||||
path = lib/catch2
|
||||
main = v2.x
|
||||
update = merge
|
||||
url = https://github.com/catchorg/Catch2.git
|
||||
[submodule "lib/json"]
|
||||
path = lib/json
|
||||
url = https://github.com/nlohmann/json.git
|
||||
@@ -18,3 +13,11 @@
|
||||
url = https://github.com/rmontanana/folding
|
||||
main = main
|
||||
update = merge
|
||||
[submodule "tests/lib/catch2"]
|
||||
path = tests/lib/catch2
|
||||
url = https://github.com/catchorg/Catch2.git
|
||||
main = main
|
||||
update = merge
|
||||
[submodule "tests/lib/Files"]
|
||||
path = tests/lib/Files
|
||||
url = https://github.com/rmontanana/ArffFiles
|
||||
|
4
.sonarlint/connectedMode.json
Normal file
4
.sonarlint/connectedMode.json
Normal file
@@ -0,0 +1,4 @@
|
||||
{
|
||||
"sonarCloudOrganization": "rmontanana",
|
||||
"projectKey": "rmontanana_BayesNet"
|
||||
}
|
6
.vscode/launch.json
vendored
6
.vscode/launch.json
vendored
@@ -14,11 +14,11 @@
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "test",
|
||||
"program": "${workspaceFolder}/build_debug/tests/TestBayesNet",
|
||||
"program": "${workspaceFolder}/build_Debug/tests/TestBayesNet",
|
||||
"args": [
|
||||
"Block Update"
|
||||
"[Network]"
|
||||
],
|
||||
"cwd": "${workspaceFolder}/build_debug/tests"
|
||||
"cwd": "${workspaceFolder}/build_Debug/tests"
|
||||
},
|
||||
{
|
||||
"name": "(gdb) Launch",
|
||||
|
33
CHANGELOG.md
33
CHANGELOG.md
@@ -5,6 +5,34 @@ All notable changes to this project will be documented in this file.
|
||||
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.1.0/),
|
||||
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
|
||||
|
||||
## [Unreleased]
|
||||
|
||||
### Added
|
||||
|
||||
- Library logo generated with <https://openart.ai> to README.md
|
||||
- Link to the coverage report in the README.md coverage label.
|
||||
- *convergence_best* hyperparameter to the BoostAODE class, to control the way the prior accuracy is computed if convergence is set. Default value is *false*.
|
||||
- SPnDE model.
|
||||
- A2DE model.
|
||||
- A2DE & SPnDE tests.
|
||||
- Add tests to reach 99% of coverage.
|
||||
- Add tests to check the correct version of the mdlp, folding and json libraries.
|
||||
- Library documentation generated with Doxygen.
|
||||
- Link to documentation in the README.md.
|
||||
- Three types of smoothing the Bayesian Network OLD_LAPLACE, LAPLACE and CESTNIK.
|
||||
|
||||
### Internal
|
||||
|
||||
- Create library ShuffleArffFile to limit the number of samples with a parameter and shuffle them.
|
||||
- Refactor catch2 library location to test/lib
|
||||
- Refactor loadDataset function in tests.
|
||||
- Remove conditionalEdgeWeights method in BayesMetrics.
|
||||
- Refactor Coverage Report generation.
|
||||
- Add devcontainer to work on apple silicon.
|
||||
- Change build cmake folder names to Debug & Release.
|
||||
- Add a Makefile target (doc) to generate the documentation.
|
||||
- Add a Makefile target (doc-install) to install the documentation.
|
||||
|
||||
## [1.0.5] 2024-04-20
|
||||
|
||||
### Added
|
||||
@@ -25,6 +53,11 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
||||
- The worse model count in BoostAODE is reset to 0 every time a new model produces better accuracy, so the tolerance of the model is meant to be the number of **consecutive** models that produce worse accuracy.
|
||||
- Default hyperparameter values in BoostAODE: bisection is true, maxTolerance is 3, convergence is true
|
||||
|
||||
### Removed
|
||||
|
||||
- The 'predict_single' hyperparameter from the BoostAODE class.
|
||||
- The 'repeatSparent' hyperparameter from the BoostAODE class.
|
||||
|
||||
## [1.0.4] 2024-03-06
|
||||
|
||||
### Added
|
||||
|
@@ -1,7 +1,7 @@
|
||||
cmake_minimum_required(VERSION 3.20)
|
||||
|
||||
project(BayesNet
|
||||
VERSION 1.0.5
|
||||
VERSION 1.0.6
|
||||
DESCRIPTION "Bayesian Network and basic classifiers Library."
|
||||
HOMEPAGE_URL "https://github.com/rmontanana/bayesnet"
|
||||
LANGUAGES CXX
|
||||
@@ -25,8 +25,12 @@ set(CMAKE_CXX_EXTENSIONS OFF)
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
|
||||
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fprofile-arcs -ftest-coverage -O0 -g")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -O3")
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fprofile-arcs -ftest-coverage -fno-elide-constructors")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -Ofast")
|
||||
if (NOT ${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fno-default-inline")
|
||||
endif()
|
||||
|
||||
# Options
|
||||
# -------
|
||||
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
|
||||
@@ -47,10 +51,15 @@ endif (CMAKE_BUILD_TYPE STREQUAL "Debug")
|
||||
|
||||
|
||||
if (CODE_COVERAGE)
|
||||
get_property(LANGUAGES GLOBAL PROPERTY ENABLED_LANGUAGES)
|
||||
message("ALL LANGUAGES: ${LANGUAGES}")
|
||||
foreach(LANG ${LANGUAGES})
|
||||
message("${LANG} compiler is \"${CMAKE_${LANG}_COMPILER_ID}\"")
|
||||
endforeach()
|
||||
enable_testing()
|
||||
include(CodeCoverage)
|
||||
MESSAGE("Code coverage enabled")
|
||||
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
|
||||
#include(CodeCoverage)
|
||||
#MESSAGE("Code coverage enabled")
|
||||
#SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
|
||||
endif (CODE_COVERAGE)
|
||||
|
||||
if (ENABLE_CLANG_TIDY)
|
||||
@@ -60,20 +69,19 @@ endif (ENABLE_CLANG_TIDY)
|
||||
# External libraries - dependencies of BayesNet
|
||||
# ---------------------------------------------
|
||||
# include(FetchContent)
|
||||
add_git_submodule("lib/mdlp")
|
||||
add_git_submodule("lib/json")
|
||||
add_git_submodule("lib/mdlp")
|
||||
|
||||
# Subdirectories
|
||||
# --------------
|
||||
add_subdirectory(config)
|
||||
add_subdirectory(lib/Files)
|
||||
add_subdirectory(bayesnet)
|
||||
|
||||
# Testing
|
||||
# -------
|
||||
if (ENABLE_TESTING)
|
||||
MESSAGE("Testing enabled")
|
||||
add_git_submodule("lib/catch2")
|
||||
MESSAGE("Testing enabled")
|
||||
add_subdirectory(tests/lib/catch2)
|
||||
include(CTest)
|
||||
add_subdirectory(tests)
|
||||
endif (ENABLE_TESTING)
|
||||
@@ -86,3 +94,14 @@ install(TARGETS BayesNet
|
||||
CONFIGURATIONS Release)
|
||||
install(DIRECTORY bayesnet/ DESTINATION include/bayesnet FILES_MATCHING CONFIGURATIONS Release PATTERN "*.h")
|
||||
install(FILES ${CMAKE_BINARY_DIR}/configured_files/include/bayesnet/config.h DESTINATION include/bayesnet CONFIGURATIONS Release)
|
||||
|
||||
# Documentation
|
||||
# -------------
|
||||
find_package(Doxygen)
|
||||
set(DOC_DIR ${CMAKE_CURRENT_SOURCE_DIR}/docs)
|
||||
set(doxyfile_in ${DOC_DIR}/Doxyfile.in)
|
||||
set(doxyfile ${DOC_DIR}/Doxyfile)
|
||||
configure_file(${doxyfile_in} ${doxyfile} @ONLY)
|
||||
doxygen_add_docs(doxygen
|
||||
WORKING_DIRECTORY ${DOC_DIR}
|
||||
CONFIG_FILE ${doxyfile})
|
||||
|
91
Makefile
91
Makefile
@@ -1,16 +1,22 @@
|
||||
SHELL := /bin/bash
|
||||
.DEFAULT_GOAL := help
|
||||
.PHONY: viewcoverage coverage setup help install uninstall diagrams buildr buildd test clean debug release sample updatebadge
|
||||
.PHONY: viewcoverage coverage setup help install uninstall diagrams buildr buildd test clean debug release sample updatebadge doc doc-install
|
||||
|
||||
f_release = build_release
|
||||
f_debug = build_debug
|
||||
f_release = build_Release
|
||||
f_debug = build_Debug
|
||||
f_diagrams = diagrams
|
||||
app_targets = BayesNet
|
||||
test_targets = TestBayesNet
|
||||
clang-uml = clang-uml
|
||||
plantuml = plantuml
|
||||
lcov = lcov
|
||||
genhtml = genhtml
|
||||
dot = dot
|
||||
n_procs = -j 16
|
||||
docsrcdir = docs/manual
|
||||
mansrcdir = docs/man3
|
||||
mandestdir = /usr/local/share/man
|
||||
sed_command_link = 's/e">LCOV -/e"><a href="https:\/\/rmontanana.github.io\/bayesnet">Back to manual<\/a> LCOV -/g'
|
||||
sed_command_diagram = 's/Diagram"/Diagram" width="100%" height="100%" /g'
|
||||
|
||||
define ClearTests
|
||||
@for t in $(test_targets); do \
|
||||
@@ -52,10 +58,10 @@ diagrams: ## Create an UML class diagram & depnendency of the project (diagrams/
|
||||
@$(dot) -Tsvg $(f_debug)/dependency.dot.BayesNet -o $(f_diagrams)/dependency.svg
|
||||
|
||||
buildd: ## Build the debug targets
|
||||
cmake --build $(f_debug) -t $(app_targets) $(n_procs)
|
||||
cmake --build $(f_debug) -t $(app_targets) --parallel
|
||||
|
||||
buildr: ## Build the release targets
|
||||
cmake --build $(f_release) -t $(app_targets) $(n_procs)
|
||||
cmake --build $(f_release) -t $(app_targets) --parallel
|
||||
|
||||
clean: ## Clean the tests info
|
||||
@echo ">>> Cleaning Debug BayesNet tests...";
|
||||
@@ -97,9 +103,9 @@ sample: ## Build sample
|
||||
|
||||
opt = ""
|
||||
test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
|
||||
@echo ">>> Running BayesNet & Platform tests...";
|
||||
@echo ">>> Running BayesNet tests...";
|
||||
@$(MAKE) clean
|
||||
@cmake --build $(f_debug) -t $(test_targets) $(n_procs)
|
||||
@cmake --build $(f_debug) -t $(test_targets) --parallel
|
||||
@for t in $(test_targets); do \
|
||||
echo ">>> Running $$t...";\
|
||||
if [ -f $(f_debug)/tests/$$t ]; then \
|
||||
@@ -112,31 +118,70 @@ test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximu
|
||||
|
||||
coverage: ## Run tests and generate coverage report (build/index.html)
|
||||
@echo ">>> Building tests with coverage..."
|
||||
@$(MAKE) test
|
||||
@gcovr $(f_debug)/tests
|
||||
@echo ">>> Done";
|
||||
|
||||
viewcoverage: ## Run tests, generate coverage report and upload it to codecov (build/index.html)
|
||||
@echo ">>> Building tests with coverage..."
|
||||
@$(MAKE) coverage
|
||||
@which $(lcov) || (echo ">>ease install lcov"; exit 1)
|
||||
@if [ ! -f $(f_debug)/tests/coverage.info ] ; then $(MAKE) test ; fi
|
||||
@echo ">>> Building report..."
|
||||
@cd $(f_debug)/tests; \
|
||||
lcov --directory . --capture --output-file coverage.info >/dev/null 2>&1; \
|
||||
lcov --remove coverage.info '/usr/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
lcov --remove coverage.info 'lib/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
lcov --remove coverage.info 'libtorch/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
lcov --remove coverage.info 'tests/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
lcov --remove coverage.info 'bayesnet/utils/loguru.*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
genhtml coverage.info --output-directory coverage >/dev/null 2>&1;
|
||||
$(lcov) --directory CMakeFiles --capture --demangle-cpp --ignore-errors source,source --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info '/usr/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'lib/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'libtorch/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'tests/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'bayesnet/utils/loguru.*' --ignore-errors unused --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info '/opt/miniconda/*' --ignore-errors unused --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --summary coverage.info
|
||||
@$(MAKE) updatebadge
|
||||
@xdg-open $(f_debug)/tests/coverage/index.html || open $(f_debug)/tests/coverage/index.html 2>/dev/null
|
||||
@echo ">>> Done";
|
||||
|
||||
viewcoverage: ## View the html coverage report
|
||||
@which $(genhtml) >/dev/null || (echo ">>> Please install lcov (genhtml not found)"; exit 1)
|
||||
@if [ ! -d $(docsrcdir)/coverage ]; then mkdir -p $(docsrcdir)/coverage; fi
|
||||
@if [ ! -f $(f_debug)/tests/coverage.info ]; then \
|
||||
echo ">>> No coverage.info file found. Run make coverage first!"; \
|
||||
exit 1; \
|
||||
fi
|
||||
@$(genhtml) $(f_debug)/tests/coverage.info --demangle-cpp --output-directory $(docsrcdir)/coverage --title "BayesNet Coverage Report" -s -k -f --legend >/dev/null 2>&1;
|
||||
@xdg-open $(docsrcdir)/coverage/index.html || open $(docsrcdir)/coverage/index.html 2>/dev/null
|
||||
@echo ">>> Done";
|
||||
|
||||
updatebadge: ## Update the coverage badge in README.md
|
||||
@which python || (echo ">>> Please install python"; exit 1)
|
||||
@if [ ! -f $(f_debug)/tests/coverage.info ]; then \
|
||||
echo ">>> No coverage.info file found. Run make coverage first!"; \
|
||||
exit 1; \
|
||||
fi
|
||||
@echo ">>> Updating coverage badge..."
|
||||
@env python update_coverage.py $(f_debug)/tests
|
||||
@echo ">>> Done";
|
||||
|
||||
doc: ## Generate documentation
|
||||
@echo ">>> Generating documentation..."
|
||||
@cmake --build $(f_release) -t doxygen
|
||||
@cp -rp diagrams $(docsrcdir)
|
||||
@
|
||||
@if [ "$(shell uname)" = "Darwin" ]; then \
|
||||
sed -i "" $(sed_command_link) $(docsrcdir)/coverage/index.html ; \
|
||||
sed -i "" $(sed_command_diagram) $(docsrcdir)/index.html ; \
|
||||
else \
|
||||
sed -i $(sed_command_link) $(docsrcdir)/coverage/index.html ; \
|
||||
sed -i $(sed_command_diagram) $(docsrcdir)/index.html ; \
|
||||
fi
|
||||
@echo ">>> Done";
|
||||
|
||||
docdir = ""
|
||||
doc-install: ## Install documentation
|
||||
@echo ">>> Installing documentation..."
|
||||
@if [ "$(docdir)" = "" ]; then \
|
||||
echo "docdir parameter has to be set when calling doc-install"; \
|
||||
exit 1; \
|
||||
fi
|
||||
@if [ ! -d $(docdir) ]; then \
|
||||
@$(MAKE) doc; \
|
||||
fi
|
||||
@cp -rp $(docsrcdir)/* $(docdir)
|
||||
@sudo cp -rp $(mansrcdir) $(mandestdir)
|
||||
@echo ">>> Done";
|
||||
|
||||
help: ## Show help message
|
||||
@IFS=$$'\n' ; \
|
||||
help_lines=(`fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \
|
||||
|
48
README.md
48
README.md
@@ -1,11 +1,13 @@
|
||||
# BayesNet
|
||||
# <img src="logo.png" alt="logo" width="50"/> BayesNet
|
||||
|
||||

|
||||
[](<https://opensource.org/licenses/MIT>)
|
||||

|
||||
[](https://app.codacy.com/gh/Doctorado-ML/BayesNet/dashboard?utm_source=gh&utm_medium=referral&utm_content=&utm_campaign=Badge_grade)
|
||||
[](https://sonarcloud.io/summary/new_code?id=rmontanana_BayesNet)
|
||||
[](https://sonarcloud.io/summary/new_code?id=rmontanana_BayesNet)
|
||||

|
||||

|
||||
[](html/index.html)
|
||||
|
||||
Bayesian Network Classifiers using libtorch from scratch
|
||||
|
||||
@@ -20,6 +22,12 @@ unzip libtorch-shared-with-deps-latest.zips
|
||||
|
||||
## Setup
|
||||
|
||||
### Getting the code
|
||||
|
||||
```bash
|
||||
git clone --recurse-submodules https://github.com/doctorado-ml/bayesnet
|
||||
```
|
||||
|
||||
### Release
|
||||
|
||||
```bash
|
||||
@@ -33,7 +41,13 @@ sudo make install
|
||||
```bash
|
||||
make debug
|
||||
make test
|
||||
```
|
||||
|
||||
### Coverage
|
||||
|
||||
```bash
|
||||
make coverage
|
||||
make viewcoverage
|
||||
```
|
||||
|
||||
### Sample app
|
||||
@@ -47,7 +61,35 @@ make sample fname=tests/data/glass.arff
|
||||
|
||||
## Models
|
||||
|
||||
### [BoostAODE](docs/BoostAODE.md)
|
||||
#### - TAN
|
||||
|
||||
#### - KDB
|
||||
|
||||
#### - SPODE
|
||||
|
||||
#### - SPnDE
|
||||
|
||||
#### - AODE
|
||||
|
||||
#### - [BoostAODE](docs/BoostAODE.md)
|
||||
|
||||
#### - BoostA2DE
|
||||
|
||||
### With Local Discretization
|
||||
|
||||
#### - TANLd
|
||||
|
||||
#### - KDBLd
|
||||
|
||||
#### - SPODELd
|
||||
|
||||
#### - AODELd
|
||||
|
||||
## Documentation
|
||||
|
||||
### [Manual](https://rmontanana.github.io/bayesnet/)
|
||||
|
||||
### [Coverage report](https://rmontanana.github.io/bayesnet/coverage/index.html)
|
||||
|
||||
## Diagrams
|
||||
|
||||
|
@@ -8,16 +8,18 @@
|
||||
#include <vector>
|
||||
#include <torch/torch.h>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "bayesnet/network/Network.h"
|
||||
|
||||
namespace bayesnet {
|
||||
enum status_t { NORMAL, WARNING, ERROR };
|
||||
class BaseClassifier {
|
||||
public:
|
||||
// X is nxm std::vector, y is nx1 std::vector
|
||||
virtual BaseClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
|
||||
virtual BaseClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) = 0;
|
||||
// X is nxm tensor, y is nx1 tensor
|
||||
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing) = 0;
|
||||
virtual ~BaseClassifier() = default;
|
||||
torch::Tensor virtual predict(torch::Tensor& X) = 0;
|
||||
std::vector<int> virtual predict(std::vector<std::vector<int >>& X) = 0;
|
||||
@@ -39,7 +41,7 @@ namespace bayesnet {
|
||||
virtual void setHyperparameters(const nlohmann::json& hyperparameters) = 0;
|
||||
std::vector<std::string>& getValidHyperparameters() { return validHyperparameters; }
|
||||
protected:
|
||||
virtual void trainModel(const torch::Tensor& weights) = 0;
|
||||
virtual void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) = 0;
|
||||
std::vector<std::string> validHyperparameters;
|
||||
};
|
||||
}
|
@@ -1,6 +1,5 @@
|
||||
include_directories(
|
||||
${BayesNet_SOURCE_DIR}/lib/mdlp
|
||||
${BayesNet_SOURCE_DIR}/lib/Files
|
||||
${BayesNet_SOURCE_DIR}/lib/mdlp/src
|
||||
${BayesNet_SOURCE_DIR}/lib/folding
|
||||
${BayesNet_SOURCE_DIR}/lib/json/include
|
||||
${BayesNet_SOURCE_DIR}
|
||||
|
@@ -9,9 +9,17 @@
|
||||
#include "Classifier.h"
|
||||
|
||||
namespace bayesnet {
|
||||
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
|
||||
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false), device(torch::kCPU)
|
||||
{
|
||||
if (torch::cuda::is_available()) {
|
||||
device = torch::Device(torch::kCUDA);
|
||||
std::cout << "CUDA is available! Using GPU." << std::endl;
|
||||
} else {
|
||||
std::cout << "CUDA is not available. Using CPU." << std::endl;
|
||||
}
|
||||
}
|
||||
const std::string CLASSIFIER_NOT_FITTED = "Classifier has not been fitted";
|
||||
Classifier& Classifier::build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
|
||||
Classifier& Classifier::build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||
{
|
||||
this->features = features;
|
||||
this->className = className;
|
||||
@@ -23,7 +31,7 @@ namespace bayesnet {
|
||||
metrics = Metrics(dataset, features, className, n_classes);
|
||||
model.initialize();
|
||||
buildModel(weights);
|
||||
trainModel(weights);
|
||||
trainModel(weights, smoothing);
|
||||
fitted = true;
|
||||
return *this;
|
||||
}
|
||||
@@ -31,7 +39,7 @@ namespace bayesnet {
|
||||
{
|
||||
try {
|
||||
auto yresized = torch::transpose(ytmp.view({ ytmp.size(0), 1 }), 0, 1);
|
||||
dataset = torch::cat({ dataset, yresized }, 0);
|
||||
dataset = torch::cat({ dataset, yresized }, 0).to(device);
|
||||
}
|
||||
catch (const std::exception& e) {
|
||||
std::stringstream oss;
|
||||
@@ -41,20 +49,20 @@ namespace bayesnet {
|
||||
throw std::runtime_error(oss.str());
|
||||
}
|
||||
}
|
||||
void Classifier::trainModel(const torch::Tensor& weights)
|
||||
void Classifier::trainModel(const torch::Tensor& weights, Smoothing_t smoothing)
|
||||
{
|
||||
model.fit(dataset, weights, features, className, states);
|
||||
model.fit(dataset, weights, features, className, states, smoothing);
|
||||
}
|
||||
// X is nxm where n is the number of features and m the number of samples
|
||||
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
|
||||
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing)
|
||||
{
|
||||
dataset = X;
|
||||
buildDataset(y);
|
||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||
return build(features, className, states, weights);
|
||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble).to(device);
|
||||
return build(features, className, states, weights, smoothing);
|
||||
}
|
||||
// X is nxm where n is the number of features and m the number of samples
|
||||
Classifier& Classifier::fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
|
||||
Classifier& Classifier::fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing)
|
||||
{
|
||||
dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, torch::kInt32);
|
||||
for (int i = 0; i < X.size(); ++i) {
|
||||
@@ -63,18 +71,18 @@ namespace bayesnet {
|
||||
auto ytmp = torch::tensor(y, torch::kInt32);
|
||||
buildDataset(ytmp);
|
||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||
return build(features, className, states, weights);
|
||||
return build(features, className, states, weights, smoothing);
|
||||
}
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing)
|
||||
{
|
||||
this->dataset = dataset;
|
||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||
return build(features, className, states, weights);
|
||||
return build(features, className, states, weights, smoothing);
|
||||
}
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||
{
|
||||
this->dataset = dataset;
|
||||
return build(features, className, states, weights);
|
||||
return build(features, className, states, weights, smoothing);
|
||||
}
|
||||
void Classifier::checkFitParameters()
|
||||
{
|
||||
|
@@ -8,7 +8,6 @@
|
||||
#define CLASSIFIER_H
|
||||
#include <torch/torch.h>
|
||||
#include "bayesnet/utils/BayesMetrics.h"
|
||||
#include "bayesnet/network/Network.h"
|
||||
#include "bayesnet/BaseClassifier.h"
|
||||
|
||||
namespace bayesnet {
|
||||
@@ -16,10 +15,10 @@ namespace bayesnet {
|
||||
public:
|
||||
Classifier(Network model);
|
||||
virtual ~Classifier() = default;
|
||||
Classifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights) override;
|
||||
Classifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
Classifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
Classifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
Classifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||
void addNodes();
|
||||
int getNumberOfNodes() const override;
|
||||
int getNumberOfEdges() const override;
|
||||
@@ -39,6 +38,7 @@ namespace bayesnet {
|
||||
std::string dump_cpt() const override;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override; //For classifiers that don't have hyperparameters
|
||||
protected:
|
||||
torch::Device device;
|
||||
bool fitted;
|
||||
unsigned int m, n; // m: number of samples, n: number of features
|
||||
Network model;
|
||||
@@ -51,10 +51,10 @@ namespace bayesnet {
|
||||
std::vector<std::string> notes; // Used to store messages occurred during the fit process
|
||||
void checkFitParameters();
|
||||
virtual void buildModel(const torch::Tensor& weights) = 0;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||
void buildDataset(torch::Tensor& y);
|
||||
private:
|
||||
Classifier& build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
|
||||
Classifier& build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing);
|
||||
};
|
||||
}
|
||||
#endif
|
||||
|
@@ -8,7 +8,7 @@
|
||||
|
||||
namespace bayesnet {
|
||||
KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {}
|
||||
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||
{
|
||||
checkInput(X_, y_);
|
||||
features = features_;
|
||||
@@ -19,7 +19,7 @@ namespace bayesnet {
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network
|
||||
KDB::fit(dataset, features, className, states);
|
||||
KDB::fit(dataset, features, className, states, smoothing);
|
||||
states = localDiscretizationProposal(states, model);
|
||||
return *this;
|
||||
}
|
||||
|
@@ -15,7 +15,7 @@ namespace bayesnet {
|
||||
public:
|
||||
explicit KDBLd(int k);
|
||||
virtual ~KDBLd() = default;
|
||||
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
|
||||
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
std::vector<std::string> graph(const std::string& name = "KDB") const override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
static inline std::string version() { return "0.0.1"; };
|
||||
|
@@ -4,7 +4,6 @@
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include <ArffFiles.h>
|
||||
#include "Proposal.h"
|
||||
|
||||
namespace bayesnet {
|
||||
@@ -54,8 +53,7 @@ namespace bayesnet {
|
||||
yJoinParents[i] += to_string(pDataset.index({ idx, i }).item<int>());
|
||||
}
|
||||
}
|
||||
auto arff = ArffFiles();
|
||||
auto yxv = arff.factorize(yJoinParents);
|
||||
auto yxv = factorize(yJoinParents);
|
||||
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
|
||||
auto xvf = std::vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
|
||||
discretizers[feature]->fit(xvf, yxv);
|
||||
@@ -72,7 +70,7 @@ namespace bayesnet {
|
||||
states[pFeatures[index]] = xStates;
|
||||
}
|
||||
const torch::Tensor weights = torch::full({ pDataset.size(1) }, 1.0 / pDataset.size(1), torch::kDouble);
|
||||
model.fit(pDataset, weights, pFeatures, pClassName, states);
|
||||
model.fit(pDataset, weights, pFeatures, pClassName, states, Smoothing_t::ORIGINAL);
|
||||
}
|
||||
return states;
|
||||
}
|
||||
@@ -113,4 +111,19 @@ namespace bayesnet {
|
||||
}
|
||||
return Xtd;
|
||||
}
|
||||
std::vector<int> Proposal::factorize(const std::vector<std::string>& labels_t)
|
||||
{
|
||||
std::vector<int> yy;
|
||||
yy.reserve(labels_t.size());
|
||||
std::map<std::string, int> labelMap;
|
||||
int i = 0;
|
||||
for (const std::string& label : labels_t) {
|
||||
if (labelMap.find(label) == labelMap.end()) {
|
||||
labelMap[label] = i++;
|
||||
bool allDigits = std::all_of(label.begin(), label.end(), ::isdigit);
|
||||
}
|
||||
yy.push_back(labelMap[label]);
|
||||
}
|
||||
return yy;
|
||||
}
|
||||
}
|
@@ -27,6 +27,7 @@ namespace bayesnet {
|
||||
torch::Tensor y; // y discrete nx1 tensor
|
||||
map<std::string, mdlp::CPPFImdlp*> discretizers;
|
||||
private:
|
||||
std::vector<int> factorize(const std::vector<std::string>& labels_t);
|
||||
torch::Tensor& pDataset; // (n+1)xm tensor
|
||||
std::vector<std::string>& pFeatures;
|
||||
std::string& pClassName;
|
||||
|
@@ -8,25 +8,25 @@
|
||||
|
||||
namespace bayesnet {
|
||||
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}
|
||||
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||
{
|
||||
checkInput(X_, y_);
|
||||
Xf = X_;
|
||||
y = y_;
|
||||
return commonFit(features_, className_, states_);
|
||||
return commonFit(features_, className_, states_, smoothing);
|
||||
}
|
||||
|
||||
SPODELd& SPODELd::fit(torch::Tensor& dataset, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
SPODELd& SPODELd::fit(torch::Tensor& dataset, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||
{
|
||||
if (!torch::is_floating_point(dataset)) {
|
||||
throw std::runtime_error("Dataset must be a floating point tensor");
|
||||
}
|
||||
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
|
||||
y = dataset.index({ -1, "..." }).clone().to(torch::kInt32);
|
||||
return commonFit(features_, className_, states_);
|
||||
return commonFit(features_, className_, states_, smoothing);
|
||||
}
|
||||
|
||||
SPODELd& SPODELd::commonFit(const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
SPODELd& SPODELd::commonFit(const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||
{
|
||||
features = features_;
|
||||
className = className_;
|
||||
@@ -34,7 +34,7 @@ namespace bayesnet {
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
|
||||
SPODE::fit(dataset, features, className, states);
|
||||
SPODE::fit(dataset, features, className, states, smoothing);
|
||||
states = localDiscretizationProposal(states, model);
|
||||
return *this;
|
||||
}
|
||||
|
@@ -14,10 +14,10 @@ namespace bayesnet {
|
||||
public:
|
||||
explicit SPODELd(int root);
|
||||
virtual ~SPODELd() = default;
|
||||
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
|
||||
SPODELd& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
|
||||
SPODELd& commonFit(const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states);
|
||||
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
|
||||
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
SPODELd& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
SPODELd& commonFit(const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing);
|
||||
std::vector<std::string> graph(const std::string& name = "SPODELd") const override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
static inline std::string version() { return "0.0.1"; };
|
||||
};
|
||||
|
38
bayesnet/classifiers/SPnDE.cc
Normal file
38
bayesnet/classifiers/SPnDE.cc
Normal file
@@ -0,0 +1,38 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include "SPnDE.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
SPnDE::SPnDE(std::vector<int> parents) : Classifier(Network()), parents(parents) {}
|
||||
|
||||
void SPnDE::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
// 0. Add all nodes to the model
|
||||
addNodes();
|
||||
std::vector<int> attributes;
|
||||
for (int i = 0; i < static_cast<int>(features.size()); ++i) {
|
||||
if (std::find(parents.begin(), parents.end(), i) == parents.end()) {
|
||||
attributes.push_back(i);
|
||||
}
|
||||
}
|
||||
// 1. Add edges from the class node to all other nodes
|
||||
// 2. Add edges from the parents nodes to all other nodes
|
||||
for (const auto& attribute : attributes) {
|
||||
model.addEdge(className, features[attribute]);
|
||||
for (const auto& root : parents) {
|
||||
|
||||
model.addEdge(features[root], features[attribute]);
|
||||
}
|
||||
}
|
||||
}
|
||||
std::vector<std::string> SPnDE::graph(const std::string& name) const
|
||||
{
|
||||
return model.graph(name);
|
||||
}
|
||||
|
||||
}
|
26
bayesnet/classifiers/SPnDE.h
Normal file
26
bayesnet/classifiers/SPnDE.h
Normal file
@@ -0,0 +1,26 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef SPnDE_H
|
||||
#define SPnDE_H
|
||||
#include <vector>
|
||||
#include "Classifier.h"
|
||||
|
||||
namespace bayesnet {
|
||||
class SPnDE : public Classifier {
|
||||
public:
|
||||
explicit SPnDE(std::vector<int> parents);
|
||||
virtual ~SPnDE() = default;
|
||||
std::vector<std::string> graph(const std::string& name = "SPnDE") const override;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
private:
|
||||
std::vector<int> parents;
|
||||
|
||||
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -8,7 +8,7 @@
|
||||
|
||||
namespace bayesnet {
|
||||
TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {}
|
||||
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||
{
|
||||
checkInput(X_, y_);
|
||||
features = features_;
|
||||
@@ -19,7 +19,7 @@ namespace bayesnet {
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
|
||||
TAN::fit(dataset, features, className, states);
|
||||
TAN::fit(dataset, features, className, states, smoothing);
|
||||
states = localDiscretizationProposal(states, model);
|
||||
return *this;
|
||||
|
||||
|
@@ -15,10 +15,9 @@ namespace bayesnet {
|
||||
public:
|
||||
TANLd();
|
||||
virtual ~TANLd() = default;
|
||||
TANLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
|
||||
std::vector<std::string> graph(const std::string& name = "TAN") const override;
|
||||
TANLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
std::vector<std::string> graph(const std::string& name = "TANLd") const override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
static inline std::string version() { return "0.0.1"; };
|
||||
};
|
||||
}
|
||||
#endif // !TANLD_H
|
40
bayesnet/ensembles/A2DE.cc
Normal file
40
bayesnet/ensembles/A2DE.cc
Normal file
@@ -0,0 +1,40 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include "A2DE.h"
|
||||
|
||||
namespace bayesnet {
|
||||
A2DE::A2DE(bool predict_voting) : Ensemble(predict_voting)
|
||||
{
|
||||
validHyperparameters = { "predict_voting" };
|
||||
}
|
||||
void A2DE::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("predict_voting")) {
|
||||
predict_voting = hyperparameters["predict_voting"];
|
||||
hyperparameters.erase("predict_voting");
|
||||
}
|
||||
Classifier::setHyperparameters(hyperparameters);
|
||||
}
|
||||
void A2DE::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
models.clear();
|
||||
significanceModels.clear();
|
||||
for (int i = 0; i < features.size() - 1; ++i) {
|
||||
for (int j = i + 1; j < features.size(); ++j) {
|
||||
auto model = std::make_unique<SPnDE>(std::vector<int>({ i, j }));
|
||||
models.push_back(std::move(model));
|
||||
}
|
||||
}
|
||||
n_models = static_cast<unsigned>(models.size());
|
||||
significanceModels = std::vector<double>(n_models, 1.0);
|
||||
}
|
||||
std::vector<std::string> A2DE::graph(const std::string& title) const
|
||||
{
|
||||
return Ensemble::graph(title);
|
||||
}
|
||||
}
|
22
bayesnet/ensembles/A2DE.h
Normal file
22
bayesnet/ensembles/A2DE.h
Normal file
@@ -0,0 +1,22 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef A2DE_H
|
||||
#define A2DE_H
|
||||
#include "bayesnet/classifiers/SPnDE.h"
|
||||
#include "Ensemble.h"
|
||||
namespace bayesnet {
|
||||
class A2DE : public Ensemble {
|
||||
public:
|
||||
A2DE(bool predict_voting = false);
|
||||
virtual ~A2DE() {};
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||
std::vector<std::string> graph(const std::string& title = "A2DE") const override;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -10,7 +10,7 @@ namespace bayesnet {
|
||||
AODELd::AODELd(bool predict_voting) : Ensemble(predict_voting), Proposal(dataset, features, className)
|
||||
{
|
||||
}
|
||||
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||
{
|
||||
checkInput(X_, y_);
|
||||
features = features_;
|
||||
@@ -21,7 +21,7 @@ namespace bayesnet {
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
|
||||
Ensemble::fit(dataset, features, className, states);
|
||||
Ensemble::fit(dataset, features, className, states, smoothing);
|
||||
return *this;
|
||||
|
||||
}
|
||||
@@ -34,10 +34,10 @@ namespace bayesnet {
|
||||
n_models = models.size();
|
||||
significanceModels = std::vector<double>(n_models, 1.0);
|
||||
}
|
||||
void AODELd::trainModel(const torch::Tensor& weights)
|
||||
void AODELd::trainModel(const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||
{
|
||||
for (const auto& model : models) {
|
||||
model->fit(Xf, y, features, className, states);
|
||||
model->fit(Xf, y, features, className, states, smoothing);
|
||||
}
|
||||
}
|
||||
std::vector<std::string> AODELd::graph(const std::string& name) const
|
||||
|
@@ -15,10 +15,10 @@ namespace bayesnet {
|
||||
public:
|
||||
AODELd(bool predict_voting = true);
|
||||
virtual ~AODELd() = default;
|
||||
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_) override;
|
||||
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing) override;
|
||||
std::vector<std::string> graph(const std::string& name = "AODELd") const override;
|
||||
protected:
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
};
|
||||
}
|
||||
|
246
bayesnet/ensembles/Boost.cc
Normal file
246
bayesnet/ensembles/Boost.cc
Normal file
@@ -0,0 +1,246 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
#include <folding.hpp>
|
||||
#include "bayesnet/feature_selection/CFS.h"
|
||||
#include "bayesnet/feature_selection/FCBF.h"
|
||||
#include "bayesnet/feature_selection/IWSS.h"
|
||||
#include "Boost.h"
|
||||
|
||||
namespace bayesnet {
|
||||
Boost::Boost(bool predict_voting) : Ensemble(predict_voting)
|
||||
{
|
||||
validHyperparameters = { "order", "convergence", "convergence_best", "bisection", "threshold", "maxTolerance",
|
||||
"predict_voting", "select_features", "block_update" };
|
||||
}
|
||||
void Boost::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("order")) {
|
||||
std::vector<std::string> algos = { Orders.ASC, Orders.DESC, Orders.RAND };
|
||||
order_algorithm = hyperparameters["order"];
|
||||
if (std::find(algos.begin(), algos.end(), order_algorithm) == algos.end()) {
|
||||
throw std::invalid_argument("Invalid order algorithm, valid values [" + Orders.ASC + ", " + Orders.DESC + ", " + Orders.RAND + "]");
|
||||
}
|
||||
hyperparameters.erase("order");
|
||||
}
|
||||
if (hyperparameters.contains("convergence")) {
|
||||
convergence = hyperparameters["convergence"];
|
||||
hyperparameters.erase("convergence");
|
||||
}
|
||||
if (hyperparameters.contains("convergence_best")) {
|
||||
convergence_best = hyperparameters["convergence_best"];
|
||||
hyperparameters.erase("convergence_best");
|
||||
}
|
||||
if (hyperparameters.contains("bisection")) {
|
||||
bisection = hyperparameters["bisection"];
|
||||
hyperparameters.erase("bisection");
|
||||
}
|
||||
if (hyperparameters.contains("threshold")) {
|
||||
threshold = hyperparameters["threshold"];
|
||||
hyperparameters.erase("threshold");
|
||||
}
|
||||
if (hyperparameters.contains("maxTolerance")) {
|
||||
maxTolerance = hyperparameters["maxTolerance"];
|
||||
if (maxTolerance < 1 || maxTolerance > 4)
|
||||
throw std::invalid_argument("Invalid maxTolerance value, must be greater in [1, 4]");
|
||||
hyperparameters.erase("maxTolerance");
|
||||
}
|
||||
if (hyperparameters.contains("predict_voting")) {
|
||||
predict_voting = hyperparameters["predict_voting"];
|
||||
hyperparameters.erase("predict_voting");
|
||||
}
|
||||
if (hyperparameters.contains("select_features")) {
|
||||
auto selectedAlgorithm = hyperparameters["select_features"];
|
||||
std::vector<std::string> algos = { SelectFeatures.IWSS, SelectFeatures.CFS, SelectFeatures.FCBF };
|
||||
selectFeatures = true;
|
||||
select_features_algorithm = selectedAlgorithm;
|
||||
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
|
||||
throw std::invalid_argument("Invalid selectFeatures value, valid values [" + SelectFeatures.IWSS + ", " + SelectFeatures.CFS + ", " + SelectFeatures.FCBF + "]");
|
||||
}
|
||||
hyperparameters.erase("select_features");
|
||||
}
|
||||
if (hyperparameters.contains("block_update")) {
|
||||
block_update = hyperparameters["block_update"];
|
||||
hyperparameters.erase("block_update");
|
||||
}
|
||||
Classifier::setHyperparameters(hyperparameters);
|
||||
}
|
||||
void Boost::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
// Models shall be built in trainModel
|
||||
models.clear();
|
||||
significanceModels.clear();
|
||||
n_models = 0;
|
||||
// Prepare the validation dataset
|
||||
auto y_ = dataset.index({ -1, "..." });
|
||||
if (convergence) {
|
||||
// Prepare train & validation sets from train data
|
||||
auto fold = folding::StratifiedKFold(5, y_, 271);
|
||||
auto [train, test] = fold.getFold(0);
|
||||
auto train_t = torch::tensor(train);
|
||||
auto test_t = torch::tensor(test);
|
||||
// Get train and validation sets
|
||||
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), train_t });
|
||||
y_train = dataset.index({ -1, train_t });
|
||||
X_test = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), test_t });
|
||||
y_test = dataset.index({ -1, test_t });
|
||||
dataset = X_train;
|
||||
m = X_train.size(1);
|
||||
auto n_classes = states.at(className).size();
|
||||
// Build dataset with train data
|
||||
buildDataset(y_train);
|
||||
metrics = Metrics(dataset, features, className, n_classes);
|
||||
} else {
|
||||
// Use all data to train
|
||||
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
|
||||
y_train = y_;
|
||||
}
|
||||
}
|
||||
std::vector<int> Boost::featureSelection(torch::Tensor& weights_)
|
||||
{
|
||||
int maxFeatures = 0;
|
||||
if (select_features_algorithm == SelectFeatures.CFS) {
|
||||
featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_);
|
||||
} else if (select_features_algorithm == SelectFeatures.IWSS) {
|
||||
if (threshold < 0 || threshold >0.5) {
|
||||
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.IWSS + " [0, 0.5]");
|
||||
}
|
||||
featureSelector = new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||
} else if (select_features_algorithm == SelectFeatures.FCBF) {
|
||||
if (threshold < 1e-7 || threshold > 1) {
|
||||
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.FCBF + " [1e-7, 1]");
|
||||
}
|
||||
featureSelector = new FCBF(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||
}
|
||||
featureSelector->fit();
|
||||
auto featuresUsed = featureSelector->getFeatures();
|
||||
delete featureSelector;
|
||||
return featuresUsed;
|
||||
}
|
||||
std::tuple<torch::Tensor&, double, bool> Boost::update_weights(torch::Tensor& ytrain, torch::Tensor& ypred, torch::Tensor& weights)
|
||||
{
|
||||
bool terminate = false;
|
||||
double alpha_t = 0;
|
||||
auto mask_wrong = ypred != ytrain;
|
||||
auto mask_right = ypred == ytrain;
|
||||
auto masked_weights = weights * mask_wrong.to(weights.dtype());
|
||||
double epsilon_t = masked_weights.sum().item<double>();
|
||||
if (epsilon_t > 0.5) {
|
||||
// Inverse the weights policy (plot ln(wt))
|
||||
// "In each round of AdaBoost, there is a sanity check to ensure that the current base
|
||||
// learner is better than random guess" (Zhi-Hua Zhou, 2012)
|
||||
terminate = true;
|
||||
} else {
|
||||
double wt = (1 - epsilon_t) / epsilon_t;
|
||||
alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
|
||||
// Step 3.2: Update weights for next classifier
|
||||
// Step 3.2.1: Update weights of wrong samples
|
||||
weights += mask_wrong.to(weights.dtype()) * exp(alpha_t) * weights;
|
||||
// Step 3.2.2: Update weights of right samples
|
||||
weights += mask_right.to(weights.dtype()) * exp(-alpha_t) * weights;
|
||||
// Step 3.3: Normalise the weights
|
||||
double totalWeights = torch::sum(weights).item<double>();
|
||||
weights = weights / totalWeights;
|
||||
}
|
||||
return { weights, alpha_t, terminate };
|
||||
}
|
||||
std::tuple<torch::Tensor&, double, bool> Boost::update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights)
|
||||
{
|
||||
/* Update Block algorithm
|
||||
k = # of models in block
|
||||
n_models = # of models in ensemble to make predictions
|
||||
n_models_bak = # models saved
|
||||
models = vector of models to make predictions
|
||||
models_bak = models not used to make predictions
|
||||
significances_bak = backup of significances vector
|
||||
|
||||
Case list
|
||||
A) k = 1, n_models = 1 => n = 0 , n_models = n + k
|
||||
B) k = 1, n_models = n + 1 => n_models = n + k
|
||||
C) k > 1, n_models = k + 1 => n= 1, n_models = n + k
|
||||
D) k > 1, n_models = k => n = 0, n_models = n + k
|
||||
E) k > 1, n_models = k + n => n_models = n + k
|
||||
|
||||
A, D) n=0, k > 0, n_models == k
|
||||
1. n_models_bak <- n_models
|
||||
2. significances_bak <- significances
|
||||
3. significances = vector(k, 1)
|
||||
4. Don’t move any classifiers out of models
|
||||
5. n_models <- k
|
||||
6. Make prediction, compute alpha, update weights
|
||||
7. Don’t restore any classifiers to models
|
||||
8. significances <- significances_bak
|
||||
9. Update last k significances
|
||||
10. n_models <- n_models_bak
|
||||
|
||||
B, C, E) n > 0, k > 0, n_models == n + k
|
||||
1. n_models_bak <- n_models
|
||||
2. significances_bak <- significances
|
||||
3. significances = vector(k, 1)
|
||||
4. Move first n classifiers to models_bak
|
||||
5. n_models <- k
|
||||
6. Make prediction, compute alpha, update weights
|
||||
7. Insert classifiers in models_bak to be the first n models
|
||||
8. significances <- significances_bak
|
||||
9. Update last k significances
|
||||
10. n_models <- n_models_bak
|
||||
*/
|
||||
//
|
||||
// Make predict with only the last k models
|
||||
//
|
||||
std::unique_ptr<Classifier> model;
|
||||
std::vector<std::unique_ptr<Classifier>> models_bak;
|
||||
// 1. n_models_bak <- n_models 2. significances_bak <- significances
|
||||
auto significance_bak = significanceModels;
|
||||
auto n_models_bak = n_models;
|
||||
// 3. significances = vector(k, 1)
|
||||
significanceModels = std::vector<double>(k, 1.0);
|
||||
// 4. Move first n classifiers to models_bak
|
||||
// backup the first n_models - k models (if n_models == k, don't backup any)
|
||||
for (int i = 0; i < n_models - k; ++i) {
|
||||
model = std::move(models[0]);
|
||||
models.erase(models.begin());
|
||||
models_bak.push_back(std::move(model));
|
||||
}
|
||||
assert(models.size() == k);
|
||||
// 5. n_models <- k
|
||||
n_models = k;
|
||||
// 6. Make prediction, compute alpha, update weights
|
||||
auto ypred = predict(X_train);
|
||||
//
|
||||
// Update weights
|
||||
//
|
||||
double alpha_t;
|
||||
bool terminate;
|
||||
std::tie(weights, alpha_t, terminate) = update_weights(y_train, ypred, weights);
|
||||
//
|
||||
// Restore the models if needed
|
||||
//
|
||||
// 7. Insert classifiers in models_bak to be the first n models
|
||||
// if n_models_bak == k, don't restore any, because none of them were moved
|
||||
if (k != n_models_bak) {
|
||||
// Insert in the same order as they were extracted
|
||||
int bak_size = models_bak.size();
|
||||
for (int i = 0; i < bak_size; ++i) {
|
||||
model = std::move(models_bak[bak_size - 1 - i]);
|
||||
models_bak.erase(models_bak.end() - 1);
|
||||
models.insert(models.begin(), std::move(model));
|
||||
}
|
||||
}
|
||||
// 8. significances <- significances_bak
|
||||
significanceModels = significance_bak;
|
||||
//
|
||||
// Update the significance of the last k models
|
||||
//
|
||||
// 9. Update last k significances
|
||||
for (int i = 0; i < k; ++i) {
|
||||
significanceModels[n_models_bak - k + i] = alpha_t;
|
||||
}
|
||||
// 10. n_models <- n_models_bak
|
||||
n_models = n_models_bak;
|
||||
return { weights, alpha_t, terminate };
|
||||
}
|
||||
}
|
52
bayesnet/ensembles/Boost.h
Normal file
52
bayesnet/ensembles/Boost.h
Normal file
@@ -0,0 +1,52 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef BOOST_H
|
||||
#define BOOST_H
|
||||
#include <string>
|
||||
#include <tuple>
|
||||
#include <vector>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include <torch/torch.h>
|
||||
#include "Ensemble.h"
|
||||
#include "bayesnet/feature_selection/FeatureSelect.h"
|
||||
namespace bayesnet {
|
||||
const struct {
|
||||
std::string CFS = "CFS";
|
||||
std::string FCBF = "FCBF";
|
||||
std::string IWSS = "IWSS";
|
||||
}SelectFeatures;
|
||||
const struct {
|
||||
std::string ASC = "asc";
|
||||
std::string DESC = "desc";
|
||||
std::string RAND = "rand";
|
||||
}Orders;
|
||||
class Boost : public Ensemble {
|
||||
public:
|
||||
explicit Boost(bool predict_voting = false);
|
||||
virtual ~Boost() = default;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||
protected:
|
||||
std::vector<int> featureSelection(torch::Tensor& weights_);
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
std::tuple<torch::Tensor&, double, bool> update_weights(torch::Tensor& ytrain, torch::Tensor& ypred, torch::Tensor& weights);
|
||||
std::tuple<torch::Tensor&, double, bool> update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights);
|
||||
torch::Tensor X_train, y_train, X_test, y_test;
|
||||
// Hyperparameters
|
||||
bool bisection = true; // if true, use bisection stratety to add k models at once to the ensemble
|
||||
int maxTolerance = 3;
|
||||
std::string order_algorithm; // order to process the KBest features asc, desc, rand
|
||||
bool convergence = true; //if true, stop when the model does not improve
|
||||
bool convergence_best = false; // wether to keep the best accuracy to the moment or the last accuracy as prior accuracy
|
||||
bool selectFeatures = false; // if true, use feature selection
|
||||
std::string select_features_algorithm = Orders.DESC; // Selected feature selection algorithm
|
||||
FeatureSelect* featureSelector = nullptr;
|
||||
double threshold = -1;
|
||||
bool block_update = false;
|
||||
|
||||
};
|
||||
}
|
||||
#endif
|
167
bayesnet/ensembles/BoostA2DE.cc
Normal file
167
bayesnet/ensembles/BoostA2DE.cc
Normal file
@@ -0,0 +1,167 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include <set>
|
||||
#include <functional>
|
||||
#include <limits.h>
|
||||
#include <tuple>
|
||||
#include <folding.hpp>
|
||||
#include "bayesnet/feature_selection/CFS.h"
|
||||
#include "bayesnet/feature_selection/FCBF.h"
|
||||
#include "bayesnet/feature_selection/IWSS.h"
|
||||
#include "BoostA2DE.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
BoostA2DE::BoostA2DE(bool predict_voting) : Boost(predict_voting)
|
||||
{
|
||||
}
|
||||
std::vector<int> BoostA2DE::initializeModels(const Smoothing_t smoothing)
|
||||
{
|
||||
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||
std::vector<int> featuresSelected = featureSelection(weights_);
|
||||
if (featuresSelected.size() < 2) {
|
||||
notes.push_back("No features selected in initialization");
|
||||
status = ERROR;
|
||||
return std::vector<int>();
|
||||
}
|
||||
for (int i = 0; i < featuresSelected.size() - 1; i++) {
|
||||
for (int j = i + 1; j < featuresSelected.size(); j++) {
|
||||
auto parents = { featuresSelected[i], featuresSelected[j] };
|
||||
std::unique_ptr<Classifier> model = std::make_unique<SPnDE>(parents);
|
||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(1.0); // They will be updated later in trainModel
|
||||
n_models++;
|
||||
}
|
||||
}
|
||||
notes.push_back("Used features in initialization: " + std::to_string(featuresSelected.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
|
||||
return featuresSelected;
|
||||
}
|
||||
void BoostA2DE::trainModel(const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||
{
|
||||
//
|
||||
// Logging setup
|
||||
//
|
||||
// loguru::set_thread_name("BoostA2DE");
|
||||
// loguru::g_stderr_verbosity = loguru::Verbosity_OFF;
|
||||
// loguru::add_file("boostA2DE.log", loguru::Truncate, loguru::Verbosity_MAX);
|
||||
|
||||
// Algorithm based on the adaboost algorithm for classification
|
||||
// as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
|
||||
fitted = true;
|
||||
double alpha_t = 0;
|
||||
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||
bool finished = false;
|
||||
std::vector<int> featuresUsed;
|
||||
if (selectFeatures) {
|
||||
featuresUsed = initializeModels(smoothing);
|
||||
auto ypred = predict(X_train);
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||
// Update significance of the models
|
||||
for (int i = 0; i < n_models; ++i) {
|
||||
significanceModels[i] = alpha_t;
|
||||
}
|
||||
if (finished) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
int numItemsPack = 0; // The counter of the models inserted in the current pack
|
||||
// Variables to control the accuracy finish condition
|
||||
double priorAccuracy = 0.0;
|
||||
double improvement = 1.0;
|
||||
double convergence_threshold = 1e-4;
|
||||
int tolerance = 0; // number of times the accuracy is lower than the convergence_threshold
|
||||
// Step 0: Set the finish condition
|
||||
// epsilon sub t > 0.5 => inverse the weights policy
|
||||
// validation error is not decreasing
|
||||
// run out of features
|
||||
bool ascending = order_algorithm == Orders.ASC;
|
||||
std::mt19937 g{ 173 };
|
||||
std::vector<std::pair<int, int>> pairSelection;
|
||||
while (!finished) {
|
||||
// Step 1: Build ranking with mutual information
|
||||
pairSelection = metrics.SelectKPairs(weights_, featuresUsed, ascending, 0); // Get all the pairs sorted
|
||||
if (order_algorithm == Orders.RAND) {
|
||||
std::shuffle(pairSelection.begin(), pairSelection.end(), g);
|
||||
}
|
||||
int k = bisection ? pow(2, tolerance) : 1;
|
||||
int counter = 0; // The model counter of the current pack
|
||||
// VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size());
|
||||
while (counter++ < k && pairSelection.size() > 0) {
|
||||
auto feature_pair = pairSelection[0];
|
||||
pairSelection.erase(pairSelection.begin());
|
||||
std::unique_ptr<Classifier> model;
|
||||
model = std::make_unique<SPnDE>(std::vector<int>({ feature_pair.first, feature_pair.second }));
|
||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||
alpha_t = 0.0;
|
||||
if (!block_update) {
|
||||
auto ypred = model->predict(X_train);
|
||||
// Step 3.1: Compute the classifier amout of say
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||
}
|
||||
// Step 3.4: Store classifier and its accuracy to weigh its future vote
|
||||
numItemsPack++;
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(alpha_t);
|
||||
n_models++;
|
||||
// VLOG_SCOPE_F(2, "numItemsPack: %d n_models: %d featuresUsed: %zu", numItemsPack, n_models, featuresUsed.size());
|
||||
}
|
||||
if (block_update) {
|
||||
std::tie(weights_, alpha_t, finished) = update_weights_block(k, y_train, weights_);
|
||||
}
|
||||
if (convergence && !finished) {
|
||||
auto y_val_predict = predict(X_test);
|
||||
double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
|
||||
if (priorAccuracy == 0) {
|
||||
priorAccuracy = accuracy;
|
||||
} else {
|
||||
improvement = accuracy - priorAccuracy;
|
||||
}
|
||||
if (improvement < convergence_threshold) {
|
||||
// VLOG_SCOPE_F(3, " (improvement<threshold) tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
tolerance++;
|
||||
} else {
|
||||
// VLOG_SCOPE_F(3, "* (improvement>=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
tolerance = 0; // Reset the counter if the model performs better
|
||||
numItemsPack = 0;
|
||||
}
|
||||
if (convergence_best) {
|
||||
// Keep the best accuracy until now as the prior accuracy
|
||||
priorAccuracy = std::max(accuracy, priorAccuracy);
|
||||
} else {
|
||||
// Keep the last accuray obtained as the prior accuracy
|
||||
priorAccuracy = accuracy;
|
||||
}
|
||||
}
|
||||
// VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(), features.size());
|
||||
finished = finished || tolerance > maxTolerance || pairSelection.size() == 0;
|
||||
}
|
||||
if (tolerance > maxTolerance) {
|
||||
if (numItemsPack < n_models) {
|
||||
notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated");
|
||||
// VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated of %d", numItemsPack, n_models);
|
||||
for (int i = 0; i < numItemsPack; ++i) {
|
||||
significanceModels.pop_back();
|
||||
models.pop_back();
|
||||
n_models--;
|
||||
}
|
||||
} else {
|
||||
notes.push_back("Convergence threshold reached & 0 models eliminated");
|
||||
// VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d", n_models, numItemsPack);
|
||||
}
|
||||
}
|
||||
if (pairSelection.size() > 0) {
|
||||
notes.push_back("Pairs not used in train: " + std::to_string(pairSelection.size()));
|
||||
status = WARNING;
|
||||
}
|
||||
notes.push_back("Number of models: " + std::to_string(n_models));
|
||||
}
|
||||
std::vector<std::string> BoostA2DE::graph(const std::string& title) const
|
||||
{
|
||||
return Ensemble::graph(title);
|
||||
}
|
||||
}
|
25
bayesnet/ensembles/BoostA2DE.h
Normal file
25
bayesnet/ensembles/BoostA2DE.h
Normal file
@@ -0,0 +1,25 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef BOOSTA2DE_H
|
||||
#define BOOSTA2DE_H
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "bayesnet/classifiers/SPnDE.h"
|
||||
#include "Boost.h"
|
||||
namespace bayesnet {
|
||||
class BoostA2DE : public Boost {
|
||||
public:
|
||||
explicit BoostA2DE(bool predict_voting = false);
|
||||
virtual ~BoostA2DE() = default;
|
||||
std::vector<std::string> graph(const std::string& title = "BoostA2DE") const override;
|
||||
protected:
|
||||
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||
private:
|
||||
std::vector<int> initializeModels(const Smoothing_t smoothing);
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -4,264 +4,41 @@
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include <random>
|
||||
#include <set>
|
||||
#include <functional>
|
||||
#include <limits.h>
|
||||
#include <tuple>
|
||||
#include <folding.hpp>
|
||||
#include "bayesnet/feature_selection/CFS.h"
|
||||
#include "bayesnet/feature_selection/FCBF.h"
|
||||
#include "bayesnet/feature_selection/IWSS.h"
|
||||
#include "BoostAODE.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
BoostAODE::BoostAODE(bool predict_voting) : Ensemble(predict_voting)
|
||||
BoostAODE::BoostAODE(bool predict_voting) : Boost(predict_voting)
|
||||
{
|
||||
validHyperparameters = {
|
||||
"maxModels", "bisection", "order", "convergence", "threshold",
|
||||
"select_features", "maxTolerance", "predict_voting", "block_update"
|
||||
};
|
||||
|
||||
}
|
||||
void BoostAODE::buildModel(const torch::Tensor& weights)
|
||||
std::vector<int> BoostAODE::initializeModels(const Smoothing_t smoothing)
|
||||
{
|
||||
// Models shall be built in trainModel
|
||||
models.clear();
|
||||
significanceModels.clear();
|
||||
n_models = 0;
|
||||
// Prepare the validation dataset
|
||||
auto y_ = dataset.index({ -1, "..." });
|
||||
if (convergence) {
|
||||
// Prepare train & validation sets from train data
|
||||
auto fold = folding::StratifiedKFold(5, y_, 271);
|
||||
auto [train, test] = fold.getFold(0);
|
||||
auto train_t = torch::tensor(train);
|
||||
auto test_t = torch::tensor(test);
|
||||
// Get train and validation sets
|
||||
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), train_t });
|
||||
y_train = dataset.index({ -1, train_t });
|
||||
X_test = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), test_t });
|
||||
y_test = dataset.index({ -1, test_t });
|
||||
dataset = X_train;
|
||||
m = X_train.size(1);
|
||||
auto n_classes = states.at(className).size();
|
||||
// Build dataset with train data
|
||||
buildDataset(y_train);
|
||||
metrics = Metrics(dataset, features, className, n_classes);
|
||||
} else {
|
||||
// Use all data to train
|
||||
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
|
||||
y_train = y_;
|
||||
}
|
||||
}
|
||||
void BoostAODE::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("order")) {
|
||||
std::vector<std::string> algos = { Orders.ASC, Orders.DESC, Orders.RAND };
|
||||
order_algorithm = hyperparameters["order"];
|
||||
if (std::find(algos.begin(), algos.end(), order_algorithm) == algos.end()) {
|
||||
throw std::invalid_argument("Invalid order algorithm, valid values [" + Orders.ASC + ", " + Orders.DESC + ", " + Orders.RAND + "]");
|
||||
}
|
||||
hyperparameters.erase("order");
|
||||
}
|
||||
if (hyperparameters.contains("convergence")) {
|
||||
convergence = hyperparameters["convergence"];
|
||||
hyperparameters.erase("convergence");
|
||||
}
|
||||
if (hyperparameters.contains("bisection")) {
|
||||
bisection = hyperparameters["bisection"];
|
||||
hyperparameters.erase("bisection");
|
||||
}
|
||||
if (hyperparameters.contains("threshold")) {
|
||||
threshold = hyperparameters["threshold"];
|
||||
hyperparameters.erase("threshold");
|
||||
}
|
||||
if (hyperparameters.contains("maxTolerance")) {
|
||||
maxTolerance = hyperparameters["maxTolerance"];
|
||||
if (maxTolerance < 1 || maxTolerance > 4)
|
||||
throw std::invalid_argument("Invalid maxTolerance value, must be greater in [1, 4]");
|
||||
hyperparameters.erase("maxTolerance");
|
||||
}
|
||||
if (hyperparameters.contains("predict_voting")) {
|
||||
predict_voting = hyperparameters["predict_voting"];
|
||||
hyperparameters.erase("predict_voting");
|
||||
}
|
||||
if (hyperparameters.contains("select_features")) {
|
||||
auto selectedAlgorithm = hyperparameters["select_features"];
|
||||
std::vector<std::string> algos = { SelectFeatures.IWSS, SelectFeatures.CFS, SelectFeatures.FCBF };
|
||||
selectFeatures = true;
|
||||
select_features_algorithm = selectedAlgorithm;
|
||||
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
|
||||
throw std::invalid_argument("Invalid selectFeatures value, valid values [" + SelectFeatures.IWSS + ", " + SelectFeatures.CFS + ", " + SelectFeatures.FCBF + "]");
|
||||
}
|
||||
hyperparameters.erase("select_features");
|
||||
}
|
||||
if (hyperparameters.contains("block_update")) {
|
||||
block_update = hyperparameters["block_update"];
|
||||
hyperparameters.erase("block_update");
|
||||
}
|
||||
Classifier::setHyperparameters(hyperparameters);
|
||||
}
|
||||
std::tuple<torch::Tensor&, double, bool> update_weights(torch::Tensor& ytrain, torch::Tensor& ypred, torch::Tensor& weights)
|
||||
{
|
||||
bool terminate = false;
|
||||
double alpha_t = 0;
|
||||
auto mask_wrong = ypred != ytrain;
|
||||
auto mask_right = ypred == ytrain;
|
||||
auto masked_weights = weights * mask_wrong.to(weights.dtype());
|
||||
double epsilon_t = masked_weights.sum().item<double>();
|
||||
if (epsilon_t > 0.5) {
|
||||
// Inverse the weights policy (plot ln(wt))
|
||||
// "In each round of AdaBoost, there is a sanity check to ensure that the current base
|
||||
// learner is better than random guess" (Zhi-Hua Zhou, 2012)
|
||||
terminate = true;
|
||||
} else {
|
||||
double wt = (1 - epsilon_t) / epsilon_t;
|
||||
alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
|
||||
// Step 3.2: Update weights for next classifier
|
||||
// Step 3.2.1: Update weights of wrong samples
|
||||
weights += mask_wrong.to(weights.dtype()) * exp(alpha_t) * weights;
|
||||
// Step 3.2.2: Update weights of right samples
|
||||
weights += mask_right.to(weights.dtype()) * exp(-alpha_t) * weights;
|
||||
// Step 3.3: Normalise the weights
|
||||
double totalWeights = torch::sum(weights).item<double>();
|
||||
weights = weights / totalWeights;
|
||||
}
|
||||
return { weights, alpha_t, terminate };
|
||||
}
|
||||
std::tuple<torch::Tensor&, double, bool> BoostAODE::update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights)
|
||||
{
|
||||
/* Update Block algorithm
|
||||
k = # of models in block
|
||||
n_models = # of models in ensemble to make predictions
|
||||
n_models_bak = # models saved
|
||||
models = vector of models to make predictions
|
||||
models_bak = models not used to make predictions
|
||||
significances_bak = backup of significances vector
|
||||
|
||||
Case list
|
||||
A) k = 1, n_models = 1 => n = 0 , n_models = n + k
|
||||
B) k = 1, n_models = n + 1 => n_models = n + k
|
||||
C) k > 1, n_models = k + 1 => n= 1, n_models = n + k
|
||||
D) k > 1, n_models = k => n = 0, n_models = n + k
|
||||
E) k > 1, n_models = k + n => n_models = n + k
|
||||
|
||||
A, D) n=0, k > 0, n_models == k
|
||||
1. n_models_bak <- n_models
|
||||
2. significances_bak <- significances
|
||||
3. significances = vector(k, 1)
|
||||
4. Don’t move any classifiers out of models
|
||||
5. n_models <- k
|
||||
6. Make prediction, compute alpha, update weights
|
||||
7. Don’t restore any classifiers to models
|
||||
8. significances <- significances_bak
|
||||
9. Update last k significances
|
||||
10. n_models <- n_models_bak
|
||||
|
||||
B, C, E) n > 0, k > 0, n_models == n + k
|
||||
1. n_models_bak <- n_models
|
||||
2. significances_bak <- significances
|
||||
3. significances = vector(k, 1)
|
||||
4. Move first n classifiers to models_bak
|
||||
5. n_models <- k
|
||||
6. Make prediction, compute alpha, update weights
|
||||
7. Insert classifiers in models_bak to be the first n models
|
||||
8. significances <- significances_bak
|
||||
9. Update last k significances
|
||||
10. n_models <- n_models_bak
|
||||
*/
|
||||
//
|
||||
// Make predict with only the last k models
|
||||
//
|
||||
std::unique_ptr<Classifier> model;
|
||||
std::vector<std::unique_ptr<Classifier>> models_bak;
|
||||
// 1. n_models_bak <- n_models 2. significances_bak <- significances
|
||||
auto significance_bak = significanceModels;
|
||||
auto n_models_bak = n_models;
|
||||
// 3. significances = vector(k, 1)
|
||||
significanceModels = std::vector<double>(k, 1.0);
|
||||
// 4. Move first n classifiers to models_bak
|
||||
// backup the first n_models - k models (if n_models == k, don't backup any)
|
||||
for (int i = 0; i < n_models - k; ++i) {
|
||||
model = std::move(models[0]);
|
||||
models.erase(models.begin());
|
||||
models_bak.push_back(std::move(model));
|
||||
}
|
||||
assert(models.size() == k);
|
||||
// 5. n_models <- k
|
||||
n_models = k;
|
||||
// 6. Make prediction, compute alpha, update weights
|
||||
auto ypred = predict(X_train);
|
||||
//
|
||||
// Update weights
|
||||
//
|
||||
double alpha_t;
|
||||
bool terminate;
|
||||
std::tie(weights, alpha_t, terminate) = update_weights(y_train, ypred, weights);
|
||||
//
|
||||
// Restore the models if needed
|
||||
//
|
||||
// 7. Insert classifiers in models_bak to be the first n models
|
||||
// if n_models_bak == k, don't restore any, because none of them were moved
|
||||
if (k != n_models_bak) {
|
||||
// Insert in the same order as they were extracted
|
||||
int bak_size = models_bak.size();
|
||||
for (int i = 0; i < bak_size; ++i) {
|
||||
model = std::move(models_bak[bak_size - 1 - i]);
|
||||
models_bak.erase(models_bak.end() - 1);
|
||||
models.insert(models.begin(), std::move(model));
|
||||
}
|
||||
}
|
||||
// 8. significances <- significances_bak
|
||||
significanceModels = significance_bak;
|
||||
//
|
||||
// Update the significance of the last k models
|
||||
//
|
||||
// 9. Update last k significances
|
||||
for (int i = 0; i < k; ++i) {
|
||||
significanceModels[n_models_bak - k + i] = alpha_t;
|
||||
}
|
||||
// 10. n_models <- n_models_bak
|
||||
n_models = n_models_bak;
|
||||
return { weights, alpha_t, terminate };
|
||||
}
|
||||
std::vector<int> BoostAODE::initializeModels()
|
||||
{
|
||||
std::vector<int> featuresUsed;
|
||||
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||
int maxFeatures = 0;
|
||||
if (select_features_algorithm == SelectFeatures.CFS) {
|
||||
featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_);
|
||||
} else if (select_features_algorithm == SelectFeatures.IWSS) {
|
||||
if (threshold < 0 || threshold >0.5) {
|
||||
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.IWSS + " [0, 0.5]");
|
||||
}
|
||||
featureSelector = new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||
} else if (select_features_algorithm == SelectFeatures.FCBF) {
|
||||
if (threshold < 1e-7 || threshold > 1) {
|
||||
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.FCBF + " [1e-7, 1]");
|
||||
}
|
||||
featureSelector = new FCBF(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||
}
|
||||
featureSelector->fit();
|
||||
auto cfsFeatures = featureSelector->getFeatures();
|
||||
auto scores = featureSelector->getScores();
|
||||
for (const int& feature : cfsFeatures) {
|
||||
featuresUsed.push_back(feature);
|
||||
std::vector<int> featuresSelected = featureSelection(weights_);
|
||||
for (const int& feature : featuresSelected) {
|
||||
std::unique_ptr<Classifier> model = std::make_unique<SPODE>(feature);
|
||||
model->fit(dataset, features, className, states, weights_);
|
||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(1.0); // They will be updated later in trainModel
|
||||
n_models++;
|
||||
}
|
||||
notes.push_back("Used features in initialization: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
|
||||
delete featureSelector;
|
||||
return featuresUsed;
|
||||
notes.push_back("Used features in initialization: " + std::to_string(featuresSelected.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
|
||||
return featuresSelected;
|
||||
}
|
||||
void BoostAODE::trainModel(const torch::Tensor& weights)
|
||||
void BoostAODE::trainModel(const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||
{
|
||||
//
|
||||
// Logging setup
|
||||
//
|
||||
// loguru::set_thread_name("BoostAODE");
|
||||
// loguru::g_stderr_verbosity = loguru::Verbosity_OFF;
|
||||
// loguru::add_file("boostAODE.log", loguru::Truncate, loguru::Verbosity_MAX);
|
||||
|
||||
// Algorithm based on the adaboost algorithm for classification
|
||||
// as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
|
||||
fitted = true;
|
||||
@@ -270,7 +47,7 @@ namespace bayesnet {
|
||||
bool finished = false;
|
||||
std::vector<int> featuresUsed;
|
||||
if (selectFeatures) {
|
||||
featuresUsed = initializeModels();
|
||||
featuresUsed = initializeModels(smoothing);
|
||||
auto ypred = predict(X_train);
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||
// Update significance of the models
|
||||
@@ -304,14 +81,15 @@ namespace bayesnet {
|
||||
{ return std::find(begin(featuresUsed), end(featuresUsed), x) != end(featuresUsed);}),
|
||||
end(featureSelection)
|
||||
);
|
||||
int k = pow(2, tolerance);
|
||||
int k = bisection ? pow(2, tolerance) : 1;
|
||||
int counter = 0; // The model counter of the current pack
|
||||
// VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size());
|
||||
while (counter++ < k && featureSelection.size() > 0) {
|
||||
auto feature = featureSelection[0];
|
||||
featureSelection.erase(featureSelection.begin());
|
||||
std::unique_ptr<Classifier> model;
|
||||
model = std::make_unique<SPODE>(feature);
|
||||
model->fit(dataset, features, className, states, weights_);
|
||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||
alpha_t = 0.0;
|
||||
if (!block_update) {
|
||||
auto ypred = model->predict(X_train);
|
||||
@@ -324,6 +102,7 @@ namespace bayesnet {
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(alpha_t);
|
||||
n_models++;
|
||||
// VLOG_SCOPE_F(2, "numItemsPack: %d n_models: %d featuresUsed: %zu", numItemsPack, n_models, featuresUsed.size());
|
||||
}
|
||||
if (block_update) {
|
||||
std::tie(weights_, alpha_t, finished) = update_weights_block(k, y_train, weights_);
|
||||
@@ -337,20 +116,28 @@ namespace bayesnet {
|
||||
improvement = accuracy - priorAccuracy;
|
||||
}
|
||||
if (improvement < convergence_threshold) {
|
||||
// VLOG_SCOPE_F(3, " (improvement<threshold) tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
tolerance++;
|
||||
} else {
|
||||
// VLOG_SCOPE_F(3, "* (improvement>=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
tolerance = 0; // Reset the counter if the model performs better
|
||||
numItemsPack = 0;
|
||||
}
|
||||
if (convergence_best) {
|
||||
// Keep the best accuracy until now as the prior accuracy
|
||||
priorAccuracy = std::max(accuracy, priorAccuracy);
|
||||
// priorAccuracy = accuracy;
|
||||
} else {
|
||||
// Keep the last accuray obtained as the prior accuracy
|
||||
priorAccuracy = accuracy;
|
||||
}
|
||||
}
|
||||
// VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(), features.size());
|
||||
finished = finished || tolerance > maxTolerance || featuresUsed.size() == features.size();
|
||||
}
|
||||
if (tolerance > maxTolerance) {
|
||||
if (numItemsPack < n_models) {
|
||||
notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated");
|
||||
// VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated of %d", numItemsPack, n_models);
|
||||
for (int i = 0; i < numItemsPack; ++i) {
|
||||
significanceModels.pop_back();
|
||||
models.pop_back();
|
||||
@@ -358,6 +145,7 @@ namespace bayesnet {
|
||||
}
|
||||
} else {
|
||||
notes.push_back("Convergence threshold reached & 0 models eliminated");
|
||||
// VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d", n_models, numItemsPack);
|
||||
}
|
||||
}
|
||||
if (featuresUsed.size() != features.size()) {
|
||||
|
@@ -6,44 +6,21 @@
|
||||
|
||||
#ifndef BOOSTAODE_H
|
||||
#define BOOSTAODE_H
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "bayesnet/classifiers/SPODE.h"
|
||||
#include "bayesnet/feature_selection/FeatureSelect.h"
|
||||
#include "Ensemble.h"
|
||||
#include "Boost.h"
|
||||
|
||||
namespace bayesnet {
|
||||
struct {
|
||||
std::string CFS = "CFS";
|
||||
std::string FCBF = "FCBF";
|
||||
std::string IWSS = "IWSS";
|
||||
}SelectFeatures;
|
||||
struct {
|
||||
std::string ASC = "asc";
|
||||
std::string DESC = "desc";
|
||||
std::string RAND = "rand";
|
||||
}Orders;
|
||||
class BoostAODE : public Ensemble {
|
||||
class BoostAODE : public Boost {
|
||||
public:
|
||||
BoostAODE(bool predict_voting = false);
|
||||
explicit BoostAODE(bool predict_voting = false);
|
||||
virtual ~BoostAODE() = default;
|
||||
std::vector<std::string> graph(const std::string& title = "BoostAODE") const override;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||
private:
|
||||
std::tuple<torch::Tensor&, double, bool> update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights);
|
||||
std::vector<int> initializeModels();
|
||||
torch::Tensor X_train, y_train, X_test, y_test;
|
||||
// Hyperparameters
|
||||
bool bisection = true; // if true, use bisection stratety to add k models at once to the ensemble
|
||||
int maxTolerance = 3;
|
||||
std::string order_algorithm; // order to process the KBest features asc, desc, rand
|
||||
bool convergence = true; //if true, stop when the model does not improve
|
||||
bool selectFeatures = false; // if true, use feature selection
|
||||
std::string select_features_algorithm = Orders.DESC; // Selected feature selection algorithm
|
||||
FeatureSelect* featureSelector = nullptr;
|
||||
double threshold = -1;
|
||||
bool block_update = false;
|
||||
std::vector<int> initializeModels(const Smoothing_t smoothing);
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -3,22 +3,21 @@
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include "Ensemble.h"
|
||||
#include "bayesnet/utils/CountingSemaphore.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
Ensemble::Ensemble(bool predict_voting) : Classifier(Network()), n_models(0), predict_voting(predict_voting)
|
||||
{
|
||||
|
||||
};
|
||||
const std::string ENSEMBLE_NOT_FITTED = "Ensemble has not been fitted";
|
||||
void Ensemble::trainModel(const torch::Tensor& weights)
|
||||
void Ensemble::trainModel(const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||
{
|
||||
n_models = models.size();
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
// fit with std::vectors
|
||||
models[i]->fit(dataset, features, className, states);
|
||||
models[i]->fit(dataset, features, className, states, smoothing);
|
||||
}
|
||||
}
|
||||
std::vector<int> Ensemble::compute_arg_max(std::vector<std::vector<double>>& X)
|
||||
@@ -85,17 +84,9 @@ namespace bayesnet {
|
||||
{
|
||||
auto n_states = models[0]->getClassNumStates();
|
||||
torch::Tensor y_pred = torch::zeros({ X.size(1), n_states }, torch::kFloat32);
|
||||
auto threads{ std::vector<std::thread>() };
|
||||
std::mutex mtx;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
threads.push_back(std::thread([&, i]() {
|
||||
auto ypredict = models[i]->predict_proba(X);
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
y_pred += ypredict * significanceModels[i];
|
||||
}));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
|
||||
y_pred /= sum;
|
||||
@@ -105,23 +96,15 @@ namespace bayesnet {
|
||||
{
|
||||
auto n_states = models[0]->getClassNumStates();
|
||||
std::vector<std::vector<double>> y_pred(X[0].size(), std::vector<double>(n_states, 0.0));
|
||||
auto threads{ std::vector<std::thread>() };
|
||||
std::mutex mtx;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
threads.push_back(std::thread([&, i]() {
|
||||
auto ypredict = models[i]->predict_proba(X);
|
||||
assert(ypredict.size() == y_pred.size());
|
||||
assert(ypredict[0].size() == y_pred[0].size());
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
// Multiply each prediction by the significance of the model and then add it to the final prediction
|
||||
for (auto j = 0; j < ypredict.size(); ++j) {
|
||||
std::transform(y_pred[j].begin(), y_pred[j].end(), ypredict[j].begin(), y_pred[j].begin(),
|
||||
[significanceModels = significanceModels[i]](double x, double y) { return x + y * significanceModels; });
|
||||
}
|
||||
}));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
|
||||
//Divide each element of the prediction by the sum of the significances
|
||||
@@ -141,17 +124,9 @@ namespace bayesnet {
|
||||
{
|
||||
// Build a m x n_models tensor with the predictions of each model
|
||||
torch::Tensor y_pred = torch::zeros({ X.size(1), n_models }, torch::kInt32);
|
||||
auto threads{ std::vector<std::thread>() };
|
||||
std::mutex mtx;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
threads.push_back(std::thread([&, i]() {
|
||||
auto ypredict = models[i]->predict(X);
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
y_pred.index_put_({ "...", i }, ypredict);
|
||||
}));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
return voting(y_pred);
|
||||
}
|
||||
|
@@ -46,7 +46,7 @@ namespace bayesnet {
|
||||
unsigned n_models;
|
||||
std::vector<std::unique_ptr<Classifier>> models;
|
||||
std::vector<double> significanceModels;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||
bool predict_voting;
|
||||
};
|
||||
}
|
||||
|
@@ -5,20 +5,20 @@
|
||||
// ***************************************************************
|
||||
|
||||
#include <thread>
|
||||
#include <mutex>
|
||||
#include <sstream>
|
||||
#include <numeric>
|
||||
#include <algorithm>
|
||||
#include "Network.h"
|
||||
#include "bayesnet/utils/bayesnetUtils.h"
|
||||
#include "bayesnet/utils/CountingSemaphore.h"
|
||||
#include <pthread.h>
|
||||
#include <fstream>
|
||||
namespace bayesnet {
|
||||
Network::Network() : fitted{ false }, maxThreads{ 0.95 }, classNumStates{ 0 }, laplaceSmoothing{ 0 }
|
||||
Network::Network() : fitted{ false }, classNumStates{ 0 }
|
||||
{
|
||||
}
|
||||
Network::Network(float maxT) : fitted{ false }, maxThreads{ maxT }, classNumStates{ 0 }, laplaceSmoothing{ 0 }
|
||||
{
|
||||
|
||||
}
|
||||
Network::Network(const Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()),
|
||||
maxThreads(other.getMaxThreads()), fitted(other.fitted), samples(other.samples)
|
||||
Network::Network(const Network& other) : features(other.features), className(other.className), classNumStates(other.getClassNumStates()),
|
||||
fitted(other.fitted), samples(other.samples)
|
||||
{
|
||||
if (samples.defined())
|
||||
samples = samples.clone();
|
||||
@@ -35,16 +35,15 @@ namespace bayesnet {
|
||||
nodes.clear();
|
||||
samples = torch::Tensor();
|
||||
}
|
||||
float Network::getMaxThreads() const
|
||||
{
|
||||
return maxThreads;
|
||||
}
|
||||
torch::Tensor& Network::getSamples()
|
||||
{
|
||||
return samples;
|
||||
}
|
||||
void Network::addNode(const std::string& name)
|
||||
{
|
||||
if (fitted) {
|
||||
throw std::invalid_argument("Cannot add node to a fitted network. Initialize first.");
|
||||
}
|
||||
if (name == "") {
|
||||
throw std::invalid_argument("Node name cannot be empty");
|
||||
}
|
||||
@@ -94,12 +93,21 @@ namespace bayesnet {
|
||||
}
|
||||
void Network::addEdge(const std::string& parent, const std::string& child)
|
||||
{
|
||||
if (fitted) {
|
||||
throw std::invalid_argument("Cannot add edge to a fitted network. Initialize first.");
|
||||
}
|
||||
if (nodes.find(parent) == nodes.end()) {
|
||||
throw std::invalid_argument("Parent node " + parent + " does not exist");
|
||||
}
|
||||
if (nodes.find(child) == nodes.end()) {
|
||||
throw std::invalid_argument("Child node " + child + " does not exist");
|
||||
}
|
||||
// Check if the edge is already in the graph
|
||||
for (auto& node : nodes[parent]->getChildren()) {
|
||||
if (node->getName() == child) {
|
||||
throw std::invalid_argument("Edge " + parent + " -> " + child + " already exists");
|
||||
}
|
||||
}
|
||||
// Temporarily add edge to check for cycles
|
||||
nodes[parent]->addChild(nodes[child].get());
|
||||
nodes[child]->addParent(nodes[parent].get());
|
||||
@@ -155,7 +163,7 @@ namespace bayesnet {
|
||||
classNumStates = nodes.at(className)->getNumStates();
|
||||
}
|
||||
// X comes in nxm, where n is the number of features and m the number of samples
|
||||
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states)
|
||||
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing)
|
||||
{
|
||||
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states, weights);
|
||||
this->className = className;
|
||||
@@ -164,17 +172,17 @@ namespace bayesnet {
|
||||
for (int i = 0; i < featureNames.size(); ++i) {
|
||||
auto row_feature = X.index({ i, "..." });
|
||||
}
|
||||
completeFit(states, weights);
|
||||
completeFit(states, weights, smoothing);
|
||||
}
|
||||
void Network::fit(const torch::Tensor& samples, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states)
|
||||
void Network::fit(const torch::Tensor& samples, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing)
|
||||
{
|
||||
checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states, weights);
|
||||
this->className = className;
|
||||
this->samples = samples;
|
||||
completeFit(states, weights);
|
||||
completeFit(states, weights, smoothing);
|
||||
}
|
||||
// input_data comes in nxm, where n is the number of features and m the number of samples
|
||||
void Network::fit(const std::vector<std::vector<int>>& input_data, const std::vector<int>& labels, const std::vector<double>& weights_, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states)
|
||||
void Network::fit(const std::vector<std::vector<int>>& input_data, const std::vector<int>& labels, const std::vector<double>& weights_, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing)
|
||||
{
|
||||
const torch::Tensor weights = torch::tensor(weights_, torch::kFloat64);
|
||||
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states, weights);
|
||||
@@ -185,21 +193,57 @@ namespace bayesnet {
|
||||
samples.index_put_({ i, "..." }, torch::tensor(input_data[i], torch::kInt32));
|
||||
}
|
||||
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
|
||||
completeFit(states, weights);
|
||||
completeFit(states, weights, smoothing);
|
||||
}
|
||||
void Network::completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
|
||||
void Network::completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||
{
|
||||
setStates(states);
|
||||
laplaceSmoothing = 1.0 / samples.size(1); // To use in CPT computation
|
||||
std::vector<std::thread> threads;
|
||||
auto& semaphore = CountingSemaphore::getInstance();
|
||||
const double n_samples = static_cast<double>(samples.size(1));
|
||||
auto worker = [&](std::pair<const std::string, std::unique_ptr<Node>>& node, int i) {
|
||||
std::string threadName = "FitWorker-" + std::to_string(i);
|
||||
#if defined(__linux__)
|
||||
pthread_setname_np(pthread_self(), threadName.c_str());
|
||||
#else
|
||||
pthread_setname_np(threadName.c_str());
|
||||
#endif
|
||||
double numStates = static_cast<double>(node.second->getNumStates());
|
||||
double smoothing_factor = 0.0;
|
||||
switch (smoothing) {
|
||||
case Smoothing_t::ORIGINAL:
|
||||
smoothing_factor = 1.0 / n_samples;
|
||||
break;
|
||||
case Smoothing_t::LAPLACE:
|
||||
smoothing_factor = 1.0;
|
||||
break;
|
||||
case Smoothing_t::CESTNIK:
|
||||
smoothing_factor = 1 / numStates;
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument("Smoothing method not recognized " + std::to_string(static_cast<int>(smoothing)));
|
||||
}
|
||||
node.second->computeCPT(samples, features, smoothing_factor, weights);
|
||||
semaphore.release();
|
||||
};
|
||||
int i = 0;
|
||||
for (auto& node : nodes) {
|
||||
threads.emplace_back([this, &node, &weights]() {
|
||||
node.second->computeCPT(samples, features, laplaceSmoothing, weights);
|
||||
});
|
||||
semaphore.acquire();
|
||||
threads.emplace_back(worker, std::ref(node), i++);
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
// std::fstream file;
|
||||
// file.open("cpt.txt", std::fstream::out | std::fstream::app);
|
||||
// file << std::string(80, '*') << std::endl;
|
||||
// for (const auto& item : graph("Test")) {
|
||||
// file << item << std::endl;
|
||||
// }
|
||||
// file << std::string(80, '-') << std::endl;
|
||||
// file << dump_cpt() << std::endl;
|
||||
// file << std::string(80, '=') << std::endl;
|
||||
// file.close();
|
||||
fitted = true;
|
||||
}
|
||||
torch::Tensor Network::predict_tensor(const torch::Tensor& samples, const bool proba)
|
||||
@@ -207,15 +251,39 @@ namespace bayesnet {
|
||||
if (!fitted) {
|
||||
throw std::logic_error("You must call fit() before calling predict()");
|
||||
}
|
||||
// Ensure the sample size is equal to the number of features
|
||||
if (samples.size(0) != features.size() - 1) {
|
||||
throw std::invalid_argument("(T) Sample size (" + std::to_string(samples.size(0)) +
|
||||
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
|
||||
}
|
||||
torch::Tensor result;
|
||||
std::vector<std::thread> threads;
|
||||
std::mutex mtx;
|
||||
auto& semaphore = CountingSemaphore::getInstance();
|
||||
result = torch::zeros({ samples.size(1), classNumStates }, torch::kFloat64);
|
||||
for (int i = 0; i < samples.size(1); ++i) {
|
||||
const torch::Tensor sample = samples.index({ "...", i });
|
||||
auto worker = [&](const torch::Tensor& sample, int i) {
|
||||
std::string threadName = "PredictWorker-" + std::to_string(i);
|
||||
#if defined(__linux__)
|
||||
pthread_setname_np(pthread_self(), threadName.c_str());
|
||||
#else
|
||||
pthread_setname_np(threadName.c_str());
|
||||
#endif
|
||||
auto psample = predict_sample(sample);
|
||||
auto temp = torch::tensor(psample, torch::kFloat64);
|
||||
// result.index_put_({ i, "..." }, torch::tensor(predict_sample(sample), torch::kFloat64));
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
result.index_put_({ i, "..." }, temp);
|
||||
}
|
||||
semaphore.release();
|
||||
};
|
||||
for (int i = 0; i < samples.size(1); ++i) {
|
||||
semaphore.acquire();
|
||||
const torch::Tensor sample = samples.index({ "...", i });
|
||||
threads.emplace_back(worker, sample, i);
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
if (proba)
|
||||
return result;
|
||||
return result.argmax(1);
|
||||
@@ -239,18 +307,38 @@ namespace bayesnet {
|
||||
if (!fitted) {
|
||||
throw std::logic_error("You must call fit() before calling predict()");
|
||||
}
|
||||
std::vector<int> predictions;
|
||||
// Ensure the sample size is equal to the number of features
|
||||
if (tsamples.size() != features.size() - 1) {
|
||||
throw std::invalid_argument("(V) Sample size (" + std::to_string(tsamples.size()) +
|
||||
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
|
||||
}
|
||||
std::vector<int> predictions(tsamples[0].size(), 0);
|
||||
std::vector<int> sample;
|
||||
std::vector<std::thread> threads;
|
||||
auto& semaphore = CountingSemaphore::getInstance();
|
||||
auto worker = [&](const std::vector<int>& sample, const int row, int& prediction) {
|
||||
std::string threadName = "(V)PWorker-" + std::to_string(row);
|
||||
#if defined(__linux__)
|
||||
pthread_setname_np(pthread_self(), threadName.c_str());
|
||||
#else
|
||||
pthread_setname_np(threadName.c_str());
|
||||
#endif
|
||||
auto classProbabilities = predict_sample(sample);
|
||||
auto maxElem = max_element(classProbabilities.begin(), classProbabilities.end());
|
||||
int predictedClass = distance(classProbabilities.begin(), maxElem);
|
||||
prediction = predictedClass;
|
||||
semaphore.release();
|
||||
};
|
||||
for (int row = 0; row < tsamples[0].size(); ++row) {
|
||||
sample.clear();
|
||||
for (int col = 0; col < tsamples.size(); ++col) {
|
||||
sample.push_back(tsamples[col][row]);
|
||||
}
|
||||
std::vector<double> classProbabilities = predict_sample(sample);
|
||||
// Find the class with the maximum posterior probability
|
||||
auto maxElem = max_element(classProbabilities.begin(), classProbabilities.end());
|
||||
int predictedClass = distance(classProbabilities.begin(), maxElem);
|
||||
predictions.push_back(predictedClass);
|
||||
semaphore.acquire();
|
||||
threads.emplace_back(worker, sample, row, std::ref(predictions[row]));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
return predictions;
|
||||
}
|
||||
@@ -261,14 +349,36 @@ namespace bayesnet {
|
||||
if (!fitted) {
|
||||
throw std::logic_error("You must call fit() before calling predict_proba()");
|
||||
}
|
||||
std::vector<std::vector<double>> predictions;
|
||||
// Ensure the sample size is equal to the number of features
|
||||
if (tsamples.size() != features.size() - 1) {
|
||||
throw std::invalid_argument("(V) Sample size (" + std::to_string(tsamples.size()) +
|
||||
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
|
||||
}
|
||||
std::vector<std::vector<double>> predictions(tsamples[0].size(), std::vector<double>(classNumStates, 0.0));
|
||||
std::vector<int> sample;
|
||||
std::vector<std::thread> threads;
|
||||
auto& semaphore = CountingSemaphore::getInstance();
|
||||
auto worker = [&](const std::vector<int>& sample, int row, std::vector<double>& predictions) {
|
||||
std::string threadName = "(V)PWorker-" + std::to_string(row);
|
||||
#if defined(__linux__)
|
||||
pthread_setname_np(pthread_self(), threadName.c_str());
|
||||
#else
|
||||
pthread_setname_np(threadName.c_str());
|
||||
#endif
|
||||
std::vector<double> classProbabilities = predict_sample(sample);
|
||||
predictions = classProbabilities;
|
||||
semaphore.release();
|
||||
};
|
||||
for (int row = 0; row < tsamples[0].size(); ++row) {
|
||||
sample.clear();
|
||||
for (int col = 0; col < tsamples.size(); ++col) {
|
||||
sample.push_back(tsamples[col][row]);
|
||||
}
|
||||
predictions.push_back(predict_sample(sample));
|
||||
semaphore.acquire();
|
||||
threads.emplace_back(worker, sample, row, std::ref(predictions[row]));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
return predictions;
|
||||
}
|
||||
@@ -286,11 +396,6 @@ namespace bayesnet {
|
||||
// Return 1xn std::vector of probabilities
|
||||
std::vector<double> Network::predict_sample(const std::vector<int>& sample)
|
||||
{
|
||||
// Ensure the sample size is equal to the number of features
|
||||
if (sample.size() != features.size() - 1) {
|
||||
throw std::invalid_argument("Sample size (" + std::to_string(sample.size()) +
|
||||
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
|
||||
}
|
||||
std::map<std::string, int> evidence;
|
||||
for (int i = 0; i < sample.size(); ++i) {
|
||||
evidence[features[i]] = sample[i];
|
||||
@@ -300,44 +405,26 @@ namespace bayesnet {
|
||||
// Return 1xn std::vector of probabilities
|
||||
std::vector<double> Network::predict_sample(const torch::Tensor& sample)
|
||||
{
|
||||
// Ensure the sample size is equal to the number of features
|
||||
if (sample.size(0) != features.size() - 1) {
|
||||
throw std::invalid_argument("Sample size (" + std::to_string(sample.size(0)) +
|
||||
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
|
||||
}
|
||||
std::map<std::string, int> evidence;
|
||||
for (int i = 0; i < sample.size(0); ++i) {
|
||||
evidence[features[i]] = sample[i].item<int>();
|
||||
}
|
||||
return exactInference(evidence);
|
||||
}
|
||||
double Network::computeFactor(std::map<std::string, int>& completeEvidence)
|
||||
{
|
||||
double result = 1.0;
|
||||
for (auto& node : getNodes()) {
|
||||
result *= node.second->getFactorValue(completeEvidence);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
std::vector<double> Network::exactInference(std::map<std::string, int>& evidence)
|
||||
{
|
||||
std::vector<double> result(classNumStates, 0.0);
|
||||
std::vector<std::thread> threads;
|
||||
std::mutex mtx;
|
||||
for (int i = 0; i < classNumStates; ++i) {
|
||||
threads.emplace_back([this, &result, &evidence, i, &mtx]() {
|
||||
auto completeEvidence = std::map<std::string, int>(evidence);
|
||||
for (int i = 0; i < classNumStates; ++i) {
|
||||
completeEvidence[getClassName()] = i;
|
||||
double factor = computeFactor(completeEvidence);
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
result[i] = factor;
|
||||
});
|
||||
double partial = 1.0;
|
||||
for (auto& node : getNodes()) {
|
||||
partial *= node.second->getFactorValue(completeEvidence);
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
result[i] = partial;
|
||||
}
|
||||
// Normalize result
|
||||
double sum = accumulate(result.begin(), result.end(), 0.0);
|
||||
double sum = std::accumulate(result.begin(), result.end(), 0.0);
|
||||
transform(result.begin(), result.end(), result.begin(), [sum](const double& value) { return value / sum; });
|
||||
return result;
|
||||
}
|
||||
@@ -410,11 +497,7 @@ namespace bayesnet {
|
||||
result.insert(it2, fatherName);
|
||||
ending = false;
|
||||
}
|
||||
} else {
|
||||
throw std::logic_error("Error in topological sort because of node " + feature + " is not in result");
|
||||
}
|
||||
} else {
|
||||
throw std::logic_error("Error in topological sort because of node father " + fatherName + " is not in result");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -12,14 +12,18 @@
|
||||
#include "Node.h"
|
||||
|
||||
namespace bayesnet {
|
||||
enum class Smoothing_t {
|
||||
NONE = -1,
|
||||
ORIGINAL = 0,
|
||||
LAPLACE,
|
||||
CESTNIK
|
||||
};
|
||||
class Network {
|
||||
public:
|
||||
Network();
|
||||
explicit Network(float);
|
||||
explicit Network(const Network&);
|
||||
~Network() = default;
|
||||
torch::Tensor& getSamples();
|
||||
float getMaxThreads() const;
|
||||
void addNode(const std::string&);
|
||||
void addEdge(const std::string&, const std::string&);
|
||||
std::map<std::string, std::unique_ptr<Node>>& getNodes();
|
||||
@@ -32,9 +36,9 @@ namespace bayesnet {
|
||||
/*
|
||||
Notice: Nodes have to be inserted in the same order as they are in the dataset, i.e., first node is first column and so on.
|
||||
*/
|
||||
void fit(const std::vector<std::vector<int>>& input_data, const std::vector<int>& labels, const std::vector<double>& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states);
|
||||
void fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states);
|
||||
void fit(const torch::Tensor& samples, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states);
|
||||
void fit(const std::vector<std::vector<int>>& input_data, const std::vector<int>& labels, const std::vector<double>& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing);
|
||||
void fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing);
|
||||
void fit(const torch::Tensor& samples, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing);
|
||||
std::vector<int> predict(const std::vector<std::vector<int>>&); // Return mx1 std::vector of predictions
|
||||
torch::Tensor predict(const torch::Tensor&); // Return mx1 tensor of predictions
|
||||
torch::Tensor predict_tensor(const torch::Tensor& samples, const bool proba);
|
||||
@@ -50,19 +54,16 @@ namespace bayesnet {
|
||||
private:
|
||||
std::map<std::string, std::unique_ptr<Node>> nodes;
|
||||
bool fitted;
|
||||
float maxThreads = 0.95;
|
||||
int classNumStates;
|
||||
std::vector<std::string> features; // Including classname
|
||||
std::string className;
|
||||
double laplaceSmoothing;
|
||||
torch::Tensor samples; // n+1xm tensor used to fit the model
|
||||
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
|
||||
std::vector<double> predict_sample(const std::vector<int>&);
|
||||
std::vector<double> predict_sample(const torch::Tensor&);
|
||||
std::vector<double> exactInference(std::map<std::string, int>&);
|
||||
double computeFactor(std::map<std::string, int>&);
|
||||
void completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
|
||||
void checkFitData(int n_features, int n_samples, int n_samples_y, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
|
||||
void completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing);
|
||||
void checkFitData(int n_samples, int n_features, int n_samples_y, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
|
||||
void setStates(const std::map<std::string, std::vector<int>>&);
|
||||
};
|
||||
}
|
||||
|
@@ -9,7 +9,7 @@
|
||||
namespace bayesnet {
|
||||
|
||||
Node::Node(const std::string& name)
|
||||
: name(name), numStates(0), cpTable(torch::Tensor()), parents(std::vector<Node*>()), children(std::vector<Node*>())
|
||||
: name(name)
|
||||
{
|
||||
}
|
||||
void Node::clear()
|
||||
@@ -90,52 +90,54 @@ namespace bayesnet {
|
||||
}
|
||||
return result;
|
||||
}
|
||||
void Node::computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double laplaceSmoothing, const torch::Tensor& weights)
|
||||
void Node::computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double smoothing, const torch::Tensor& weights)
|
||||
{
|
||||
dimensions.clear();
|
||||
// Get dimensions of the CPT
|
||||
dimensions.push_back(numStates);
|
||||
transform(parents.begin(), parents.end(), back_inserter(dimensions), [](const auto& parent) { return parent->getNumStates(); });
|
||||
|
||||
// Create a tensor of zeros with the dimensions of the CPT
|
||||
cpTable = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing;
|
||||
cpTable = torch::zeros(dimensions, torch::kDouble).to(device) + smoothing;
|
||||
// Fill table with counts
|
||||
auto pos = find(features.begin(), features.end(), name);
|
||||
if (pos == features.end()) {
|
||||
throw std::logic_error("Feature " + name + " not found in dataset");
|
||||
}
|
||||
int name_index = pos - features.begin();
|
||||
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
|
||||
c10::List<c10::optional<at::Tensor>> coordinates;
|
||||
coordinates.push_back(dataset.index({ name_index, n_sample }));
|
||||
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
|
||||
coordinates.clear();
|
||||
auto sample = dataset.index({ "...", n_sample });
|
||||
coordinates.push_back(sample[name_index]);
|
||||
for (auto parent : parents) {
|
||||
pos = find(features.begin(), features.end(), parent->getName());
|
||||
if (pos == features.end()) {
|
||||
throw std::logic_error("Feature parent " + parent->getName() + " not found in dataset");
|
||||
}
|
||||
int parent_index = pos - features.begin();
|
||||
coordinates.push_back(dataset.index({ parent_index, n_sample }));
|
||||
coordinates.push_back(sample[parent_index]);
|
||||
}
|
||||
// Increment the count of the corresponding coordinate
|
||||
cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + weights.index({ n_sample }).item<double>());
|
||||
cpTable.index_put_({ coordinates }, weights.index({ n_sample }), true);
|
||||
}
|
||||
// Normalize the counts
|
||||
// Divide each row by the sum of the row
|
||||
cpTable = cpTable / cpTable.sum(0);
|
||||
}
|
||||
float Node::getFactorValue(std::map<std::string, int>& evidence)
|
||||
double Node::getFactorValue(std::map<std::string, int>& evidence)
|
||||
{
|
||||
c10::List<c10::optional<at::Tensor>> coordinates;
|
||||
// following predetermined order of indices in the cpTable (see Node.h)
|
||||
coordinates.push_back(at::tensor(evidence[name]));
|
||||
transform(parents.begin(), parents.end(), std::back_inserter(coordinates), [&evidence](const auto& parent) { return at::tensor(evidence[parent->getName()]); });
|
||||
return cpTable.index({ coordinates }).item<float>();
|
||||
return cpTable.index({ coordinates }).item<double>();
|
||||
}
|
||||
std::vector<std::string> Node::graph(const std::string& className)
|
||||
{
|
||||
auto output = std::vector<std::string>();
|
||||
auto suffix = name == className ? ", fontcolor=red, fillcolor=lightblue, style=filled " : "";
|
||||
output.push_back(name + " [shape=circle" + suffix + "] \n");
|
||||
transform(children.begin(), children.end(), back_inserter(output), [this](const auto& child) { return name + " -> " + child->getName(); });
|
||||
output.push_back("\"" + name + "\" [shape=circle" + suffix + "] \n");
|
||||
transform(children.begin(), children.end(), back_inserter(output), [this](const auto& child) { return "\"" + name + "\" -> \"" + child->getName() + "\""; });
|
||||
return output;
|
||||
}
|
||||
}
|
@@ -12,14 +12,6 @@
|
||||
#include <torch/torch.h>
|
||||
namespace bayesnet {
|
||||
class Node {
|
||||
private:
|
||||
std::string name;
|
||||
std::vector<Node*> parents;
|
||||
std::vector<Node*> children;
|
||||
int numStates; // number of states of the variable
|
||||
torch::Tensor cpTable; // Order of indices is 0-> node variable, 1-> 1st parent, 2-> 2nd parent, ...
|
||||
std::vector<int64_t> dimensions; // dimensions of the cpTable
|
||||
std::vector<std::pair<std::string, std::string>> combinations(const std::vector<std::string>&);
|
||||
public:
|
||||
explicit Node(const std::string&);
|
||||
void clear();
|
||||
@@ -31,12 +23,20 @@ namespace bayesnet {
|
||||
std::vector<Node*>& getParents();
|
||||
std::vector<Node*>& getChildren();
|
||||
torch::Tensor& getCPT();
|
||||
void computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double laplaceSmoothing, const torch::Tensor& weights);
|
||||
void computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double smoothing, const torch::Tensor& weights);
|
||||
int getNumStates() const;
|
||||
void setNumStates(int);
|
||||
unsigned minFill();
|
||||
std::vector<std::string> graph(const std::string& clasName); // Returns a std::vector of std::strings representing the graph in graphviz format
|
||||
float getFactorValue(std::map<std::string, int>&);
|
||||
double getFactorValue(std::map<std::string, int>&);
|
||||
private:
|
||||
std::string name;
|
||||
std::vector<Node*> parents;
|
||||
std::vector<Node*> children;
|
||||
int numStates = 0; // number of states of the variable
|
||||
torch::Tensor cpTable; // Order of indices is 0-> node variable, 1-> 1st parent, 2-> 2nd parent, ...
|
||||
std::vector<int64_t> dimensions; // dimensions of the cpTable
|
||||
std::vector<std::pair<std::string, std::string>> combinations(const std::vector<std::string>&);
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -4,29 +4,79 @@
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include <map>
|
||||
#include <unordered_map>
|
||||
#include <tuple>
|
||||
#include "Mst.h"
|
||||
#include "BayesMetrics.h"
|
||||
namespace bayesnet {
|
||||
//samples is n+1xm tensor used to fit the model
|
||||
Metrics::Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates)
|
||||
: samples(samples)
|
||||
, features(features)
|
||||
, className(className)
|
||||
, features(features)
|
||||
, classNumStates(classNumStates)
|
||||
{
|
||||
}
|
||||
//samples is n+1xm std::vector used to fit the model
|
||||
Metrics::Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates)
|
||||
: features(features)
|
||||
: samples(torch::zeros({ static_cast<int>(vsamples.size() + 1), static_cast<int>(vsamples[0].size()) }, torch::kInt32))
|
||||
, className(className)
|
||||
, features(features)
|
||||
, classNumStates(classNumStates)
|
||||
, samples(torch::zeros({ static_cast<int>(vsamples.size() + 1), static_cast<int>(vsamples[0].size()) }, torch::kInt32))
|
||||
{
|
||||
for (int i = 0; i < vsamples.size(); ++i) {
|
||||
samples.index_put_({ i, "..." }, torch::tensor(vsamples[i], torch::kInt32));
|
||||
}
|
||||
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
|
||||
}
|
||||
std::vector<std::pair<int, int>> Metrics::SelectKPairs(const torch::Tensor& weights, std::vector<int>& featuresExcluded, bool ascending, unsigned k)
|
||||
{
|
||||
// Return the K Best features
|
||||
auto n = features.size();
|
||||
// compute scores
|
||||
scoresKPairs.clear();
|
||||
pairsKBest.clear();
|
||||
auto labels = samples.index({ -1, "..." });
|
||||
for (int i = 0; i < n - 1; ++i) {
|
||||
if (std::find(featuresExcluded.begin(), featuresExcluded.end(), i) != featuresExcluded.end()) {
|
||||
continue;
|
||||
}
|
||||
for (int j = i + 1; j < n; ++j) {
|
||||
if (std::find(featuresExcluded.begin(), featuresExcluded.end(), j) != featuresExcluded.end()) {
|
||||
continue;
|
||||
}
|
||||
auto key = std::make_pair(i, j);
|
||||
auto value = conditionalMutualInformation(samples.index({ i, "..." }), samples.index({ j, "..." }), labels, weights);
|
||||
scoresKPairs.push_back({ key, value });
|
||||
}
|
||||
}
|
||||
// sort scores
|
||||
if (ascending) {
|
||||
sort(scoresKPairs.begin(), scoresKPairs.end(), [](auto& a, auto& b)
|
||||
{ return a.second < b.second; });
|
||||
|
||||
} else {
|
||||
sort(scoresKPairs.begin(), scoresKPairs.end(), [](auto& a, auto& b)
|
||||
{ return a.second > b.second; });
|
||||
}
|
||||
for (auto& [pairs, score] : scoresKPairs) {
|
||||
pairsKBest.push_back(pairs);
|
||||
}
|
||||
if (k != 0 && k < pairsKBest.size()) {
|
||||
if (ascending) {
|
||||
int limit = pairsKBest.size() - k;
|
||||
for (int i = 0; i < limit; i++) {
|
||||
pairsKBest.erase(pairsKBest.begin());
|
||||
scoresKPairs.erase(scoresKPairs.begin());
|
||||
}
|
||||
} else {
|
||||
pairsKBest.resize(k);
|
||||
scoresKPairs.resize(k);
|
||||
}
|
||||
}
|
||||
return pairsKBest;
|
||||
}
|
||||
std::vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, bool ascending, unsigned k)
|
||||
{
|
||||
// Return the K Best features
|
||||
@@ -66,7 +116,10 @@ namespace bayesnet {
|
||||
{
|
||||
return scoresKBest;
|
||||
}
|
||||
|
||||
std::vector<std::pair<std::pair<int, int>, double>> Metrics::getScoresKPairs() const
|
||||
{
|
||||
return scoresKPairs;
|
||||
}
|
||||
torch::Tensor Metrics::conditionalEdge(const torch::Tensor& weights)
|
||||
{
|
||||
auto result = std::vector<double>();
|
||||
@@ -105,14 +158,8 @@ namespace bayesnet {
|
||||
}
|
||||
return matrix;
|
||||
}
|
||||
// To use in Python
|
||||
std::vector<float> Metrics::conditionalEdgeWeights(std::vector<float>& weights_)
|
||||
{
|
||||
const torch::Tensor weights = torch::tensor(weights_);
|
||||
auto matrix = conditionalEdge(weights);
|
||||
std::vector<float> v(matrix.data_ptr<float>(), matrix.data_ptr<float>() + matrix.numel());
|
||||
return v;
|
||||
}
|
||||
// Measured in nats (natural logarithm (log) base e)
|
||||
// Elements of Information Theory, 2nd Edition, Thomas M. Cover, Joy A. Thomas p. 14
|
||||
double Metrics::entropy(const torch::Tensor& feature, const torch::Tensor& weights)
|
||||
{
|
||||
torch::Tensor counts = feature.bincount(weights);
|
||||
@@ -151,10 +198,54 @@ namespace bayesnet {
|
||||
}
|
||||
return entropyValue;
|
||||
}
|
||||
// I(X;Y) = H(Y) - H(Y|X)
|
||||
// H(X|Y,C) = sum_{y in Y, c in C} p(x,c) H(X|Y=y,C=c)
|
||||
double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights)
|
||||
{
|
||||
// Ensure the tensors are of the same length
|
||||
assert(firstFeature.size(0) == secondFeature.size(0) && firstFeature.size(0) == labels.size(0) && firstFeature.size(0) == weights.size(0));
|
||||
// Convert tensors to vectors for easier processing
|
||||
auto firstFeatureData = firstFeature.accessor<int, 1>();
|
||||
auto secondFeatureData = secondFeature.accessor<int, 1>();
|
||||
auto labelsData = labels.accessor<int, 1>();
|
||||
auto weightsData = weights.accessor<double, 1>();
|
||||
int numSamples = firstFeature.size(0);
|
||||
// Maps for joint and marginal probabilities
|
||||
std::map<std::tuple<int, int, int>, double> jointCount;
|
||||
std::map<std::tuple<int, int>, double> marginalCount;
|
||||
// Compute joint and marginal counts
|
||||
for (int i = 0; i < numSamples; ++i) {
|
||||
auto keyJoint = std::make_tuple(firstFeatureData[i], labelsData[i], secondFeatureData[i]);
|
||||
auto keyMarginal = std::make_tuple(firstFeatureData[i], labelsData[i]);
|
||||
|
||||
jointCount[keyJoint] += weightsData[i];
|
||||
marginalCount[keyMarginal] += weightsData[i];
|
||||
}
|
||||
// Total weight sum
|
||||
double totalWeight = torch::sum(weights).item<double>();
|
||||
if (totalWeight == 0)
|
||||
return 0;
|
||||
// Compute the conditional entropy
|
||||
double conditionalEntropy = 0.0;
|
||||
for (const auto& [keyJoint, jointFreq] : jointCount) {
|
||||
auto [x, c, y] = keyJoint;
|
||||
auto keyMarginal = std::make_tuple(x, c);
|
||||
//double p_xc = marginalCount[keyMarginal] / totalWeight;
|
||||
double p_y_given_xc = jointFreq / marginalCount[keyMarginal];
|
||||
if (p_y_given_xc > 0) {
|
||||
conditionalEntropy -= (jointFreq / totalWeight) * std::log(p_y_given_xc);
|
||||
}
|
||||
}
|
||||
return conditionalEntropy;
|
||||
}
|
||||
// I(X;Y) = H(Y) - H(Y|X) ; I(X;Y) >= 0
|
||||
double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
|
||||
{
|
||||
return entropy(firstFeature, weights) - conditionalEntropy(firstFeature, secondFeature, weights);
|
||||
return std::max(entropy(firstFeature, weights) - conditionalEntropy(firstFeature, secondFeature, weights), 0.0);
|
||||
}
|
||||
// I(X;Y|C) = H(X|C) - H(X|Y,C) >= 0
|
||||
double Metrics::conditionalMutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights)
|
||||
{
|
||||
return std::max(conditionalEntropy(firstFeature, labels, weights) - conditionalEntropy(firstFeature, secondFeature, labels, weights), 0.0);
|
||||
}
|
||||
/*
|
||||
Compute the maximum spanning tree considering the weights as distances
|
||||
|
@@ -16,21 +16,26 @@ namespace bayesnet {
|
||||
Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
|
||||
Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
|
||||
std::vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending = false, unsigned k = 0);
|
||||
std::vector<std::pair<int, int>> SelectKPairs(const torch::Tensor& weights, std::vector<int>& featuresExcluded, bool ascending = false, unsigned k = 0);
|
||||
std::vector<double> getScoresKBest() const;
|
||||
std::vector<std::pair<std::pair<int, int>, double>> getScoresKPairs() const;
|
||||
double mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
|
||||
std::vector<float> conditionalEdgeWeights(std::vector<float>& weights); // To use in Python
|
||||
double conditionalMutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights);
|
||||
torch::Tensor conditionalEdge(const torch::Tensor& weights);
|
||||
std::vector<std::pair<int, int>> maximumSpanningTree(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
|
||||
// Measured in nats (natural logarithm (log) base e)
|
||||
// Elements of Information Theory, 2nd Edition, Thomas M. Cover, Joy A. Thomas p. 14
|
||||
double entropy(const torch::Tensor& feature, const torch::Tensor& weights);
|
||||
double conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights);
|
||||
protected:
|
||||
torch::Tensor samples; // n+1xm torch::Tensor used to fit the model where samples[-1] is the y std::vector
|
||||
std::string className;
|
||||
double entropy(const torch::Tensor& feature, const torch::Tensor& weights);
|
||||
std::vector<std::string> features;
|
||||
template <class T>
|
||||
std::vector<std::pair<T, T>> doCombinations(const std::vector<T>& source)
|
||||
{
|
||||
std::vector<std::pair<T, T>> result;
|
||||
for (int i = 0; i < source.size(); ++i) {
|
||||
for (int i = 0; i < source.size() - 1; ++i) {
|
||||
T temp = source[i];
|
||||
for (int j = i + 1; j < source.size(); ++j) {
|
||||
result.push_back({ temp, source[j] });
|
||||
@@ -49,6 +54,8 @@ namespace bayesnet {
|
||||
int classNumStates = 0;
|
||||
std::vector<double> scoresKBest;
|
||||
std::vector<int> featuresKBest; // sorted indices of the features
|
||||
std::vector<std::pair<int, int>> pairsKBest; // sorted indices of the pairs
|
||||
std::vector<std::pair<std::pair<int, int>, double>> scoresKPairs;
|
||||
double conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
|
||||
};
|
||||
}
|
||||
|
46
bayesnet/utils/CountingSemaphore.h
Normal file
46
bayesnet/utils/CountingSemaphore.h
Normal file
@@ -0,0 +1,46 @@
|
||||
#ifndef COUNTING_SEMAPHORE_H
|
||||
#define COUNTING_SEMAPHORE_H
|
||||
#include <mutex>
|
||||
#include <condition_variable>
|
||||
#include <algorithm>
|
||||
#include <thread>
|
||||
#include <mutex>
|
||||
#include <condition_variable>
|
||||
#include <thread>
|
||||
|
||||
class CountingSemaphore {
|
||||
public:
|
||||
static CountingSemaphore& getInstance()
|
||||
{
|
||||
static CountingSemaphore instance;
|
||||
return instance;
|
||||
}
|
||||
// Delete copy constructor and assignment operator
|
||||
CountingSemaphore(const CountingSemaphore&) = delete;
|
||||
CountingSemaphore& operator=(const CountingSemaphore&) = delete;
|
||||
void acquire()
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mtx_);
|
||||
cv_.wait(lock, [this]() { return count_ > 0; });
|
||||
--count_;
|
||||
}
|
||||
void release()
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mtx_);
|
||||
++count_;
|
||||
if (count_ <= max_count_) {
|
||||
cv_.notify_one();
|
||||
}
|
||||
}
|
||||
private:
|
||||
CountingSemaphore()
|
||||
: max_count_(std::max(1u, static_cast<uint>(0.95 * std::thread::hardware_concurrency()))),
|
||||
count_(max_count_)
|
||||
{
|
||||
}
|
||||
std::mutex mtx_;
|
||||
std::condition_variable cv_;
|
||||
const uint max_count_;
|
||||
uint count_;
|
||||
};
|
||||
#endif
|
@@ -5,6 +5,7 @@
|
||||
The hyperparameters defined in the algorithm are:
|
||||
|
||||
- ***bisection*** (*boolean*): If set to true allows the algorithm to add *k* models at once (as specified in the algorithm) to the ensemble. Default value: *true*.
|
||||
- ***bisection_best*** (*boolean*): If set to *true*, the algorithm will take as *priorAccuracy* the best accuracy computed. If set to *false⁺ it will take the last accuracy as *priorAccuracy*. Default value: *false*.
|
||||
|
||||
- ***order*** (*{"asc", "desc", "rand"}*): Sets the order (ascending/descending/random) in which dataset variables will be processed to choose the parents of the *SPODEs*. Default value: *"desc"*.
|
||||
|
||||
@@ -26,4 +27,4 @@ The hyperparameters defined in the algorithm are:
|
||||
|
||||
## Operation
|
||||
|
||||
### [Algorithm](./algorithm.md)
|
||||
### [Base Algorithm](./algorithm.md)
|
||||
|
2912
docs/Doxyfile.in
Normal file
2912
docs/Doxyfile.in
Normal file
File diff suppressed because it is too large
Load Diff
@@ -105,8 +105,7 @@
|
||||
|
||||
2. $numItemsPack \leftarrow 0$
|
||||
|
||||
10. If
|
||||
$(Vars == \emptyset \lor tolerance>maxTolerance) \; finished \leftarrow True$
|
||||
10. If $(Vars == \emptyset \lor tolerance>maxTolerance) \; finished \leftarrow True$
|
||||
|
||||
11. $lastAccuracy \leftarrow max(lastAccuracy, actualAccuracy)$
|
||||
|
||||
|
BIN
docs/logo_small.png
Normal file
BIN
docs/logo_small.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 11 KiB |
@@ -1,5 +0,0 @@
|
||||
filter = bayesnet/
|
||||
exclude-directories = build_debug/lib/
|
||||
exclude = bayesnet/utils/loguru.*
|
||||
print-summary = yes
|
||||
sort = uncovered-percent
|
@@ -1,168 +0,0 @@
|
||||
#include "ArffFiles.h"
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include <map>
|
||||
#include <iostream>
|
||||
|
||||
ArffFiles::ArffFiles() = default;
|
||||
|
||||
std::vector<std::string> ArffFiles::getLines() const
|
||||
{
|
||||
return lines;
|
||||
}
|
||||
|
||||
unsigned long int ArffFiles::getSize() const
|
||||
{
|
||||
return lines.size();
|
||||
}
|
||||
|
||||
std::vector<std::pair<std::string, std::string>> ArffFiles::getAttributes() const
|
||||
{
|
||||
return attributes;
|
||||
}
|
||||
|
||||
std::string ArffFiles::getClassName() const
|
||||
{
|
||||
return className;
|
||||
}
|
||||
|
||||
std::string ArffFiles::getClassType() const
|
||||
{
|
||||
return classType;
|
||||
}
|
||||
|
||||
std::vector<std::vector<float>>& ArffFiles::getX()
|
||||
{
|
||||
return X;
|
||||
}
|
||||
|
||||
std::vector<int>& ArffFiles::getY()
|
||||
{
|
||||
return y;
|
||||
}
|
||||
|
||||
void ArffFiles::loadCommon(std::string fileName)
|
||||
{
|
||||
std::ifstream file(fileName);
|
||||
if (!file.is_open()) {
|
||||
throw std::invalid_argument("Unable to open file");
|
||||
}
|
||||
std::string line;
|
||||
std::string keyword;
|
||||
std::string attribute;
|
||||
std::string type;
|
||||
std::string type_w;
|
||||
while (getline(file, line)) {
|
||||
if (line.empty() || line[0] == '%' || line == "\r" || line == " ") {
|
||||
continue;
|
||||
}
|
||||
if (line.find("@attribute") != std::string::npos || line.find("@ATTRIBUTE") != std::string::npos) {
|
||||
std::stringstream ss(line);
|
||||
ss >> keyword >> attribute;
|
||||
type = "";
|
||||
while (ss >> type_w)
|
||||
type += type_w + " ";
|
||||
attributes.emplace_back(trim(attribute), trim(type));
|
||||
continue;
|
||||
}
|
||||
if (line[0] == '@') {
|
||||
continue;
|
||||
}
|
||||
lines.push_back(line);
|
||||
}
|
||||
file.close();
|
||||
if (attributes.empty())
|
||||
throw std::invalid_argument("No attributes found");
|
||||
}
|
||||
|
||||
void ArffFiles::load(const std::string& fileName, bool classLast)
|
||||
{
|
||||
int labelIndex;
|
||||
loadCommon(fileName);
|
||||
if (classLast) {
|
||||
className = std::get<0>(attributes.back());
|
||||
classType = std::get<1>(attributes.back());
|
||||
attributes.pop_back();
|
||||
labelIndex = static_cast<int>(attributes.size());
|
||||
} else {
|
||||
className = std::get<0>(attributes.front());
|
||||
classType = std::get<1>(attributes.front());
|
||||
attributes.erase(attributes.begin());
|
||||
labelIndex = 0;
|
||||
}
|
||||
generateDataset(labelIndex);
|
||||
}
|
||||
void ArffFiles::load(const std::string& fileName, const std::string& name)
|
||||
{
|
||||
int labelIndex;
|
||||
loadCommon(fileName);
|
||||
bool found = false;
|
||||
for (int i = 0; i < attributes.size(); ++i) {
|
||||
if (attributes[i].first == name) {
|
||||
className = std::get<0>(attributes[i]);
|
||||
classType = std::get<1>(attributes[i]);
|
||||
attributes.erase(attributes.begin() + i);
|
||||
labelIndex = i;
|
||||
found = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!found) {
|
||||
throw std::invalid_argument("Class name not found");
|
||||
}
|
||||
generateDataset(labelIndex);
|
||||
}
|
||||
|
||||
void ArffFiles::generateDataset(int labelIndex)
|
||||
{
|
||||
X = std::vector<std::vector<float>>(attributes.size(), std::vector<float>(lines.size()));
|
||||
auto yy = std::vector<std::string>(lines.size(), "");
|
||||
auto removeLines = std::vector<int>(); // Lines with missing values
|
||||
for (size_t i = 0; i < lines.size(); i++) {
|
||||
std::stringstream ss(lines[i]);
|
||||
std::string value;
|
||||
int pos = 0;
|
||||
int xIndex = 0;
|
||||
while (getline(ss, value, ',')) {
|
||||
if (pos++ == labelIndex) {
|
||||
yy[i] = value;
|
||||
} else {
|
||||
if (value == "?") {
|
||||
X[xIndex++][i] = -1;
|
||||
removeLines.push_back(i);
|
||||
} else
|
||||
X[xIndex++][i] = stof(value);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (auto i : removeLines) {
|
||||
yy.erase(yy.begin() + i);
|
||||
for (auto& x : X) {
|
||||
x.erase(x.begin() + i);
|
||||
}
|
||||
}
|
||||
y = factorize(yy);
|
||||
}
|
||||
|
||||
std::string ArffFiles::trim(const std::string& source)
|
||||
{
|
||||
std::string s(source);
|
||||
s.erase(0, s.find_first_not_of(" '\n\r\t"));
|
||||
s.erase(s.find_last_not_of(" '\n\r\t") + 1);
|
||||
return s;
|
||||
}
|
||||
|
||||
std::vector<int> ArffFiles::factorize(const std::vector<std::string>& labels_t)
|
||||
{
|
||||
std::vector<int> yy;
|
||||
yy.reserve(labels_t.size());
|
||||
std::map<std::string, int> labelMap;
|
||||
int i = 0;
|
||||
for (const std::string& label : labels_t) {
|
||||
if (labelMap.find(label) == labelMap.end()) {
|
||||
labelMap[label] = i++;
|
||||
}
|
||||
yy.push_back(labelMap[label]);
|
||||
}
|
||||
return yy;
|
||||
}
|
@@ -1,32 +0,0 @@
|
||||
#ifndef ARFFFILES_H
|
||||
#define ARFFFILES_H
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
class ArffFiles {
|
||||
private:
|
||||
std::vector<std::string> lines;
|
||||
std::vector<std::pair<std::string, std::string>> attributes;
|
||||
std::string className;
|
||||
std::string classType;
|
||||
std::vector<std::vector<float>> X;
|
||||
std::vector<int> y;
|
||||
void generateDataset(int);
|
||||
void loadCommon(std::string);
|
||||
public:
|
||||
ArffFiles();
|
||||
void load(const std::string&, bool = true);
|
||||
void load(const std::string&, const std::string&);
|
||||
std::vector<std::string> getLines() const;
|
||||
unsigned long int getSize() const;
|
||||
std::string getClassName() const;
|
||||
std::string getClassType() const;
|
||||
static std::string trim(const std::string&);
|
||||
std::vector<std::vector<float>>& getX();
|
||||
std::vector<int>& getY();
|
||||
std::vector<std::pair<std::string, std::string>> getAttributes() const;
|
||||
static std::vector<int> factorize(const std::vector<std::string>& labels_t);
|
||||
};
|
||||
|
||||
#endif
|
@@ -1 +0,0 @@
|
||||
add_library(ArffFiles ArffFiles.cc)
|
Submodule lib/catch2 updated: bff6e35e2b...029fe3b460
Submodule lib/folding updated: 71d6055be4...2ac43e32ac
2
lib/json
2
lib/json
Submodule lib/json updated: 199dea11b1...960b763ecd
2009
lib/log/loguru.cpp
Normal file
2009
lib/log/loguru.cpp
Normal file
File diff suppressed because it is too large
Load Diff
1475
lib/log/loguru.hpp
Normal file
1475
lib/log/loguru.hpp
Normal file
File diff suppressed because it is too large
Load Diff
2
lib/mdlp
2
lib/mdlp
Submodule lib/mdlp updated: 5708dc3de9...2db60e007d
@@ -8,13 +8,12 @@ find_package(Torch REQUIRED)
|
||||
find_library(BayesNet NAMES BayesNet.a libBayesNet.a REQUIRED)
|
||||
|
||||
include_directories(
|
||||
lib/Files
|
||||
../tests/lib/Files
|
||||
lib/mdlp
|
||||
lib/json/include
|
||||
/usr/local/include
|
||||
)
|
||||
|
||||
add_subdirectory(lib/Files)
|
||||
add_subdirectory(lib/mdlp)
|
||||
add_executable(bayesnet_sample sample.cc)
|
||||
target_link_libraries(bayesnet_sample ArffFiles mdlp "${TORCH_LIBRARIES}" "${BayesNet}")
|
||||
target_link_libraries(bayesnet_sample mdlp "${TORCH_LIBRARIES}" "${BayesNet}")
|
@@ -1,174 +0,0 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include "ArffFiles.h"
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include <map>
|
||||
#include <iostream>
|
||||
|
||||
ArffFiles::ArffFiles() = default;
|
||||
|
||||
std::vector<std::string> ArffFiles::getLines() const
|
||||
{
|
||||
return lines;
|
||||
}
|
||||
|
||||
unsigned long int ArffFiles::getSize() const
|
||||
{
|
||||
return lines.size();
|
||||
}
|
||||
|
||||
std::vector<std::pair<std::string, std::string>> ArffFiles::getAttributes() const
|
||||
{
|
||||
return attributes;
|
||||
}
|
||||
|
||||
std::string ArffFiles::getClassName() const
|
||||
{
|
||||
return className;
|
||||
}
|
||||
|
||||
std::string ArffFiles::getClassType() const
|
||||
{
|
||||
return classType;
|
||||
}
|
||||
|
||||
std::vector<std::vector<float>>& ArffFiles::getX()
|
||||
{
|
||||
return X;
|
||||
}
|
||||
|
||||
std::vector<int>& ArffFiles::getY()
|
||||
{
|
||||
return y;
|
||||
}
|
||||
|
||||
void ArffFiles::loadCommon(std::string fileName)
|
||||
{
|
||||
std::ifstream file(fileName);
|
||||
if (!file.is_open()) {
|
||||
throw std::invalid_argument("Unable to open file");
|
||||
}
|
||||
std::string line;
|
||||
std::string keyword;
|
||||
std::string attribute;
|
||||
std::string type;
|
||||
std::string type_w;
|
||||
while (getline(file, line)) {
|
||||
if (line.empty() || line[0] == '%' || line == "\r" || line == " ") {
|
||||
continue;
|
||||
}
|
||||
if (line.find("@attribute") != std::string::npos || line.find("@ATTRIBUTE") != std::string::npos) {
|
||||
std::stringstream ss(line);
|
||||
ss >> keyword >> attribute;
|
||||
type = "";
|
||||
while (ss >> type_w)
|
||||
type += type_w + " ";
|
||||
attributes.emplace_back(trim(attribute), trim(type));
|
||||
continue;
|
||||
}
|
||||
if (line[0] == '@') {
|
||||
continue;
|
||||
}
|
||||
lines.push_back(line);
|
||||
}
|
||||
file.close();
|
||||
if (attributes.empty())
|
||||
throw std::invalid_argument("No attributes found");
|
||||
}
|
||||
|
||||
void ArffFiles::load(const std::string& fileName, bool classLast)
|
||||
{
|
||||
int labelIndex;
|
||||
loadCommon(fileName);
|
||||
if (classLast) {
|
||||
className = std::get<0>(attributes.back());
|
||||
classType = std::get<1>(attributes.back());
|
||||
attributes.pop_back();
|
||||
labelIndex = static_cast<int>(attributes.size());
|
||||
} else {
|
||||
className = std::get<0>(attributes.front());
|
||||
classType = std::get<1>(attributes.front());
|
||||
attributes.erase(attributes.begin());
|
||||
labelIndex = 0;
|
||||
}
|
||||
generateDataset(labelIndex);
|
||||
}
|
||||
void ArffFiles::load(const std::string& fileName, const std::string& name)
|
||||
{
|
||||
int labelIndex;
|
||||
loadCommon(fileName);
|
||||
bool found = false;
|
||||
for (int i = 0; i < attributes.size(); ++i) {
|
||||
if (attributes[i].first == name) {
|
||||
className = std::get<0>(attributes[i]);
|
||||
classType = std::get<1>(attributes[i]);
|
||||
attributes.erase(attributes.begin() + i);
|
||||
labelIndex = i;
|
||||
found = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!found) {
|
||||
throw std::invalid_argument("Class name not found");
|
||||
}
|
||||
generateDataset(labelIndex);
|
||||
}
|
||||
|
||||
void ArffFiles::generateDataset(int labelIndex)
|
||||
{
|
||||
X = std::vector<std::vector<float>>(attributes.size(), std::vector<float>(lines.size()));
|
||||
auto yy = std::vector<std::string>(lines.size(), "");
|
||||
auto removeLines = std::vector<int>(); // Lines with missing values
|
||||
for (size_t i = 0; i < lines.size(); i++) {
|
||||
std::stringstream ss(lines[i]);
|
||||
std::string value;
|
||||
int pos = 0;
|
||||
int xIndex = 0;
|
||||
while (getline(ss, value, ',')) {
|
||||
if (pos++ == labelIndex) {
|
||||
yy[i] = value;
|
||||
} else {
|
||||
if (value == "?") {
|
||||
X[xIndex++][i] = -1;
|
||||
removeLines.push_back(i);
|
||||
} else
|
||||
X[xIndex++][i] = stof(value);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (auto i : removeLines) {
|
||||
yy.erase(yy.begin() + i);
|
||||
for (auto& x : X) {
|
||||
x.erase(x.begin() + i);
|
||||
}
|
||||
}
|
||||
y = factorize(yy);
|
||||
}
|
||||
|
||||
std::string ArffFiles::trim(const std::string& source)
|
||||
{
|
||||
std::string s(source);
|
||||
s.erase(0, s.find_first_not_of(" '\n\r\t"));
|
||||
s.erase(s.find_last_not_of(" '\n\r\t") + 1);
|
||||
return s;
|
||||
}
|
||||
|
||||
std::vector<int> ArffFiles::factorize(const std::vector<std::string>& labels_t)
|
||||
{
|
||||
std::vector<int> yy;
|
||||
yy.reserve(labels_t.size());
|
||||
std::map<std::string, int> labelMap;
|
||||
int i = 0;
|
||||
for (const std::string& label : labels_t) {
|
||||
if (labelMap.find(label) == labelMap.end()) {
|
||||
labelMap[label] = i++;
|
||||
}
|
||||
yy.push_back(labelMap[label]);
|
||||
}
|
||||
return yy;
|
||||
}
|
@@ -1,38 +0,0 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef ARFFFILES_H
|
||||
#define ARFFFILES_H
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
class ArffFiles {
|
||||
private:
|
||||
std::vector<std::string> lines;
|
||||
std::vector<std::pair<std::string, std::string>> attributes;
|
||||
std::string className;
|
||||
std::string classType;
|
||||
std::vector<std::vector<float>> X;
|
||||
std::vector<int> y;
|
||||
void generateDataset(int);
|
||||
void loadCommon(std::string);
|
||||
public:
|
||||
ArffFiles();
|
||||
void load(const std::string&, bool = true);
|
||||
void load(const std::string&, const std::string&);
|
||||
std::vector<std::string> getLines() const;
|
||||
unsigned long int getSize() const;
|
||||
std::string getClassName() const;
|
||||
std::string getClassType() const;
|
||||
static std::string trim(const std::string&);
|
||||
std::vector<std::vector<float>>& getX();
|
||||
std::vector<int>& getY();
|
||||
std::vector<std::pair<std::string, std::string>> getAttributes() const;
|
||||
static std::vector<int> factorize(const std::vector<std::string>& labels_t);
|
||||
};
|
||||
|
||||
#endif
|
@@ -1 +0,0 @@
|
||||
add_library(ArffFiles ArffFiles.cc)
|
@@ -4,9 +4,10 @@
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include <ArffFiles.h>
|
||||
#include <ArffFiles.hpp>
|
||||
#include <CPPFImdlp.h>
|
||||
#include <bayesnet/ensembles/BoostAODE.h>
|
||||
#include <torch/torch.h>
|
||||
|
||||
std::vector<mdlp::labels_t> discretizeDataset(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y)
|
||||
{
|
||||
@@ -19,7 +20,8 @@ std::vector<mdlp::labels_t> discretizeDataset(std::vector<mdlp::samples_t>& X, m
|
||||
}
|
||||
return Xd;
|
||||
}
|
||||
tuple<torch::Tensor, torch::Tensor, std::vector<std::string>, std::string, map<std::string, std::vector<int>>> loadDataset(const std::string& name, bool class_last)
|
||||
|
||||
tuple<torch::Tensor, torch::Tensor, std::vector<std::string>, std::string, map<std::string, std::vector<int>>> loadDataset(const std::string& name, bool class_last, torch::Device device)
|
||||
{
|
||||
auto handler = ArffFiles();
|
||||
handler.load(name, class_last);
|
||||
@@ -34,16 +36,16 @@ tuple<torch::Tensor, torch::Tensor, std::vector<std::string>, std::string, map<s
|
||||
torch::Tensor Xd;
|
||||
auto states = map<std::string, std::vector<int>>();
|
||||
auto Xr = discretizeDataset(X, y);
|
||||
Xd = torch::zeros({ static_cast<int>(Xr.size()), static_cast<int>(Xr[0].size()) }, torch::kInt32);
|
||||
Xd = torch::zeros({ static_cast<int>(Xr.size()), static_cast<int>(Xr[0].size()) }, torch::kInt32).to(device);
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
states[features[i]] = std::vector<int>(*max_element(Xr[i].begin(), Xr[i].end()) + 1);
|
||||
auto item = states.at(features[i]);
|
||||
iota(begin(item), end(item), 0);
|
||||
Xd.index_put_({ i, "..." }, torch::tensor(Xr[i], torch::kInt32));
|
||||
Xd.index_put_({ i, "..." }, torch::tensor(Xr[i], torch::kInt32).to(device));
|
||||
}
|
||||
states[className] = std::vector<int>(*max_element(y.begin(), y.end()) + 1);
|
||||
iota(begin(states.at(className)), end(states.at(className)), 0);
|
||||
return { Xd, torch::tensor(y, torch::kInt32), features, className, states };
|
||||
return { Xd, torch::tensor(y, torch::kInt32).to(device), features, className, states };
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[])
|
||||
@@ -53,16 +55,22 @@ int main(int argc, char* argv[])
|
||||
return 1;
|
||||
}
|
||||
std::string file_name = argv[1];
|
||||
torch::Device device(torch::kCPU);
|
||||
if (torch::cuda::is_available()) {
|
||||
device = torch::Device(torch::kCUDA);
|
||||
std::cout << "CUDA is available! Using GPU." << std::endl;
|
||||
} else {
|
||||
std::cout << "CUDA is not available. Using CPU." << std::endl;
|
||||
}
|
||||
torch::Tensor X, y;
|
||||
std::vector<std::string> features;
|
||||
std::string className;
|
||||
map<std::string, std::vector<int>> states;
|
||||
auto clf = bayesnet::BoostAODE(false); // false for not using voting in predict
|
||||
std::cout << "Library version: " << clf.getVersion() << std::endl;
|
||||
tie(X, y, features, className, states) = loadDataset(file_name, true);
|
||||
clf.fit(X, y, features, className, states);
|
||||
tie(X, y, features, className, states) = loadDataset(file_name, true, device);
|
||||
clf.fit(X, y, features, className, states, bayesnet::Smoothing_t::LAPLACE);
|
||||
auto score = clf.score(X, y);
|
||||
std::cout << "File: " << file_name << " score: " << score << std::endl;
|
||||
std::cout << "File: " << file_name << " Model: BoostAODE score: " << score << std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@@ -1,24 +1,27 @@
|
||||
if(ENABLE_TESTING)
|
||||
include_directories(
|
||||
${BayesNet_SOURCE_DIR}/lib/Files
|
||||
${BayesNet_SOURCE_DIR}/lib/mdlp
|
||||
${BayesNet_SOURCE_DIR}/tests/lib/Files
|
||||
${BayesNet_SOURCE_DIR}/lib/folding
|
||||
${BayesNet_SOURCE_DIR}/lib/mdlp/src
|
||||
${BayesNet_SOURCE_DIR}/lib/json/include
|
||||
${BayesNet_SOURCE_DIR}
|
||||
${CMAKE_BINARY_DIR}/configured_files/include
|
||||
)
|
||||
file(GLOB_RECURSE BayesNet_SOURCES "${BayesNet_SOURCE_DIR}/bayesnet/*.cc")
|
||||
add_executable(TestBayesNet TestBayesNetwork.cc TestBayesNode.cc TestBayesClassifier.cc
|
||||
TestBayesModels.cc TestBayesMetrics.cc TestFeatureSelection.cc TestBoostAODE.cc
|
||||
TestUtils.cc TestBayesEnsemble.cc ${BayesNet_SOURCES})
|
||||
target_link_libraries(TestBayesNet PUBLIC "${TORCH_LIBRARIES}" ArffFiles mdlp Catch2::Catch2WithMain )
|
||||
TestBayesModels.cc TestBayesMetrics.cc TestFeatureSelection.cc TestBoostAODE.cc TestA2DE.cc
|
||||
TestUtils.cc TestBayesEnsemble.cc TestModulesVersions.cc TestBoostA2DE.cc ${BayesNet_SOURCES})
|
||||
target_link_libraries(TestBayesNet PUBLIC "${TORCH_LIBRARIES}" mdlp PRIVATE Catch2::Catch2WithMain)
|
||||
add_test(NAME BayesNetworkTest COMMAND TestBayesNet)
|
||||
add_test(NAME Network COMMAND TestBayesNet "[Network]")
|
||||
add_test(NAME Node COMMAND TestBayesNet "[Node]")
|
||||
add_test(NAME Metrics COMMAND TestBayesNet "[Metrics]")
|
||||
add_test(NAME FeatureSelection COMMAND TestBayesNet "[FeatureSelection]")
|
||||
add_test(NAME A2DE COMMAND TestBayesNet "[A2DE]")
|
||||
add_test(NAME BoostA2DE COMMAND TestBayesNet "[BoostA2DE]")
|
||||
add_test(NAME BoostAODE COMMAND TestBayesNet "[BoostAODE]")
|
||||
add_test(NAME Classifier COMMAND TestBayesNet "[Classifier]")
|
||||
add_test(NAME Ensemble COMMAND TestBayesNet "[Ensemble]")
|
||||
add_test(NAME FeatureSelection COMMAND TestBayesNet "[FeatureSelection]")
|
||||
add_test(NAME Metrics COMMAND TestBayesNet "[Metrics]")
|
||||
add_test(NAME Models COMMAND TestBayesNet "[Models]")
|
||||
add_test(NAME BoostAODE COMMAND TestBayesNet "[BoostAODE]")
|
||||
add_test(NAME Modules COMMAND TestBayesNet "[Modules]")
|
||||
add_test(NAME Network COMMAND TestBayesNet "[Network]")
|
||||
add_test(NAME Node COMMAND TestBayesNet "[Node]")
|
||||
endif(ENABLE_TESTING)
|
||||
|
49
tests/TestA2DE.cc
Normal file
49
tests/TestA2DE.cc
Normal file
@@ -0,0 +1,49 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include <type_traits>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include "bayesnet/ensembles/A2DE.h"
|
||||
#include "TestUtils.h"
|
||||
|
||||
|
||||
TEST_CASE("Fit and Score", "[A2DE]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::A2DE();
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.score(raw.Xv, raw.yv) == Catch::Approx(0.831776).epsilon(raw.epsilon));
|
||||
REQUIRE(clf.getNumberOfNodes() == 360);
|
||||
REQUIRE(clf.getNumberOfEdges() == 756);
|
||||
REQUIRE(clf.getNotes().size() == 0);
|
||||
}
|
||||
TEST_CASE("Test score with predict_voting", "[A2DE]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::A2DE(true);
|
||||
auto hyperparameters = nlohmann::json{
|
||||
{"predict_voting", true},
|
||||
};
|
||||
clf.setHyperparameters(hyperparameters);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.score(raw.Xv, raw.yv) == Catch::Approx(0.82243).epsilon(raw.epsilon));
|
||||
hyperparameters["predict_voting"] = false;
|
||||
clf.setHyperparameters(hyperparameters);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.score(raw.Xv, raw.yv) == Catch::Approx(0.83178).epsilon(raw.epsilon));
|
||||
}
|
||||
TEST_CASE("Test graph", "[A2DE]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::A2DE();
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto graph = clf.graph();
|
||||
REQUIRE(graph.size() == 78);
|
||||
REQUIRE(graph[0] == "digraph BayesNet {\nlabel=<BayesNet A2DE_0>\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n");
|
||||
REQUIRE(graph[1] == "class [shape=circle, fontcolor=red, fillcolor=lightblue, style=filled ] \n");
|
||||
}
|
@@ -18,47 +18,47 @@ TEST_CASE("Test Cannot build dataset with wrong data vector", "[Classifier]")
|
||||
auto model = bayesnet::TAN();
|
||||
auto raw = RawDatasets("iris", true);
|
||||
raw.yv.pop_back();
|
||||
REQUIRE_THROWS_AS(model.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv), std::runtime_error);
|
||||
REQUIRE_THROWS_WITH(model.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv), "* Error in X and y dimensions *\nX dimensions: [4, 150]\ny dimensions: [149]");
|
||||
REQUIRE_THROWS_AS(model.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing), std::runtime_error);
|
||||
REQUIRE_THROWS_WITH(model.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing), "* Error in X and y dimensions *\nX dimensions: [4, 150]\ny dimensions: [149]");
|
||||
}
|
||||
TEST_CASE("Test Cannot build dataset with wrong data tensor", "[Classifier]")
|
||||
{
|
||||
auto model = bayesnet::TAN();
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto yshort = torch::zeros({ 149 }, torch::kInt32);
|
||||
REQUIRE_THROWS_AS(model.fit(raw.Xt, yshort, raw.featurest, raw.classNamet, raw.statest), std::runtime_error);
|
||||
REQUIRE_THROWS_WITH(model.fit(raw.Xt, yshort, raw.featurest, raw.classNamet, raw.statest), "* Error in X and y dimensions *\nX dimensions: [4, 150]\ny dimensions: [149]");
|
||||
REQUIRE_THROWS_AS(model.fit(raw.Xt, yshort, raw.features, raw.className, raw.states, raw.smoothing), std::runtime_error);
|
||||
REQUIRE_THROWS_WITH(model.fit(raw.Xt, yshort, raw.features, raw.className, raw.states, raw.smoothing), "* Error in X and y dimensions *\nX dimensions: [4, 150]\ny dimensions: [149]");
|
||||
}
|
||||
TEST_CASE("Invalid data type", "[Classifier]")
|
||||
{
|
||||
auto model = bayesnet::TAN();
|
||||
auto raw = RawDatasets("iris", false);
|
||||
REQUIRE_THROWS_AS(model.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(model.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest), "dataset (X, y) must be of type Integer");
|
||||
REQUIRE_THROWS_AS(model.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(model.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing), "dataset (X, y) must be of type Integer");
|
||||
}
|
||||
TEST_CASE("Invalid number of features", "[Classifier]")
|
||||
{
|
||||
auto model = bayesnet::TAN();
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto Xt = torch::cat({ raw.Xt, torch::zeros({ 1, 150 }, torch::kInt32) }, 0);
|
||||
REQUIRE_THROWS_AS(model.fit(Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(model.fit(Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest), "Classifier: X 5 and features 4 must have the same number of features");
|
||||
REQUIRE_THROWS_AS(model.fit(Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(model.fit(Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing), "Classifier: X 5 and features 4 must have the same number of features");
|
||||
}
|
||||
TEST_CASE("Invalid class name", "[Classifier]")
|
||||
{
|
||||
auto model = bayesnet::TAN();
|
||||
auto raw = RawDatasets("iris", true);
|
||||
REQUIRE_THROWS_AS(model.fit(raw.Xt, raw.yt, raw.featurest, "duck", raw.statest), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(model.fit(raw.Xt, raw.yt, raw.featurest, "duck", raw.statest), "class name not found in states");
|
||||
REQUIRE_THROWS_AS(model.fit(raw.Xt, raw.yt, raw.features, "duck", raw.states, raw.smoothing), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(model.fit(raw.Xt, raw.yt, raw.features, "duck", raw.states, raw.smoothing), "class name not found in states");
|
||||
}
|
||||
TEST_CASE("Invalid feature name", "[Classifier]")
|
||||
{
|
||||
auto model = bayesnet::TAN();
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto statest = raw.statest;
|
||||
auto statest = raw.states;
|
||||
statest.erase("petallength");
|
||||
REQUIRE_THROWS_AS(model.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, statest), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(model.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, statest), "feature [petallength] not found in states");
|
||||
REQUIRE_THROWS_AS(model.fit(raw.Xt, raw.yt, raw.features, raw.className, statest, raw.smoothing), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(model.fit(raw.Xt, raw.yt, raw.features, raw.className, statest, raw.smoothing), "feature [petallength] not found in states");
|
||||
}
|
||||
TEST_CASE("Invalid hyperparameter", "[Classifier]")
|
||||
{
|
||||
@@ -71,7 +71,7 @@ TEST_CASE("Topological order", "[Classifier]")
|
||||
{
|
||||
auto model = bayesnet::TAN();
|
||||
auto raw = RawDatasets("iris", true);
|
||||
model.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
model.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto order = model.topological_order();
|
||||
REQUIRE(order.size() == 4);
|
||||
REQUIRE(order[0] == "petallength");
|
||||
@@ -83,7 +83,7 @@ TEST_CASE("Dump_cpt", "[Classifier]")
|
||||
{
|
||||
auto model = bayesnet::TAN();
|
||||
auto raw = RawDatasets("iris", true);
|
||||
model.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
model.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto cpt = model.dump_cpt();
|
||||
REQUIRE(cpt.size() == 1713);
|
||||
}
|
||||
@@ -111,7 +111,7 @@ TEST_CASE("KDB Graph", "[Classifier]")
|
||||
{
|
||||
auto model = bayesnet::KDB(2);
|
||||
auto raw = RawDatasets("iris", true);
|
||||
model.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
model.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto graph = model.graph();
|
||||
REQUIRE(graph.size() == 15);
|
||||
}
|
||||
@@ -119,7 +119,7 @@ TEST_CASE("KDBLd Graph", "[Classifier]")
|
||||
{
|
||||
auto model = bayesnet::KDBLd(2);
|
||||
auto raw = RawDatasets("iris", false);
|
||||
model.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
model.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto graph = model.graph();
|
||||
REQUIRE(graph.size() == 15);
|
||||
}
|
@@ -18,7 +18,7 @@ TEST_CASE("Topological Order", "[Ensemble]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto order = clf.topological_order();
|
||||
REQUIRE(order.size() == 0);
|
||||
}
|
||||
@@ -26,7 +26,7 @@ TEST_CASE("Dump CPT", "[Ensemble]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto dump = clf.dump_cpt();
|
||||
REQUIRE(dump == "");
|
||||
}
|
||||
@@ -34,7 +34,7 @@ TEST_CASE("Number of States", "[Ensemble]")
|
||||
{
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
auto raw = RawDatasets("iris", true);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfStates() == 76);
|
||||
}
|
||||
TEST_CASE("Show", "[Ensemble]")
|
||||
@@ -46,7 +46,7 @@ TEST_CASE("Show", "[Ensemble]")
|
||||
{"maxTolerance", 1},
|
||||
{"convergence", false},
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
std::vector<std::string> expected = {
|
||||
"class -> sepallength, sepalwidth, petallength, petalwidth, ",
|
||||
"petallength -> sepallength, sepalwidth, petalwidth, ",
|
||||
@@ -78,16 +78,16 @@ TEST_CASE("Graph", "[Ensemble]")
|
||||
{
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
auto raw = RawDatasets("iris", true);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto graph = clf.graph();
|
||||
REQUIRE(graph.size() == 56);
|
||||
auto clf2 = bayesnet::AODE();
|
||||
clf2.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
clf2.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
graph = clf2.graph();
|
||||
REQUIRE(graph.size() == 56);
|
||||
raw = RawDatasets("glass", false);
|
||||
auto clf3 = bayesnet::AODELd();
|
||||
clf3.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
clf3.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
graph = clf3.graph();
|
||||
REQUIRE(graph.size() == 261);
|
||||
}
|
||||
|
@@ -9,7 +9,7 @@
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include "bayesnet/utils/BayesMetrics.h"
|
||||
#include "TestUtils.h"
|
||||
|
||||
#include "Timer.h"
|
||||
|
||||
TEST_CASE("Metrics Test", "[Metrics]")
|
||||
{
|
||||
@@ -27,8 +27,8 @@ TEST_CASE("Metrics Test", "[Metrics]")
|
||||
{"diabetes", 0.0345470614}
|
||||
};
|
||||
map<pair<std::string, int>, std::vector<pair<int, int>>> resultsMST = {
|
||||
{ {"glass", 0}, { {0, 6}, {0, 5}, {0, 3}, {5, 1}, {5, 8}, {5, 4}, {6, 2}, {6, 7} } },
|
||||
{ {"glass", 1}, { {1, 5}, {5, 0}, {5, 8}, {5, 4}, {0, 6}, {0, 3}, {6, 2}, {6, 7} } },
|
||||
{ {"glass", 0}, { {0, 6}, {0, 5}, {0, 3}, {3, 4}, {5, 1}, {5, 8}, {6, 2}, {6, 7} } },
|
||||
{ {"glass", 1}, { {1, 5}, {5, 0}, {5, 8}, {0, 6}, {0, 3}, {3, 4}, {6, 2}, {6, 7} } },
|
||||
{ {"iris", 0}, { {0, 1}, {0, 2}, {1, 3} } },
|
||||
{ {"iris", 1}, { {1, 0}, {1, 3}, {0, 2} } },
|
||||
{ {"ecoli", 0}, { {0, 1}, {0, 2}, {1, 5}, {1, 3}, {5, 6}, {5, 4} } },
|
||||
@@ -37,8 +37,8 @@ TEST_CASE("Metrics Test", "[Metrics]")
|
||||
{ {"diabetes", 1}, { {1, 4}, {4, 3}, {3, 2}, {3, 5}, {2, 0}, {0, 7}, {0, 6} } }
|
||||
};
|
||||
auto raw = RawDatasets(file_name, true);
|
||||
bayesnet::Metrics metrics(raw.dataset, raw.featurest, raw.classNamet, raw.classNumStates);
|
||||
bayesnet::Metrics metricsv(raw.Xv, raw.yv, raw.featurest, raw.classNamet, raw.classNumStates);
|
||||
bayesnet::Metrics metrics(raw.dataset, raw.features, raw.className, raw.classNumStates);
|
||||
bayesnet::Metrics metricsv(raw.Xv, raw.yv, raw.features, raw.className, raw.classNumStates);
|
||||
|
||||
SECTION("Test Constructor")
|
||||
{
|
||||
@@ -69,10 +69,199 @@ TEST_CASE("Metrics Test", "[Metrics]")
|
||||
auto weights_matrix = metrics.conditionalEdge(raw.weights);
|
||||
auto weights_matrixv = metricsv.conditionalEdge(raw.weights);
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
auto result = metrics.maximumSpanningTree(raw.featurest, weights_matrix, i);
|
||||
auto resultv = metricsv.maximumSpanningTree(raw.featurest, weights_matrixv, i);
|
||||
auto result = metrics.maximumSpanningTree(raw.features, weights_matrix, i);
|
||||
auto resultv = metricsv.maximumSpanningTree(raw.features, weights_matrixv, i);
|
||||
REQUIRE(result == resultsMST.at({ file_name, i }));
|
||||
REQUIRE(resultv == resultsMST.at({ file_name, i }));
|
||||
}
|
||||
}
|
||||
}
|
||||
TEST_CASE("Select all features ordered by Mutual Information", "[Metrics]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
bayesnet::Metrics metrics(raw.dataset, raw.features, raw.className, raw.classNumStates);
|
||||
auto kBest = metrics.SelectKBestWeighted(raw.weights, true, 0);
|
||||
REQUIRE(kBest.size() == raw.features.size());
|
||||
REQUIRE(kBest == std::vector<int>({ 1, 0, 3, 2 }));
|
||||
}
|
||||
TEST_CASE("Entropy Test", "[Metrics]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
bayesnet::Metrics metrics(raw.dataset, raw.features, raw.className, raw.classNumStates);
|
||||
auto result = metrics.entropy(raw.dataset.index({ 0, "..." }), raw.weights);
|
||||
REQUIRE(result == Catch::Approx(0.9848175048828125).epsilon(raw.epsilon));
|
||||
auto data = torch::tensor({ 0, 0, 0, 0, 0, 0, 0, 1, 1, 1 }, torch::kInt32);
|
||||
auto weights = torch::tensor({ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, torch::kFloat32);
|
||||
result = metrics.entropy(data, weights);
|
||||
REQUIRE(result == Catch::Approx(0.61086434125900269).epsilon(raw.epsilon));
|
||||
data = torch::tensor({ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1 }, torch::kInt32);
|
||||
result = metrics.entropy(data, weights);
|
||||
REQUIRE(result == Catch::Approx(0.693147180559945).epsilon(raw.epsilon));
|
||||
}
|
||||
TEST_CASE("Conditional Entropy", "[Metrics]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
bayesnet::Metrics metrics(raw.dataset, raw.features, raw.className, raw.classNumStates);
|
||||
auto expected = std::map<std::pair<int, int>, double>{
|
||||
{ { 0, 1 }, 1.32674 },
|
||||
{ { 0, 2 }, 0.236253 },
|
||||
{ { 0, 3 }, 0.1202 },
|
||||
{ { 1, 2 }, 0.252551 },
|
||||
{ { 1, 3 }, 0.10515 },
|
||||
{ { 2, 3 }, 0.108323 },
|
||||
};
|
||||
for (int i = 0; i < raw.features.size() - 1; ++i) {
|
||||
for (int j = i + 1; j < raw.features.size(); ++j) {
|
||||
double result = metrics.conditionalEntropy(raw.dataset.index({ i, "..." }), raw.dataset.index({ j, "..." }), raw.yt, raw.weights);
|
||||
REQUIRE(result == Catch::Approx(expected.at({ i, j })).epsilon(raw.epsilon));
|
||||
}
|
||||
}
|
||||
}
|
||||
TEST_CASE("Conditional Mutual Information", "[Metrics]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
bayesnet::Metrics metrics(raw.dataset, raw.features, raw.className, raw.classNumStates);
|
||||
auto expected = std::map<std::pair<int, int>, double>{
|
||||
{ { 0, 1 }, 0.0 },
|
||||
{ { 0, 2 }, 0.287696 },
|
||||
{ { 0, 3 }, 0.403749 },
|
||||
{ { 1, 2 }, 1.17112 },
|
||||
{ { 1, 3 }, 1.31852 },
|
||||
{ { 2, 3 }, 0.210068 },
|
||||
};
|
||||
for (int i = 0; i < raw.features.size() - 1; ++i) {
|
||||
for (int j = i + 1; j < raw.features.size(); ++j) {
|
||||
double result = metrics.conditionalMutualInformation(raw.dataset.index({ i, "..." }), raw.dataset.index({ j, "..." }), raw.yt, raw.weights);
|
||||
REQUIRE(result == Catch::Approx(expected.at({ i, j })).epsilon(raw.epsilon));
|
||||
}
|
||||
}
|
||||
}
|
||||
TEST_CASE("Select K Pairs descending", "[Metrics]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
bayesnet::Metrics metrics(raw.dataset, raw.features, raw.className, raw.classNumStates);
|
||||
std::vector<int> empty;
|
||||
auto results = metrics.SelectKPairs(raw.weights, empty, false);
|
||||
auto expected = std::vector<std::pair<std::pair<int, int>, double>>{
|
||||
{ { 1, 3 }, 1.31852 },
|
||||
{ { 1, 2 }, 1.17112 },
|
||||
{ { 0, 3 }, 0.403749 },
|
||||
{ { 0, 2 }, 0.287696 },
|
||||
{ { 2, 3 }, 0.210068 },
|
||||
{ { 0, 1 }, 0.0 },
|
||||
};
|
||||
auto scores = metrics.getScoresKPairs();
|
||||
for (int i = 0; i < results.size(); ++i) {
|
||||
auto result = results[i];
|
||||
auto expect = expected[i];
|
||||
auto score = scores[i];
|
||||
REQUIRE(result.first == expect.first.first);
|
||||
REQUIRE(result.second == expect.first.second);
|
||||
REQUIRE(score.first.first == expect.first.first);
|
||||
REQUIRE(score.first.second == expect.first.second);
|
||||
REQUIRE(score.second == Catch::Approx(expect.second).epsilon(raw.epsilon));
|
||||
}
|
||||
REQUIRE(results.size() == 6);
|
||||
REQUIRE(scores.size() == 6);
|
||||
}
|
||||
TEST_CASE("Select K Pairs ascending", "[Metrics]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
bayesnet::Metrics metrics(raw.dataset, raw.features, raw.className, raw.classNumStates);
|
||||
std::vector<int> empty;
|
||||
auto results = metrics.SelectKPairs(raw.weights, empty, true);
|
||||
auto expected = std::vector<std::pair<std::pair<int, int>, double>>{
|
||||
{ { 0, 1 }, 0.0 },
|
||||
{ { 2, 3 }, 0.210068 },
|
||||
{ { 0, 2 }, 0.287696 },
|
||||
{ { 0, 3 }, 0.403749 },
|
||||
{ { 1, 2 }, 1.17112 },
|
||||
{ { 1, 3 }, 1.31852 },
|
||||
};
|
||||
auto scores = metrics.getScoresKPairs();
|
||||
for (int i = 0; i < results.size(); ++i) {
|
||||
auto result = results[i];
|
||||
auto expect = expected[i];
|
||||
auto score = scores[i];
|
||||
REQUIRE(result.first == expect.first.first);
|
||||
REQUIRE(result.second == expect.first.second);
|
||||
REQUIRE(score.first.first == expect.first.first);
|
||||
REQUIRE(score.first.second == expect.first.second);
|
||||
REQUIRE(score.second == Catch::Approx(expect.second).epsilon(raw.epsilon));
|
||||
}
|
||||
REQUIRE(results.size() == 6);
|
||||
REQUIRE(scores.size() == 6);
|
||||
}
|
||||
TEST_CASE("Select K Pairs with features excluded", "[Metrics]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
bayesnet::Metrics metrics(raw.dataset, raw.features, raw.className, raw.classNumStates);
|
||||
std::vector<int> excluded = { 0, 3 };
|
||||
auto results = metrics.SelectKPairs(raw.weights, excluded, true);
|
||||
auto expected = std::vector<std::pair<std::pair<int, int>, double>>{
|
||||
{ { 1, 2 }, 1.17112 },
|
||||
};
|
||||
auto scores = metrics.getScoresKPairs();
|
||||
for (int i = 0; i < results.size(); ++i) {
|
||||
auto result = results[i];
|
||||
auto expect = expected[i];
|
||||
auto score = scores[i];
|
||||
REQUIRE(result.first == expect.first.first);
|
||||
REQUIRE(result.second == expect.first.second);
|
||||
REQUIRE(score.first.first == expect.first.first);
|
||||
REQUIRE(score.first.second == expect.first.second);
|
||||
REQUIRE(score.second == Catch::Approx(expect.second).epsilon(raw.epsilon));
|
||||
}
|
||||
REQUIRE(results.size() == 1);
|
||||
REQUIRE(scores.size() == 1);
|
||||
}
|
||||
TEST_CASE("Select K Pairs with number of pairs descending", "[Metrics]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
bayesnet::Metrics metrics(raw.dataset, raw.features, raw.className, raw.classNumStates);
|
||||
std::vector<int> empty;
|
||||
auto results = metrics.SelectKPairs(raw.weights, empty, false, 3);
|
||||
auto expected = std::vector<std::pair<std::pair<int, int>, double>>{
|
||||
{ { 1, 3 }, 1.31852 },
|
||||
{ { 1, 2 }, 1.17112 },
|
||||
{ { 0, 3 }, 0.403749 }
|
||||
};
|
||||
auto scores = metrics.getScoresKPairs();
|
||||
REQUIRE(results.size() == 3);
|
||||
REQUIRE(scores.size() == 3);
|
||||
for (int i = 0; i < results.size(); ++i) {
|
||||
auto result = results[i];
|
||||
auto expect = expected[i];
|
||||
auto score = scores[i];
|
||||
REQUIRE(result.first == expect.first.first);
|
||||
REQUIRE(result.second == expect.first.second);
|
||||
REQUIRE(score.first.first == expect.first.first);
|
||||
REQUIRE(score.first.second == expect.first.second);
|
||||
REQUIRE(score.second == Catch::Approx(expect.second).epsilon(raw.epsilon));
|
||||
}
|
||||
}
|
||||
TEST_CASE("Select K Pairs with number of pairs ascending", "[Metrics]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
bayesnet::Metrics metrics(raw.dataset, raw.features, raw.className, raw.classNumStates);
|
||||
std::vector<int> empty;
|
||||
auto results = metrics.SelectKPairs(raw.weights, empty, true, 3);
|
||||
auto expected = std::vector<std::pair<std::pair<int, int>, double>>{
|
||||
{ { 0, 3 }, 0.403749 },
|
||||
{ { 1, 2 }, 1.17112 },
|
||||
{ { 1, 3 }, 1.31852 }
|
||||
};
|
||||
auto scores = metrics.getScoresKPairs();
|
||||
REQUIRE(results.size() == 3);
|
||||
REQUIRE(scores.size() == 3);
|
||||
for (int i = 0; i < results.size(); ++i) {
|
||||
auto result = results[i];
|
||||
auto expect = expected[i];
|
||||
auto score = scores[i];
|
||||
REQUIRE(result.first == expect.first.first);
|
||||
REQUIRE(result.second == expect.first.second);
|
||||
REQUIRE(score.first.first == expect.first.first);
|
||||
REQUIRE(score.first.second == expect.first.second);
|
||||
REQUIRE(score.second == Catch::Approx(expect.second).epsilon(raw.epsilon));
|
||||
}
|
||||
}
|
@@ -20,7 +20,7 @@
|
||||
#include "bayesnet/ensembles/BoostAODE.h"
|
||||
#include "TestUtils.h"
|
||||
|
||||
const std::string ACTUAL_VERSION = "1.0.5";
|
||||
const std::string ACTUAL_VERSION = "1.0.6";
|
||||
|
||||
TEST_CASE("Test Bayesian Classifiers score & version", "[Models]")
|
||||
{
|
||||
@@ -54,16 +54,16 @@ TEST_CASE("Test Bayesian Classifiers score & version", "[Models]")
|
||||
auto clf = models[name];
|
||||
auto discretize = name.substr(name.length() - 2) != "Ld";
|
||||
auto raw = RawDatasets(file_name, discretize);
|
||||
clf->fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
clf->fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score = clf->score(raw.Xt, raw.yt);
|
||||
INFO("Classifier: " + name + " File: " + file_name);
|
||||
INFO("Classifier: " << name << " File: " << file_name);
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, name}]).epsilon(raw.epsilon));
|
||||
REQUIRE(clf->getStatus() == bayesnet::NORMAL);
|
||||
}
|
||||
}
|
||||
SECTION("Library check version")
|
||||
{
|
||||
INFO("Checking version of " + name + " classifier");
|
||||
INFO("Checking version of " << name << " classifier");
|
||||
REQUIRE(clf->getVersion() == ACTUAL_VERSION);
|
||||
}
|
||||
delete clf;
|
||||
@@ -81,7 +81,7 @@ TEST_CASE("Models features & Graph", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::TAN();
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 5);
|
||||
REQUIRE(clf.getNumberOfEdges() == 7);
|
||||
REQUIRE(clf.getNumberOfStates() == 19);
|
||||
@@ -93,7 +93,7 @@ TEST_CASE("Models features & Graph", "[Models]")
|
||||
{
|
||||
auto clf = bayesnet::TANLd();
|
||||
auto raw = RawDatasets("iris", false);
|
||||
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
clf.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 5);
|
||||
REQUIRE(clf.getNumberOfEdges() == 7);
|
||||
REQUIRE(clf.getNumberOfStates() == 19);
|
||||
@@ -106,7 +106,7 @@ TEST_CASE("Get num features & num edges", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::KDB(2);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 5);
|
||||
REQUIRE(clf.getNumberOfEdges() == 8);
|
||||
}
|
||||
@@ -166,7 +166,7 @@ TEST_CASE("Model predict_proba", "[Models]")
|
||||
SECTION("Test " + model + " predict_proba")
|
||||
{
|
||||
auto clf = models[model];
|
||||
clf->fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
clf->fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto y_pred_proba = clf->predict_proba(raw.Xv);
|
||||
auto yt_pred_proba = clf->predict_proba(raw.Xt);
|
||||
auto y_pred = clf->predict(raw.Xv);
|
||||
@@ -203,7 +203,7 @@ TEST_CASE("AODE voting-proba", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::AODE(false);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score_proba = clf.score(raw.Xv, raw.yv);
|
||||
auto pred_proba = clf.predict_proba(raw.Xv);
|
||||
clf.setHyperparameters({
|
||||
@@ -222,9 +222,9 @@ TEST_CASE("SPODELd dataset", "[Models]")
|
||||
auto raw = RawDatasets("iris", false);
|
||||
auto clf = bayesnet::SPODELd(0);
|
||||
// raw.dataset.to(torch::kFloat32);
|
||||
clf.fit(raw.dataset, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
clf.fit(raw.dataset, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score = clf.score(raw.Xt, raw.yt);
|
||||
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
clf.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto scoret = clf.score(raw.Xt, raw.yt);
|
||||
REQUIRE(score == Catch::Approx(0.97333f).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(0.97333f).epsilon(raw.epsilon));
|
||||
@@ -233,13 +233,13 @@ TEST_CASE("KDB with hyperparameters", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::KDB(2);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
clf.setHyperparameters({
|
||||
{"k", 3},
|
||||
{"theta", 0.7},
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto scoret = clf.score(raw.Xv, raw.yv);
|
||||
REQUIRE(score == Catch::Approx(0.827103).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(0.761682).epsilon(raw.epsilon));
|
||||
@@ -248,7 +248,7 @@ TEST_CASE("Incorrect type of data for SPODELd", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::SPODELd(0);
|
||||
REQUIRE_THROWS_AS(clf.fit(raw.dataset, raw.featurest, raw.classNamet, raw.statest), std::runtime_error);
|
||||
REQUIRE_THROWS_AS(clf.fit(raw.dataset, raw.features, raw.className, raw.states, raw.smoothing), std::runtime_error);
|
||||
}
|
||||
TEST_CASE("Predict, predict_proba & score without fitting", "[Models]")
|
||||
{
|
||||
|
@@ -12,8 +12,10 @@
|
||||
#include <string>
|
||||
#include "TestUtils.h"
|
||||
#include "bayesnet/network/Network.h"
|
||||
#include "bayesnet/network/Node.h"
|
||||
#include "bayesnet/utils/bayesnetUtils.h"
|
||||
|
||||
const double threshold = 1e-4;
|
||||
void buildModel(bayesnet::Network& net, const std::vector<std::string>& features, const std::string& className)
|
||||
{
|
||||
std::vector<pair<int, int>> network = { {0, 1}, {0, 2}, {1, 3} };
|
||||
@@ -28,13 +30,11 @@ void buildModel(bayesnet::Network& net, const std::vector<std::string>& features
|
||||
net.addEdge(className, feature);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Test Bayesian Network", "[Network]")
|
||||
{
|
||||
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto net = bayesnet::Network();
|
||||
double threshold = 1e-4;
|
||||
|
||||
SECTION("Test get features")
|
||||
{
|
||||
@@ -73,9 +73,9 @@ TEST_CASE("Test Bayesian Network", "[Network]")
|
||||
net3.initialize();
|
||||
net2.initialize();
|
||||
net.initialize();
|
||||
buildModel(net, raw.featuresv, raw.classNamev);
|
||||
buildModel(net2, raw.featurest, raw.classNamet);
|
||||
buildModel(net3, raw.featurest, raw.classNamet);
|
||||
buildModel(net, raw.features, raw.className);
|
||||
buildModel(net2, raw.features, raw.className);
|
||||
buildModel(net3, raw.features, raw.className);
|
||||
std::vector<pair<std::string, std::string>> edges = {
|
||||
{"class", "sepallength"}, {"class", "sepalwidth"}, {"class", "petallength"},
|
||||
{"class", "petalwidth" }, {"sepallength", "sepalwidth"}, {"sepallength", "petallength"},
|
||||
@@ -114,9 +114,9 @@ TEST_CASE("Test Bayesian Network", "[Network]")
|
||||
REQUIRE(children == children3);
|
||||
}
|
||||
// Fit networks
|
||||
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
net2.fit(raw.dataset, raw.weights, raw.featurest, raw.classNamet, raw.statest);
|
||||
net3.fit(raw.Xt, raw.yt, raw.weights, raw.featurest, raw.classNamet, raw.statest);
|
||||
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
net2.fit(raw.dataset, raw.weights, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
net3.fit(raw.Xt, raw.yt, raw.weights, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(net.getStates() == net2.getStates());
|
||||
REQUIRE(net.getStates() == net3.getStates());
|
||||
REQUIRE(net.getFeatures() == net2.getFeatures());
|
||||
@@ -149,6 +149,7 @@ TEST_CASE("Test Bayesian Network", "[Network]")
|
||||
}
|
||||
SECTION("Test show")
|
||||
{
|
||||
INFO("Test show");
|
||||
net.addNode("A");
|
||||
net.addNode("B");
|
||||
net.addNode("C");
|
||||
@@ -162,6 +163,7 @@ TEST_CASE("Test Bayesian Network", "[Network]")
|
||||
}
|
||||
SECTION("Test topological_sort")
|
||||
{
|
||||
INFO("Test topological sort");
|
||||
net.addNode("A");
|
||||
net.addNode("B");
|
||||
net.addNode("C");
|
||||
@@ -175,6 +177,7 @@ TEST_CASE("Test Bayesian Network", "[Network]")
|
||||
}
|
||||
SECTION("Test graph")
|
||||
{
|
||||
INFO("Test graph");
|
||||
net.addNode("A");
|
||||
net.addNode("B");
|
||||
net.addNode("C");
|
||||
@@ -192,8 +195,9 @@ TEST_CASE("Test Bayesian Network", "[Network]")
|
||||
}
|
||||
SECTION("Test predict")
|
||||
{
|
||||
buildModel(net, raw.featuresv, raw.classNamev);
|
||||
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
INFO("Test predict");
|
||||
buildModel(net, raw.features, raw.className);
|
||||
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
std::vector<std::vector<int>> test = { {1, 2, 0, 1, 1}, {0, 1, 2, 0, 1}, {0, 0, 0, 0, 1}, {2, 2, 2, 2, 1} };
|
||||
std::vector<int> y_test = { 2, 2, 0, 2, 1 };
|
||||
auto y_pred = net.predict(test);
|
||||
@@ -201,8 +205,9 @@ TEST_CASE("Test Bayesian Network", "[Network]")
|
||||
}
|
||||
SECTION("Test predict_proba")
|
||||
{
|
||||
buildModel(net, raw.featuresv, raw.classNamev);
|
||||
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
INFO("Test predict_proba");
|
||||
buildModel(net, raw.features, raw.className);
|
||||
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
std::vector<std::vector<int>> test = { {1, 2, 0, 1, 1}, {0, 1, 2, 0, 1}, {0, 0, 0, 0, 1}, {2, 2, 2, 2, 1} };
|
||||
std::vector<std::vector<double>> y_test = {
|
||||
{0.450237, 0.0866621, 0.463101},
|
||||
@@ -222,15 +227,17 @@ TEST_CASE("Test Bayesian Network", "[Network]")
|
||||
}
|
||||
SECTION("Test score")
|
||||
{
|
||||
buildModel(net, raw.featuresv, raw.classNamev);
|
||||
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
INFO("Test score");
|
||||
buildModel(net, raw.features, raw.className);
|
||||
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score = net.score(raw.Xv, raw.yv);
|
||||
REQUIRE(score == Catch::Approx(0.97333333).margin(threshold));
|
||||
}
|
||||
SECTION("Copy constructor")
|
||||
{
|
||||
buildModel(net, raw.featuresv, raw.classNamev);
|
||||
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
INFO("Test copy constructor");
|
||||
buildModel(net, raw.features, raw.className);
|
||||
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto net2 = bayesnet::Network(net);
|
||||
REQUIRE(net.getFeatures() == net2.getFeatures());
|
||||
REQUIRE(net.getEdges() == net2.getEdges());
|
||||
@@ -252,7 +259,8 @@ TEST_CASE("Test Bayesian Network", "[Network]")
|
||||
}
|
||||
SECTION("Test oddities")
|
||||
{
|
||||
buildModel(net, raw.featuresv, raw.classNamev);
|
||||
INFO("Test oddities");
|
||||
buildModel(net, raw.features, raw.className);
|
||||
// predict without fitting
|
||||
std::vector<std::vector<int>> test = { {1, 2, 0, 1, 1}, {0, 1, 2, 0, 1}, {0, 0, 0, 0, 1}, {2, 2, 2, 2, 1} };
|
||||
auto test_tensor = bayesnet::vectorToTensor(test);
|
||||
@@ -266,52 +274,61 @@ TEST_CASE("Test Bayesian Network", "[Network]")
|
||||
REQUIRE_THROWS_WITH(net.score(raw.Xv, raw.yv), "You must call fit() before calling predict()");
|
||||
// predict with wrong data
|
||||
auto netx = bayesnet::Network();
|
||||
buildModel(netx, raw.featuresv, raw.classNamev);
|
||||
netx.fit(raw.Xv, raw.yv, raw.weightsv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
buildModel(netx, raw.features, raw.className);
|
||||
netx.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
std::vector<std::vector<int>> test2 = { {1, 2, 0, 1, 1}, {0, 1, 2, 0, 1}, {0, 0, 0, 0, 1} };
|
||||
auto test_tensor2 = bayesnet::vectorToTensor(test2, false);
|
||||
REQUIRE_THROWS_AS(netx.predict(test2), std::logic_error);
|
||||
REQUIRE_THROWS_WITH(netx.predict(test2), "Sample size (3) does not match the number of features (4)");
|
||||
REQUIRE_THROWS_AS(netx.predict(test_tensor2), std::logic_error);
|
||||
REQUIRE_THROWS_WITH(netx.predict(test_tensor2), "Sample size (3) does not match the number of features (4)");
|
||||
REQUIRE_THROWS_AS(netx.predict(test2), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(netx.predict(test2), "(V) Sample size (3) does not match the number of features (4)");
|
||||
REQUIRE_THROWS_AS(netx.predict(test_tensor2), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(netx.predict(test_tensor2), "(T) Sample size (3) does not match the number of features (4)");
|
||||
// fit with wrong data
|
||||
// Weights
|
||||
auto net2 = bayesnet::Network();
|
||||
REQUIRE_THROWS_AS(net2.fit(raw.Xv, raw.yv, std::vector<double>(), raw.featuresv, raw.classNamev, raw.statesv), std::invalid_argument);
|
||||
REQUIRE_THROWS_AS(net2.fit(raw.Xv, raw.yv, std::vector<double>(), raw.features, raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
||||
std::string invalid_weights = "Weights (0) must have the same number of elements as samples (150) in Network::fit";
|
||||
REQUIRE_THROWS_WITH(net2.fit(raw.Xv, raw.yv, std::vector<double>(), raw.featuresv, raw.classNamev, raw.statesv), invalid_weights);
|
||||
REQUIRE_THROWS_WITH(net2.fit(raw.Xv, raw.yv, std::vector<double>(), raw.features, raw.className, raw.states, raw.smoothing), invalid_weights);
|
||||
// X & y
|
||||
std::string invalid_labels = "X and y must have the same number of samples in Network::fit (150 != 0)";
|
||||
REQUIRE_THROWS_AS(net2.fit(raw.Xv, std::vector<int>(), raw.weightsv, raw.featuresv, raw.classNamev, raw.statesv), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net2.fit(raw.Xv, std::vector<int>(), raw.weightsv, raw.featuresv, raw.classNamev, raw.statesv), invalid_labels);
|
||||
REQUIRE_THROWS_AS(net2.fit(raw.Xv, std::vector<int>(), raw.weightsv, raw.features, raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net2.fit(raw.Xv, std::vector<int>(), raw.weightsv, raw.features, raw.className, raw.states, raw.smoothing), invalid_labels);
|
||||
// Features
|
||||
std::string invalid_features = "X and features must have the same number of features in Network::fit (4 != 0)";
|
||||
REQUIRE_THROWS_AS(net2.fit(raw.Xv, raw.yv, raw.weightsv, std::vector<std::string>(), raw.classNamev, raw.statesv), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net2.fit(raw.Xv, raw.yv, raw.weightsv, std::vector<std::string>(), raw.classNamev, raw.statesv), invalid_features);
|
||||
REQUIRE_THROWS_AS(net2.fit(raw.Xv, raw.yv, raw.weightsv, std::vector<std::string>(), raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net2.fit(raw.Xv, raw.yv, raw.weightsv, std::vector<std::string>(), raw.className, raw.states, raw.smoothing), invalid_features);
|
||||
// Different number of features
|
||||
auto net3 = bayesnet::Network();
|
||||
auto test2y = { 1, 2, 3, 4, 5 };
|
||||
buildModel(net3, raw.featuresv, raw.classNamev);
|
||||
auto features3 = raw.featuresv;
|
||||
buildModel(net3, raw.features, raw.className);
|
||||
auto features3 = raw.features;
|
||||
features3.pop_back();
|
||||
std::string invalid_features2 = "X and local features must have the same number of features in Network::fit (3 != 4)";
|
||||
REQUIRE_THROWS_AS(net3.fit(test2, test2y, std::vector<double>(5, 0), features3, raw.classNamev, raw.statesv), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net3.fit(test2, test2y, std::vector<double>(5, 0), features3, raw.classNamev, raw.statesv), invalid_features2);
|
||||
REQUIRE_THROWS_AS(net3.fit(test2, test2y, std::vector<double>(5, 0), features3, raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net3.fit(test2, test2y, std::vector<double>(5, 0), features3, raw.className, raw.states, raw.smoothing), invalid_features2);
|
||||
// Uninitialized network
|
||||
std::string network_invalid = "The network has not been initialized. You must call addNode() before calling fit()";
|
||||
REQUIRE_THROWS_AS(net2.fit(raw.Xv, raw.yv, raw.weightsv, raw.featuresv, "duck", raw.statesv), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net2.fit(raw.Xv, raw.yv, raw.weightsv, raw.featuresv, "duck", raw.statesv), network_invalid);
|
||||
REQUIRE_THROWS_AS(net2.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, "duck", raw.states, raw.smoothing), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net2.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, "duck", raw.states, raw.smoothing), network_invalid);
|
||||
// Classname
|
||||
std::string invalid_classname = "Class Name not found in Network::features";
|
||||
REQUIRE_THROWS_AS(net.fit(raw.Xv, raw.yv, raw.weightsv, raw.featuresv, "duck", raw.statesv), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net.fit(raw.Xv, raw.yv, raw.weightsv, raw.featuresv, "duck", raw.statesv), invalid_classname);
|
||||
REQUIRE_THROWS_AS(net.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, "duck", raw.states, raw.smoothing), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, "duck", raw.states, raw.smoothing), invalid_classname);
|
||||
// Invalid feature
|
||||
auto features2 = raw.featuresv;
|
||||
auto features2 = raw.features;
|
||||
features2.pop_back();
|
||||
features2.push_back("duck");
|
||||
std::string invalid_feature = "Feature duck not found in Network::features";
|
||||
REQUIRE_THROWS_AS(net.fit(raw.Xv, raw.yv, raw.weightsv, features2, raw.classNamev, raw.statesv), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net.fit(raw.Xv, raw.yv, raw.weightsv, features2, raw.classNamev, raw.statesv), invalid_feature);
|
||||
REQUIRE_THROWS_AS(net.fit(raw.Xv, raw.yv, raw.weightsv, features2, raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net.fit(raw.Xv, raw.yv, raw.weightsv, features2, raw.className, raw.states, raw.smoothing), invalid_feature);
|
||||
// Add twice the same node name to the network => Nothing should happen
|
||||
net.addNode("A");
|
||||
net.addNode("A");
|
||||
// invalid state in checkfit
|
||||
auto net4 = bayesnet::Network();
|
||||
buildModel(net4, raw.features, raw.className);
|
||||
std::string invalid_state = "Feature sepallength not found in states";
|
||||
REQUIRE_THROWS_AS(net4.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, std::map<std::string, std::vector<int>>(), raw.smoothing), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net4.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, std::map<std::string, std::vector<int>>(), raw.smoothing), invalid_state);
|
||||
}
|
||||
|
||||
}
|
||||
@@ -332,15 +349,6 @@ TEST_CASE("Cicle in Network", "[Network]")
|
||||
REQUIRE_THROWS_AS(net.addEdge("C", "A"), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net.addEdge("C", "A"), "Adding this edge forms a cycle in the graph.");
|
||||
}
|
||||
TEST_CASE("Test max threads constructor", "[Network]")
|
||||
{
|
||||
auto net = bayesnet::Network();
|
||||
REQUIRE(net.getMaxThreads() == 0.95f);
|
||||
auto net2 = bayesnet::Network(4);
|
||||
REQUIRE(net2.getMaxThreads() == 4);
|
||||
auto net3 = bayesnet::Network(1.75);
|
||||
REQUIRE(net3.getMaxThreads() == 1.75);
|
||||
}
|
||||
TEST_CASE("Edges troubles", "[Network]")
|
||||
{
|
||||
auto net = bayesnet::Network();
|
||||
@@ -350,13 +358,16 @@ TEST_CASE("Edges troubles", "[Network]")
|
||||
REQUIRE_THROWS_WITH(net.addEdge("A", "C"), "Child node C does not exist");
|
||||
REQUIRE_THROWS_AS(net.addEdge("C", "A"), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net.addEdge("C", "A"), "Parent node C does not exist");
|
||||
net.addEdge("A", "B");
|
||||
REQUIRE_THROWS_AS(net.addEdge("A", "B"), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net.addEdge("A", "B"), "Edge A -> B already exists");
|
||||
}
|
||||
TEST_CASE("Dump CPT", "[Network]")
|
||||
{
|
||||
auto net = bayesnet::Network();
|
||||
auto raw = RawDatasets("iris", true);
|
||||
buildModel(net, raw.featuresv, raw.classNamev);
|
||||
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
buildModel(net, raw.features, raw.className);
|
||||
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto res = net.dump_cpt();
|
||||
std::string expected = R"(* class: (3) : [3]
|
||||
0.3333
|
||||
@@ -449,3 +460,108 @@ TEST_CASE("Dump CPT", "[Network]")
|
||||
REQUIRE(res == expected);
|
||||
}
|
||||
|
||||
TEST_CASE("Test Smoothing A", "[Network]")
|
||||
{
|
||||
/*
|
||||
Tomando m = 1 Pa = 0.5
|
||||
Si estoy calculando P(A | C), con C en{ 0,1,2 } y tengo :
|
||||
AC = { 11, 12, 11, 10, 10, 12, 10, 01, 00, 02 }
|
||||
Entonces:
|
||||
P(A = 1 | C = 0) = (3 + 1 / 2 * 1) / (4 + 1) = 3.5 / 5
|
||||
P(A = 0 | C = 0) = (1 + 1 / 2 * 1) / (4 + 1) = 1.5 / 5
|
||||
Donde m aquí es el número de veces de C = 0 que es la que condiciona y la a priori vuelve a ser sobre A que es sobre las que estaríamos calculando esas marginales.
|
||||
P(A = 1 | C = 1) = (2 + 1 / 2 * 1) / (3 + 1) = 2.5 / 4
|
||||
P(A = 0 | C = 1) = (1 + 1 / 2 * 1) / (3 + 1) = 1.5 / 4
|
||||
P(A = 1 | C = 2) = (2 + 1 / 2 * 1) / (3 + 1) = 2.5 / 5
|
||||
P(A = 0 | C = 2) = (1 + 1 / 2 * 1) / (3 + 1) = 1.5 / 5
|
||||
En realidad es parecido a Laplace, que en este caso p.e.con C = 0 sería
|
||||
P(A = 1 | C = 0) = (3 + 1) / (4 + 2) = 4 / 6
|
||||
P(A = 0 | C = 0) = (1 + 1) / (4 + 2) = 2 / 6
|
||||
*/
|
||||
auto net = bayesnet::Network();
|
||||
net.addNode("A");
|
||||
net.addNode("C");
|
||||
net.addEdge("C", "A");
|
||||
std::vector<int> C = { 1, 2, 1, 0, 0, 2, 0, 1, 0, 2 };
|
||||
std::vector<std::vector<int>> A = { { 1, 1, 1, 1, 1, 1, 1, 0, 0, 0 } };
|
||||
std::map<std::string, std::vector<int>> states = { { "A", {0, 1} }, { "C", {0, 1, 2} } };
|
||||
auto weights = std::vector<double>(C.size(), 1);
|
||||
//
|
||||
// Laplace
|
||||
//
|
||||
net.fit(A, C, weights, { "A" }, "C", states, bayesnet::Smoothing_t::LAPLACE);
|
||||
auto cpt_c_laplace = net.getNodes().at("C")->getCPT();
|
||||
REQUIRE(cpt_c_laplace.size(0) == 3);
|
||||
auto laplace_c = std::vector<float>({ 0.3846, 0.3077, 0.3077 });
|
||||
for (int i = 0; i < laplace_c.size(); ++i) {
|
||||
REQUIRE(cpt_c_laplace.index({ i }).item<float>() == Catch::Approx(laplace_c[i]).margin(threshold));
|
||||
}
|
||||
auto cpt_a_laplace = net.getNodes().at("A")->getCPT();
|
||||
REQUIRE(cpt_a_laplace.size(0) == 2);
|
||||
REQUIRE(cpt_a_laplace.size(1) == 3);
|
||||
auto laplace_a = std::vector<std::vector<float>>({ {0.3333, 0.4000,0.4000}, {0.6667, 0.6000, 0.6000} });
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 3; ++j) {
|
||||
REQUIRE(cpt_a_laplace.index({ i, j }).item<float>() == Catch::Approx(laplace_a[i][j]).margin(threshold));
|
||||
}
|
||||
}
|
||||
//
|
||||
// Cestnik
|
||||
//
|
||||
net.fit(A, C, weights, { "A" }, "C", states, bayesnet::Smoothing_t::CESTNIK);
|
||||
auto cpt_c_cestnik = net.getNodes().at("C")->getCPT();
|
||||
REQUIRE(cpt_c_cestnik.size(0) == 3);
|
||||
auto cestnik_c = std::vector<float>({ 0.3939, 0.3030, 0.3030 });
|
||||
for (int i = 0; i < laplace_c.size(); ++i) {
|
||||
REQUIRE(cpt_c_cestnik.index({ i }).item<float>() == Catch::Approx(cestnik_c[i]).margin(threshold));
|
||||
}
|
||||
auto cpt_a_cestnik = net.getNodes().at("A")->getCPT();
|
||||
REQUIRE(cpt_a_cestnik.size(0) == 2);
|
||||
REQUIRE(cpt_a_cestnik.size(1) == 3);
|
||||
auto cestnik_a = std::vector<std::vector<float>>({ {0.3000, 0.3750, 0.3750}, {0.7000, 0.6250, 0.6250} });
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 3; ++j) {
|
||||
REQUIRE(cpt_a_cestnik.index({ i, j }).item<float>() == Catch::Approx(cestnik_a[i][j]).margin(threshold));
|
||||
}
|
||||
}
|
||||
}
|
||||
TEST_CASE("Test Smoothing B", "[Network]")
|
||||
{
|
||||
auto net = bayesnet::Network();
|
||||
net.addNode("X");
|
||||
net.addNode("Y");
|
||||
net.addNode("Z");
|
||||
net.addNode("C");
|
||||
net.addEdge("C", "X");
|
||||
net.addEdge("C", "Y");
|
||||
net.addEdge("C", "Z");
|
||||
net.addEdge("Y", "Z");
|
||||
std::vector<int> C = { 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1 };
|
||||
std::vector<std::vector<int>> Data = {
|
||||
{ 0,0,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0,0},
|
||||
{ 1,2,0,2,2,2,1,0,0,1,1,1,0,1,2,1,0,2},
|
||||
{ 2,1,3,3,2,0,0,1,3,2,1,2,2,3,0,0,1,2}
|
||||
};
|
||||
std::map<std::string, std::vector<int>> states = {
|
||||
{ "X", {0, 1} },
|
||||
{ "Y", {0, 1, 2} },
|
||||
{ "Z", {0, 1, 2, 3} },
|
||||
{ "C", {0, 1} }
|
||||
};
|
||||
auto weights = std::vector<double>(C.size(), 1);
|
||||
// Simple
|
||||
std::cout << "LAPLACE\n";
|
||||
net.fit(Data, C, weights, { "X", "Y", "Z" }, "C", states, bayesnet::Smoothing_t::LAPLACE);
|
||||
std::cout << net.dump_cpt();
|
||||
std::cout << "Predict proba of {0, 1, 2} y {1, 2, 3} = " << net.predict_proba({ {0, 1}, {1, 2}, {2, 3} }) << std::endl;
|
||||
std::cout << "ORIGINAL\n";
|
||||
net.fit(Data, C, weights, { "X", "Y", "Z" }, "C", states, bayesnet::Smoothing_t::ORIGINAL);
|
||||
std::cout << net.dump_cpt();
|
||||
std::cout << "Predict proba of {0, 1, 2} y {1, 2, 3} = " << net.predict_proba({ {0, 1}, {1, 2}, {2, 3} }) << std::endl;
|
||||
std::cout << "CESTNIK\n";
|
||||
net.fit(Data, C, weights, { "X", "Y", "Z" }, "C", states, bayesnet::Smoothing_t::CESTNIK);
|
||||
std::cout << net.dump_cpt();
|
||||
std::cout << "Predict proba of {0, 1, 2} y {1, 2, 3} = " << net.predict_proba({ {0, 1}, {1, 2}, {2, 3} }) << std::endl;
|
||||
|
||||
|
||||
}
|
||||
|
@@ -7,7 +7,9 @@
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include <catch2/matchers/catch_matchers.hpp>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "TestUtils.h"
|
||||
#include "bayesnet/network/Network.h"
|
||||
|
||||
@@ -48,6 +50,73 @@ TEST_CASE("Test Node children and parents", "[Node]")
|
||||
REQUIRE(parents.size() == 0);
|
||||
REQUIRE(children.size() == 0);
|
||||
}
|
||||
TEST_CASE("Test Node computeCPT", "[Node]")
|
||||
{
|
||||
// Generate a test to test the computeCPT method of the Node class
|
||||
// Create a dataset with 3 features and 4 samples
|
||||
// The dataset is a 2D tensor with 4 rows and 4 columns
|
||||
auto dataset = torch::tensor({ {1, 0, 0, 1}, {1, 1, 2, 0}, {0, 1, 2, 1}, {0, 1, 0, 1} });
|
||||
auto states = std::vector<int>({ 2, 3, 3 });
|
||||
// Create a vector with the names of the features
|
||||
auto features = std::vector<std::string>{ "F1", "F2", "F3" };
|
||||
// Create a vector with the names of the classes
|
||||
auto className = std::string("Class");
|
||||
// weights
|
||||
auto weights = torch::tensor({ 1.0, 1.0, 1.0, 1.0 });
|
||||
std::vector<bayesnet::Node> nodes;
|
||||
for (int i = 0; i < features.size(); i++) {
|
||||
auto node = bayesnet::Node(features[i]);
|
||||
node.setNumStates(states[i]);
|
||||
nodes.push_back(node);
|
||||
}
|
||||
nodes.push_back(bayesnet::Node(className));
|
||||
nodes[features.size()].setNumStates(2);
|
||||
for (int i = 0; i < features.size(); i++) {
|
||||
// Add class node as parent of all feature nodes
|
||||
nodes[i].addParent(&nodes[features.size()]);
|
||||
// Node[0] -> Node[1], Node[2]
|
||||
if (i > 0)
|
||||
nodes[i].addParent(&nodes[0]);
|
||||
}
|
||||
features.push_back(className);
|
||||
// Compute the conditional probability table
|
||||
nodes[1].computeCPT(dataset, features, 0.0, weights);
|
||||
// Get the conditional probability table
|
||||
auto cpTable = nodes[1].getCPT();
|
||||
// Get the dimensions of the conditional probability table
|
||||
auto dimensions = cpTable.sizes();
|
||||
// Check the dimensions of the conditional probability table
|
||||
REQUIRE(dimensions.size() == 3);
|
||||
REQUIRE(dimensions[0] == 3);
|
||||
REQUIRE(dimensions[1] == 2);
|
||||
REQUIRE(dimensions[2] == 2);
|
||||
// Check the values of the conditional probability table
|
||||
REQUIRE(cpTable[0][0][0].item<float>() == Catch::Approx(0));
|
||||
REQUIRE(cpTable[0][0][1].item<float>() == Catch::Approx(0));
|
||||
REQUIRE(cpTable[0][1][0].item<float>() == Catch::Approx(0));
|
||||
REQUIRE(cpTable[0][1][1].item<float>() == Catch::Approx(1));
|
||||
REQUIRE(cpTable[1][0][0].item<float>() == Catch::Approx(0));
|
||||
REQUIRE(cpTable[1][0][1].item<float>() == Catch::Approx(1));
|
||||
REQUIRE(cpTable[1][1][0].item<float>() == Catch::Approx(1));
|
||||
REQUIRE(cpTable[1][1][1].item<float>() == Catch::Approx(0));
|
||||
// Compute evidence
|
||||
for (auto& node : nodes) {
|
||||
node.computeCPT(dataset, features, 0.0, weights);
|
||||
}
|
||||
auto evidence = std::map<std::string, int>{ { "F1", 0 }, { "F2", 1 }, { "F3", 1 } };
|
||||
REQUIRE(nodes[3].getFactorValue(evidence) == 0.5);
|
||||
// Oddities
|
||||
auto features_back = features;
|
||||
// Remove a parent from features
|
||||
features.pop_back();
|
||||
REQUIRE_THROWS_AS(nodes[0].computeCPT(dataset, features, 0.0, weights), std::logic_error);
|
||||
REQUIRE_THROWS_WITH(nodes[0].computeCPT(dataset, features, 0.0, weights), "Feature parent Class not found in dataset");
|
||||
// Remove a feature from features
|
||||
features = features_back;
|
||||
features.erase(features.begin());
|
||||
REQUIRE_THROWS_AS(nodes[0].computeCPT(dataset, features, 0.0, weights), std::logic_error);
|
||||
REQUIRE_THROWS_WITH(nodes[0].computeCPT(dataset, features, 0.0, weights), "Feature F1 not found in dataset");
|
||||
}
|
||||
TEST_CASE("TEST MinFill method", "[Node]")
|
||||
{
|
||||
// Generate a test to test the minFill method of the Node class
|
||||
|
215
tests/TestBoostA2DE.cc
Normal file
215
tests/TestBoostA2DE.cc
Normal file
@@ -0,0 +1,215 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include <type_traits>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include "bayesnet/utils/BayesMetrics.h"
|
||||
#include "bayesnet/ensembles/BoostA2DE.h"
|
||||
#include "TestUtils.h"
|
||||
|
||||
|
||||
TEST_CASE("Build basic model", "[BoostA2DE]")
|
||||
{
|
||||
auto raw = RawDatasets("diabetes", true);
|
||||
auto clf = bayesnet::BoostA2DE();
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 342);
|
||||
REQUIRE(clf.getNumberOfEdges() == 684);
|
||||
REQUIRE(clf.getNotes().size() == 3);
|
||||
REQUIRE(clf.getNotes()[0] == "Convergence threshold reached & 15 models eliminated");
|
||||
REQUIRE(clf.getNotes()[1] == "Pairs not used in train: 20");
|
||||
REQUIRE(clf.getNotes()[2] == "Number of models: 38");
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
REQUIRE(score == Catch::Approx(0.919271).epsilon(raw.epsilon));
|
||||
}
|
||||
// TEST_CASE("Feature_select IWSS", "[BoostAODE]")
|
||||
// {
|
||||
// auto raw = RawDatasets("glass", true);
|
||||
// auto clf = bayesnet::BoostAODE();
|
||||
// clf.setHyperparameters({ {"select_features", "IWSS"}, {"threshold", 0.5 } });
|
||||
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
// REQUIRE(clf.getNumberOfNodes() == 90);
|
||||
// REQUIRE(clf.getNumberOfEdges() == 153);
|
||||
// REQUIRE(clf.getNotes().size() == 2);
|
||||
// REQUIRE(clf.getNotes()[0] == "Used features in initialization: 4 of 9 with IWSS");
|
||||
// REQUIRE(clf.getNotes()[1] == "Number of models: 9");
|
||||
// }
|
||||
// TEST_CASE("Feature_select FCBF", "[BoostAODE]")
|
||||
// {
|
||||
// auto raw = RawDatasets("glass", true);
|
||||
// auto clf = bayesnet::BoostAODE();
|
||||
// clf.setHyperparameters({ {"select_features", "FCBF"}, {"threshold", 1e-7 } });
|
||||
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
// REQUIRE(clf.getNumberOfNodes() == 90);
|
||||
// REQUIRE(clf.getNumberOfEdges() == 153);
|
||||
// REQUIRE(clf.getNotes().size() == 2);
|
||||
// REQUIRE(clf.getNotes()[0] == "Used features in initialization: 4 of 9 with FCBF");
|
||||
// REQUIRE(clf.getNotes()[1] == "Number of models: 9");
|
||||
// }
|
||||
// TEST_CASE("Test used features in train note and score", "[BoostAODE]")
|
||||
// {
|
||||
// auto raw = RawDatasets("diabetes", true);
|
||||
// auto clf = bayesnet::BoostAODE(true);
|
||||
// clf.setHyperparameters({
|
||||
// {"order", "asc"},
|
||||
// {"convergence", true},
|
||||
// {"select_features","CFS"},
|
||||
// });
|
||||
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
// REQUIRE(clf.getNumberOfNodes() == 72);
|
||||
// REQUIRE(clf.getNumberOfEdges() == 120);
|
||||
// REQUIRE(clf.getNotes().size() == 2);
|
||||
// REQUIRE(clf.getNotes()[0] == "Used features in initialization: 6 of 8 with CFS");
|
||||
// REQUIRE(clf.getNotes()[1] == "Number of models: 8");
|
||||
// auto score = clf.score(raw.Xv, raw.yv);
|
||||
// auto scoret = clf.score(raw.Xt, raw.yt);
|
||||
// REQUIRE(score == Catch::Approx(0.809895813).epsilon(raw.epsilon));
|
||||
// REQUIRE(scoret == Catch::Approx(0.809895813).epsilon(raw.epsilon));
|
||||
// }
|
||||
// TEST_CASE("Voting vs proba", "[BoostAODE]")
|
||||
// {
|
||||
// auto raw = RawDatasets("iris", true);
|
||||
// auto clf = bayesnet::BoostAODE(false);
|
||||
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
// auto score_proba = clf.score(raw.Xv, raw.yv);
|
||||
// auto pred_proba = clf.predict_proba(raw.Xv);
|
||||
// clf.setHyperparameters({
|
||||
// {"predict_voting",true},
|
||||
// });
|
||||
// auto score_voting = clf.score(raw.Xv, raw.yv);
|
||||
// auto pred_voting = clf.predict_proba(raw.Xv);
|
||||
// REQUIRE(score_proba == Catch::Approx(0.97333).epsilon(raw.epsilon));
|
||||
// REQUIRE(score_voting == Catch::Approx(0.98).epsilon(raw.epsilon));
|
||||
// REQUIRE(pred_voting[83][2] == Catch::Approx(1.0).epsilon(raw.epsilon));
|
||||
// REQUIRE(pred_proba[83][2] == Catch::Approx(0.86121525).epsilon(raw.epsilon));
|
||||
// REQUIRE(clf.dump_cpt() == "");
|
||||
// REQUIRE(clf.topological_order() == std::vector<std::string>());
|
||||
// }
|
||||
// TEST_CASE("Order asc, desc & random", "[BoostAODE]")
|
||||
// {
|
||||
// auto raw = RawDatasets("glass", true);
|
||||
// std::map<std::string, double> scores{
|
||||
// {"asc", 0.83645f }, { "desc", 0.84579f }, { "rand", 0.84112 }
|
||||
// };
|
||||
// for (const std::string& order : { "asc", "desc", "rand" }) {
|
||||
// auto clf = bayesnet::BoostAODE();
|
||||
// clf.setHyperparameters({
|
||||
// {"order", order},
|
||||
// {"bisection", false},
|
||||
// {"maxTolerance", 1},
|
||||
// {"convergence", false},
|
||||
// });
|
||||
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
// auto score = clf.score(raw.Xv, raw.yv);
|
||||
// auto scoret = clf.score(raw.Xt, raw.yt);
|
||||
// INFO("BoostAODE order: " + order);
|
||||
// REQUIRE(score == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
||||
// REQUIRE(scoret == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
||||
// }
|
||||
// }
|
||||
// TEST_CASE("Oddities", "[BoostAODE]")
|
||||
// {
|
||||
// auto clf = bayesnet::BoostAODE();
|
||||
// auto raw = RawDatasets("iris", true);
|
||||
// auto bad_hyper = nlohmann::json{
|
||||
// { { "order", "duck" } },
|
||||
// { { "select_features", "duck" } },
|
||||
// { { "maxTolerance", 0 } },
|
||||
// { { "maxTolerance", 5 } },
|
||||
// };
|
||||
// for (const auto& hyper : bad_hyper.items()) {
|
||||
// INFO("BoostAODE hyper: " + hyper.value().dump());
|
||||
// REQUIRE_THROWS_AS(clf.setHyperparameters(hyper.value()), std::invalid_argument);
|
||||
// }
|
||||
// REQUIRE_THROWS_AS(clf.setHyperparameters({ {"maxTolerance", 0 } }), std::invalid_argument);
|
||||
// auto bad_hyper_fit = nlohmann::json{
|
||||
// { { "select_features","IWSS" }, { "threshold", -0.01 } },
|
||||
// { { "select_features","IWSS" }, { "threshold", 0.51 } },
|
||||
// { { "select_features","FCBF" }, { "threshold", 1e-8 } },
|
||||
// { { "select_features","FCBF" }, { "threshold", 1.01 } },
|
||||
// };
|
||||
// for (const auto& hyper : bad_hyper_fit.items()) {
|
||||
// INFO("BoostAODE hyper: " + hyper.value().dump());
|
||||
// clf.setHyperparameters(hyper.value());
|
||||
// REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing, std::invalid_argument);
|
||||
// }
|
||||
// }
|
||||
|
||||
// TEST_CASE("Bisection Best", "[BoostAODE]")
|
||||
// {
|
||||
// auto clf = bayesnet::BoostAODE();
|
||||
// auto raw = RawDatasets("kdd_JapaneseVowels", true, 1200, true, false);
|
||||
// clf.setHyperparameters({
|
||||
// {"bisection", true},
|
||||
// {"maxTolerance", 3},
|
||||
// {"convergence", true},
|
||||
// {"block_update", false},
|
||||
// {"convergence_best", false},
|
||||
// });
|
||||
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
// REQUIRE(clf.getNumberOfNodes() == 210);
|
||||
// REQUIRE(clf.getNumberOfEdges() == 378);
|
||||
// REQUIRE(clf.getNotes().size() == 1);
|
||||
// REQUIRE(clf.getNotes().at(0) == "Number of models: 14");
|
||||
// auto score = clf.score(raw.X_test, raw.y_test);
|
||||
// auto scoret = clf.score(raw.X_test, raw.y_test);
|
||||
// REQUIRE(score == Catch::Approx(0.991666675f).epsilon(raw.epsilon));
|
||||
// REQUIRE(scoret == Catch::Approx(0.991666675f).epsilon(raw.epsilon));
|
||||
// }
|
||||
// TEST_CASE("Bisection Best vs Last", "[BoostAODE]")
|
||||
// {
|
||||
// auto raw = RawDatasets("kdd_JapaneseVowels", true, 1500, true, false);
|
||||
// auto clf = bayesnet::BoostAODE(true);
|
||||
// auto hyperparameters = nlohmann::json{
|
||||
// {"bisection", true},
|
||||
// {"maxTolerance", 3},
|
||||
// {"convergence", true},
|
||||
// {"convergence_best", true},
|
||||
// };
|
||||
// clf.setHyperparameters(hyperparameters);
|
||||
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
// auto score_best = clf.score(raw.X_test, raw.y_test);
|
||||
// REQUIRE(score_best == Catch::Approx(0.980000019f).epsilon(raw.epsilon));
|
||||
// // Now we will set the hyperparameter to use the last accuracy
|
||||
// hyperparameters["convergence_best"] = false;
|
||||
// clf.setHyperparameters(hyperparameters);
|
||||
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
// auto score_last = clf.score(raw.X_test, raw.y_test);
|
||||
// REQUIRE(score_last == Catch::Approx(0.976666689f).epsilon(raw.epsilon));
|
||||
// }
|
||||
|
||||
// TEST_CASE("Block Update", "[BoostAODE]")
|
||||
// {
|
||||
// auto clf = bayesnet::BoostAODE();
|
||||
// auto raw = RawDatasets("mfeat-factors", true, 500);
|
||||
// clf.setHyperparameters({
|
||||
// {"bisection", true},
|
||||
// {"block_update", true},
|
||||
// {"maxTolerance", 3},
|
||||
// {"convergence", true},
|
||||
// });
|
||||
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
// REQUIRE(clf.getNumberOfNodes() == 868);
|
||||
// REQUIRE(clf.getNumberOfEdges() == 1724);
|
||||
// REQUIRE(clf.getNotes().size() == 3);
|
||||
// REQUIRE(clf.getNotes()[0] == "Convergence threshold reached & 15 models eliminated");
|
||||
// REQUIRE(clf.getNotes()[1] == "Used features in train: 19 of 216");
|
||||
// REQUIRE(clf.getNotes()[2] == "Number of models: 4");
|
||||
// auto score = clf.score(raw.X_test, raw.y_test);
|
||||
// auto scoret = clf.score(raw.X_test, raw.y_test);
|
||||
// REQUIRE(score == Catch::Approx(0.99f).epsilon(raw.epsilon));
|
||||
// REQUIRE(scoret == Catch::Approx(0.99f).epsilon(raw.epsilon));
|
||||
// //
|
||||
// // std::cout << "Number of nodes " << clf.getNumberOfNodes() << std::endl;
|
||||
// // std::cout << "Number of edges " << clf.getNumberOfEdges() << std::endl;
|
||||
// // std::cout << "Notes size " << clf.getNotes().size() << std::endl;
|
||||
// // for (auto note : clf.getNotes()) {
|
||||
// // std::cout << note << std::endl;
|
||||
// // }
|
||||
// // std::cout << "Score " << score << std::endl;
|
||||
// }
|
@@ -8,6 +8,7 @@
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include <catch2/matchers/catch_matchers.hpp>
|
||||
#include "bayesnet/ensembles/BoostAODE.h"
|
||||
#include "TestUtils.h"
|
||||
|
||||
@@ -17,7 +18,7 @@ TEST_CASE("Feature_select CFS", "[BoostAODE]")
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.setHyperparameters({ {"select_features", "CFS"} });
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 90);
|
||||
REQUIRE(clf.getNumberOfEdges() == 153);
|
||||
REQUIRE(clf.getNotes().size() == 2);
|
||||
@@ -29,7 +30,7 @@ TEST_CASE("Feature_select IWSS", "[BoostAODE]")
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.setHyperparameters({ {"select_features", "IWSS"}, {"threshold", 0.5 } });
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 90);
|
||||
REQUIRE(clf.getNumberOfEdges() == 153);
|
||||
REQUIRE(clf.getNotes().size() == 2);
|
||||
@@ -41,11 +42,11 @@ TEST_CASE("Feature_select FCBF", "[BoostAODE]")
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.setHyperparameters({ {"select_features", "FCBF"}, {"threshold", 1e-7 } });
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 90);
|
||||
REQUIRE(clf.getNumberOfEdges() == 153);
|
||||
REQUIRE(clf.getNotes().size() == 2);
|
||||
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 5 of 9 with FCBF");
|
||||
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 4 of 9 with FCBF");
|
||||
REQUIRE(clf.getNotes()[1] == "Number of models: 9");
|
||||
}
|
||||
TEST_CASE("Test used features in train note and score", "[BoostAODE]")
|
||||
@@ -57,7 +58,7 @@ TEST_CASE("Test used features in train note and score", "[BoostAODE]")
|
||||
{"convergence", true},
|
||||
{"select_features","CFS"},
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 72);
|
||||
REQUIRE(clf.getNumberOfEdges() == 120);
|
||||
REQUIRE(clf.getNotes().size() == 2);
|
||||
@@ -65,14 +66,14 @@ TEST_CASE("Test used features in train note and score", "[BoostAODE]")
|
||||
REQUIRE(clf.getNotes()[1] == "Number of models: 8");
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
auto scoret = clf.score(raw.Xt, raw.yt);
|
||||
REQUIRE(score == Catch::Approx(0.80078).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(0.80078).epsilon(raw.epsilon));
|
||||
REQUIRE(score == Catch::Approx(0.809895813).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(0.809895813).epsilon(raw.epsilon));
|
||||
}
|
||||
TEST_CASE("Voting vs proba", "[BoostAODE]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::BoostAODE(false);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score_proba = clf.score(raw.Xv, raw.yv);
|
||||
auto pred_proba = clf.predict_proba(raw.Xv);
|
||||
clf.setHyperparameters({
|
||||
@@ -101,10 +102,10 @@ TEST_CASE("Order asc, desc & random", "[BoostAODE]")
|
||||
{"maxTolerance", 1},
|
||||
{"convergence", false},
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
auto scoret = clf.score(raw.Xt, raw.yt);
|
||||
INFO("BoostAODE order: " + order);
|
||||
INFO("BoostAODE order: " << order);
|
||||
REQUIRE(score == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
||||
}
|
||||
@@ -120,7 +121,7 @@ TEST_CASE("Oddities", "[BoostAODE]")
|
||||
{ { "maxTolerance", 5 } },
|
||||
};
|
||||
for (const auto& hyper : bad_hyper.items()) {
|
||||
INFO("BoostAODE hyper: " + hyper.value().dump());
|
||||
INFO("BoostAODE hyper: " << hyper.value().dump());
|
||||
REQUIRE_THROWS_AS(clf.setHyperparameters(hyper.value()), std::invalid_argument);
|
||||
}
|
||||
REQUIRE_THROWS_AS(clf.setHyperparameters({ {"maxTolerance", 0 } }), std::invalid_argument);
|
||||
@@ -131,54 +132,82 @@ TEST_CASE("Oddities", "[BoostAODE]")
|
||||
{ { "select_features","FCBF" }, { "threshold", 1.01 } },
|
||||
};
|
||||
for (const auto& hyper : bad_hyper_fit.items()) {
|
||||
INFO("BoostAODE hyper: " + hyper.value().dump());
|
||||
INFO("BoostAODE hyper: " << hyper.value().dump());
|
||||
clf.setHyperparameters(hyper.value());
|
||||
REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv), std::invalid_argument);
|
||||
REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Bisection", "[BoostAODE]")
|
||||
TEST_CASE("Bisection Best", "[BoostAODE]")
|
||||
{
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
auto raw = RawDatasets("mfeat-factors", true);
|
||||
auto raw = RawDatasets("kdd_JapaneseVowels", true, 1200, true, false);
|
||||
clf.setHyperparameters({
|
||||
{"bisection", true},
|
||||
{"maxTolerance", 3},
|
||||
{"convergence", true},
|
||||
{"block_update", false},
|
||||
{"convergence_best", false},
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
REQUIRE(clf.getNumberOfNodes() == 217);
|
||||
REQUIRE(clf.getNumberOfEdges() == 431);
|
||||
REQUIRE(clf.getNotes().size() == 3);
|
||||
REQUIRE(clf.getNotes()[0] == "Convergence threshold reached & 15 models eliminated");
|
||||
REQUIRE(clf.getNotes()[1] == "Used features in train: 16 of 216");
|
||||
REQUIRE(clf.getNotes()[2] == "Number of models: 1");
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
auto scoret = clf.score(raw.Xt, raw.yt);
|
||||
REQUIRE(score == Catch::Approx(1.0f).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(1.0f).epsilon(raw.epsilon));
|
||||
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 210);
|
||||
REQUIRE(clf.getNumberOfEdges() == 378);
|
||||
REQUIRE(clf.getNotes().size() == 1);
|
||||
REQUIRE(clf.getNotes().at(0) == "Number of models: 14");
|
||||
auto score = clf.score(raw.X_test, raw.y_test);
|
||||
auto scoret = clf.score(raw.X_test, raw.y_test);
|
||||
REQUIRE(score == Catch::Approx(0.991666675f).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(0.991666675f).epsilon(raw.epsilon));
|
||||
}
|
||||
TEST_CASE("Bisection Best vs Last", "[BoostAODE]")
|
||||
{
|
||||
auto raw = RawDatasets("kdd_JapaneseVowels", true, 1500, true, false);
|
||||
auto clf = bayesnet::BoostAODE(true);
|
||||
auto hyperparameters = nlohmann::json{
|
||||
{"bisection", true},
|
||||
{"maxTolerance", 3},
|
||||
{"convergence", true},
|
||||
{"convergence_best", true},
|
||||
};
|
||||
clf.setHyperparameters(hyperparameters);
|
||||
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score_best = clf.score(raw.X_test, raw.y_test);
|
||||
REQUIRE(score_best == Catch::Approx(0.980000019f).epsilon(raw.epsilon));
|
||||
// Now we will set the hyperparameter to use the last accuracy
|
||||
hyperparameters["convergence_best"] = false;
|
||||
clf.setHyperparameters(hyperparameters);
|
||||
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score_last = clf.score(raw.X_test, raw.y_test);
|
||||
REQUIRE(score_last == Catch::Approx(0.976666689f).epsilon(raw.epsilon));
|
||||
}
|
||||
|
||||
TEST_CASE("Block Update", "[BoostAODE]")
|
||||
{
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
auto raw = RawDatasets("mfeat-factors", true);
|
||||
auto raw = RawDatasets("mfeat-factors", true, 500);
|
||||
clf.setHyperparameters({
|
||||
{"bisection", true},
|
||||
{"block_update", true},
|
||||
{"maxTolerance", 3},
|
||||
{"convergence", true},
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
REQUIRE(clf.getNumberOfNodes() == 217);
|
||||
REQUIRE(clf.getNumberOfEdges() == 431);
|
||||
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 868);
|
||||
REQUIRE(clf.getNumberOfEdges() == 1724);
|
||||
REQUIRE(clf.getNotes().size() == 3);
|
||||
REQUIRE(clf.getNotes()[0] == "Convergence threshold reached & 15 models eliminated");
|
||||
REQUIRE(clf.getNotes()[1] == "Used features in train: 16 of 216");
|
||||
REQUIRE(clf.getNotes()[2] == "Number of models: 1");
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
auto scoret = clf.score(raw.Xt, raw.yt);
|
||||
REQUIRE(score == Catch::Approx(1.0f).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(1.0f).epsilon(raw.epsilon));
|
||||
REQUIRE(clf.getNotes()[1] == "Used features in train: 19 of 216");
|
||||
REQUIRE(clf.getNotes()[2] == "Number of models: 4");
|
||||
auto score = clf.score(raw.X_test, raw.y_test);
|
||||
auto scoret = clf.score(raw.X_test, raw.y_test);
|
||||
REQUIRE(score == Catch::Approx(0.99f).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(0.99f).epsilon(raw.epsilon));
|
||||
//
|
||||
// std::cout << "Number of nodes " << clf.getNumberOfNodes() << std::endl;
|
||||
// std::cout << "Number of edges " << clf.getNumberOfEdges() << std::endl;
|
||||
// std::cout << "Notes size " << clf.getNotes().size() << std::endl;
|
||||
// for (auto note : clf.getNotes()) {
|
||||
// std::cout << note << std::endl;
|
||||
// }
|
||||
// std::cout << "Score " << score << std::endl;
|
||||
}
|
@@ -14,14 +14,15 @@
|
||||
#include "bayesnet/feature_selection/IWSS.h"
|
||||
#include "TestUtils.h"
|
||||
|
||||
bayesnet::FeatureSelect* build_selector(RawDatasets& raw, std::string selector, double threshold)
|
||||
bayesnet::FeatureSelect* build_selector(RawDatasets& raw, std::string selector, double threshold, int max_features = 0)
|
||||
{
|
||||
max_features = max_features == 0 ? raw.features.size() : max_features;
|
||||
if (selector == "CFS") {
|
||||
return new bayesnet::CFS(raw.dataset, raw.featuresv, raw.classNamev, raw.featuresv.size(), raw.classNumStates, raw.weights);
|
||||
return new bayesnet::CFS(raw.dataset, raw.features, raw.className, max_features, raw.classNumStates, raw.weights);
|
||||
} else if (selector == "FCBF") {
|
||||
return new bayesnet::FCBF(raw.dataset, raw.featuresv, raw.classNamev, raw.featuresv.size(), raw.classNumStates, raw.weights, threshold);
|
||||
return new bayesnet::FCBF(raw.dataset, raw.features, raw.className, max_features, raw.classNumStates, raw.weights, threshold);
|
||||
} else if (selector == "IWSS") {
|
||||
return new bayesnet::IWSS(raw.dataset, raw.featuresv, raw.classNamev, raw.featuresv.size(), raw.classNumStates, raw.weights, threshold);
|
||||
return new bayesnet::IWSS(raw.dataset, raw.features, raw.className, max_features, raw.classNumStates, raw.weights, threshold);
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
@@ -80,10 +81,35 @@ TEST_CASE("Oddities", "[FeatureSelection]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
// FCBF Limits
|
||||
REQUIRE_THROWS_AS(bayesnet::FCBF(raw.dataset, raw.featuresv, raw.classNamev, raw.featuresv.size(), raw.classNumStates, raw.weights, 1e-8), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(bayesnet::FCBF(raw.dataset, raw.featuresv, raw.classNamev, raw.featuresv.size(), raw.classNumStates, raw.weights, 1e-8), "Threshold cannot be less than 1e-7");
|
||||
REQUIRE_THROWS_AS(bayesnet::IWSS(raw.dataset, raw.featuresv, raw.classNamev, raw.featuresv.size(), raw.classNumStates, raw.weights, -1e4), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(bayesnet::IWSS(raw.dataset, raw.featuresv, raw.classNamev, raw.featuresv.size(), raw.classNumStates, raw.weights, -1e4), "Threshold has to be in [0, 0.5]");
|
||||
REQUIRE_THROWS_AS(bayesnet::IWSS(raw.dataset, raw.featuresv, raw.classNamev, raw.featuresv.size(), raw.classNumStates, raw.weights, 0.501), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(bayesnet::IWSS(raw.dataset, raw.featuresv, raw.classNamev, raw.featuresv.size(), raw.classNumStates, raw.weights, 0.501), "Threshold has to be in [0, 0.5]");
|
||||
REQUIRE_THROWS_AS(bayesnet::FCBF(raw.dataset, raw.features, raw.className, raw.features.size(), raw.classNumStates, raw.weights, 1e-8), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(bayesnet::FCBF(raw.dataset, raw.features, raw.className, raw.features.size(), raw.classNumStates, raw.weights, 1e-8), "Threshold cannot be less than 1e-7");
|
||||
REQUIRE_THROWS_AS(bayesnet::IWSS(raw.dataset, raw.features, raw.className, raw.features.size(), raw.classNumStates, raw.weights, -1e4), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(bayesnet::IWSS(raw.dataset, raw.features, raw.className, raw.features.size(), raw.classNumStates, raw.weights, -1e4), "Threshold has to be in [0, 0.5]");
|
||||
REQUIRE_THROWS_AS(bayesnet::IWSS(raw.dataset, raw.features, raw.className, raw.features.size(), raw.classNumStates, raw.weights, 0.501), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(bayesnet::IWSS(raw.dataset, raw.features, raw.className, raw.features.size(), raw.classNumStates, raw.weights, 0.501), "Threshold has to be in [0, 0.5]");
|
||||
// Not fitted error
|
||||
auto selector = build_selector(raw, "CFS", 0);
|
||||
const std::string message = "FeatureSelect not fitted";
|
||||
REQUIRE_THROWS_AS(selector->getFeatures(), std::runtime_error);
|
||||
REQUIRE_THROWS_AS(selector->getScores(), std::runtime_error);
|
||||
REQUIRE_THROWS_WITH(selector->getFeatures(), message);
|
||||
REQUIRE_THROWS_WITH(selector->getScores(), message);
|
||||
delete selector;
|
||||
}
|
||||
TEST_CASE("Test threshold limits", "[FeatureSelection]")
|
||||
{
|
||||
auto raw = RawDatasets("diabetes", true);
|
||||
// FCBF Limits
|
||||
auto selector = build_selector(raw, "FCBF", 0.051);
|
||||
selector->fit();
|
||||
REQUIRE(selector->getFeatures().size() == 2);
|
||||
delete selector;
|
||||
selector = build_selector(raw, "FCBF", 1e-7, 3);
|
||||
selector->fit();
|
||||
REQUIRE(selector->getFeatures().size() == 3);
|
||||
delete selector;
|
||||
selector = build_selector(raw, "IWSS", 0.5, 5);
|
||||
selector->fit();
|
||||
REQUIRE(selector->getFeatures().size() == 5);
|
||||
delete selector;
|
||||
}
|
43
tests/TestModulesVersions.cc
Normal file
43
tests/TestModulesVersions.cc
Normal file
@@ -0,0 +1,43 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/matchers/catch_matchers.hpp>
|
||||
#include <string>
|
||||
#include <CPPFImdlp.h>
|
||||
#include <folding.hpp>
|
||||
#include <nlohmann/json.hpp>
|
||||
#define TO_STR2(x) #x
|
||||
#define TO_STR(x) TO_STR2(x)
|
||||
#define JSON_VERSION (TO_STR(NLOHMANN_JSON_VERSION_MAJOR) "." TO_STR(NLOHMANN_JSON_VERSION_MINOR))
|
||||
#include "TestUtils.h"
|
||||
|
||||
std::map<std::string, std::string> modules = {
|
||||
{ "mdlp", "2.0.0" },
|
||||
{ "Folding", "1.1.0" },
|
||||
{ "json", "3.11" },
|
||||
{ "ArffFiles", "1.1.0" }
|
||||
};
|
||||
|
||||
TEST_CASE("MDLP", "[Modules]")
|
||||
{
|
||||
auto fimdlp = mdlp::CPPFImdlp();
|
||||
REQUIRE(fimdlp.version() == modules["mdlp"]);
|
||||
}
|
||||
TEST_CASE("Folding", "[Modules]")
|
||||
{
|
||||
auto folding = folding::KFold(5, 200);
|
||||
REQUIRE(folding.version() == modules["Folding"]);
|
||||
}
|
||||
TEST_CASE("NLOHMANN_JSON", "[Modules]")
|
||||
{
|
||||
REQUIRE(JSON_VERSION == modules["json"]);
|
||||
}
|
||||
TEST_CASE("ArffFiles", "[Modules]")
|
||||
{
|
||||
auto handler = ArffFiles();
|
||||
REQUIRE(handler.version() == modules["ArffFiles"]);
|
||||
}
|
@@ -4,6 +4,7 @@
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include <random>
|
||||
#include "TestUtils.h"
|
||||
#include "bayesnet/config.h"
|
||||
|
||||
@@ -15,97 +16,110 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
pair<std::vector<mdlp::labels_t>, map<std::string, int>> discretize(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y, std::vector<std::string> features)
|
||||
class ShuffleArffFiles : public ArffFiles {
|
||||
public:
|
||||
ShuffleArffFiles(int num_samples = 0, bool shuffle = false) : ArffFiles(), num_samples(num_samples), shuffle(shuffle) {}
|
||||
void load(const std::string& file_name, bool class_last = true)
|
||||
{
|
||||
ArffFiles::load(file_name, class_last);
|
||||
if (num_samples > 0) {
|
||||
if (num_samples > getY().size()) {
|
||||
throw std::invalid_argument("num_lines must be less than the number of lines in the file");
|
||||
}
|
||||
auto indices = std::vector<int>(num_samples);
|
||||
std::iota(indices.begin(), indices.end(), 0);
|
||||
if (shuffle) {
|
||||
std::mt19937 g{ 173 };
|
||||
std::shuffle(indices.begin(), indices.end(), g);
|
||||
}
|
||||
auto XX = std::vector<std::vector<float>>(attributes.size(), std::vector<float>(num_samples));
|
||||
auto yy = std::vector<int>(num_samples);
|
||||
for (int i = 0; i < num_samples; i++) {
|
||||
yy[i] = getY()[indices[i]];
|
||||
for (int j = 0; j < attributes.size(); j++) {
|
||||
XX[j][i] = X[j][indices[i]];
|
||||
}
|
||||
}
|
||||
X = XX;
|
||||
y = yy;
|
||||
}
|
||||
}
|
||||
private:
|
||||
int num_samples;
|
||||
bool shuffle;
|
||||
};
|
||||
|
||||
RawDatasets::RawDatasets(const std::string& file_name, bool discretize_, int num_samples_, bool shuffle_, bool class_last, bool debug)
|
||||
{
|
||||
std::vector<mdlp::labels_t> Xd;
|
||||
num_samples = num_samples_;
|
||||
shuffle = shuffle_;
|
||||
discretize = discretize_;
|
||||
// Xt can be either discretized or not
|
||||
// Xv is always discretized
|
||||
loadDataset(file_name, class_last);
|
||||
auto yresized = torch::transpose(yt.view({ yt.size(0), 1 }), 0, 1);
|
||||
dataset = torch::cat({ Xt, yresized }, 0);
|
||||
nSamples = dataset.size(1);
|
||||
weights = torch::full({ nSamples }, 1.0 / nSamples, torch::kDouble);
|
||||
weightsv = std::vector<double>(nSamples, 1.0 / nSamples);
|
||||
classNumStates = discretize ? states.at(className).size() : 0;
|
||||
auto fold = folding::StratifiedKFold(5, yt, 271);
|
||||
auto [train, test] = fold.getFold(0);
|
||||
auto train_t = torch::tensor(train);
|
||||
auto test_t = torch::tensor(test);
|
||||
// Get train and validation sets
|
||||
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), train_t });
|
||||
y_train = dataset.index({ -1, train_t });
|
||||
X_test = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), test_t });
|
||||
y_test = dataset.index({ -1, test_t });
|
||||
if (debug)
|
||||
std::cout << to_string();
|
||||
}
|
||||
|
||||
map<std::string, int> RawDatasets::discretizeDataset(std::vector<mdlp::samples_t>& X)
|
||||
{
|
||||
|
||||
map<std::string, int> maxes;
|
||||
auto fimdlp = mdlp::CPPFImdlp();
|
||||
for (int i = 0; i < X.size(); i++) {
|
||||
fimdlp.fit(X[i], y);
|
||||
fimdlp.fit(X[i], yv);
|
||||
mdlp::labels_t& xd = fimdlp.transform(X[i]);
|
||||
maxes[features[i]] = *max_element(xd.begin(), xd.end()) + 1;
|
||||
Xd.push_back(xd);
|
||||
Xv.push_back(xd);
|
||||
}
|
||||
return { Xd, maxes };
|
||||
return maxes;
|
||||
}
|
||||
|
||||
std::vector<mdlp::labels_t> discretizeDataset(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y)
|
||||
void RawDatasets::loadDataset(const std::string& name, bool class_last)
|
||||
{
|
||||
std::vector<mdlp::labels_t> Xd;
|
||||
auto fimdlp = mdlp::CPPFImdlp();
|
||||
for (int i = 0; i < X.size(); i++) {
|
||||
fimdlp.fit(X[i], y);
|
||||
mdlp::labels_t& xd = fimdlp.transform(X[i]);
|
||||
Xd.push_back(xd);
|
||||
}
|
||||
return Xd;
|
||||
}
|
||||
|
||||
bool file_exists(const std::string& name)
|
||||
{
|
||||
if (FILE* file = fopen(name.c_str(), "r")) {
|
||||
fclose(file);
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
tuple<torch::Tensor, torch::Tensor, std::vector<std::string>, std::string, map<std::string, std::vector<int>>> loadDataset(const std::string& name, bool class_last, bool discretize_dataset)
|
||||
{
|
||||
auto handler = ArffFiles();
|
||||
auto handler = ShuffleArffFiles(num_samples, shuffle);
|
||||
handler.load(Paths::datasets() + static_cast<std::string>(name) + ".arff", class_last);
|
||||
// Get Dataset X, y
|
||||
std::vector<mdlp::samples_t>& X = handler.getX();
|
||||
mdlp::labels_t& y = handler.getY();
|
||||
yv = handler.getY();
|
||||
// Get className & Features
|
||||
auto className = handler.getClassName();
|
||||
std::vector<std::string> features;
|
||||
auto attributes = handler.getAttributes();
|
||||
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& pair) { return pair.first; });
|
||||
torch::Tensor Xd;
|
||||
auto states = map<std::string, std::vector<int>>();
|
||||
if (discretize_dataset) {
|
||||
auto Xr = discretizeDataset(X, y);
|
||||
Xd = torch::zeros({ static_cast<int>(Xr.size()), static_cast<int>(Xr[0].size()) }, torch::kInt32);
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
states[features[i]] = std::vector<int>(*max_element(Xr[i].begin(), Xr[i].end()) + 1);
|
||||
auto item = states.at(features[i]);
|
||||
iota(begin(item), end(item), 0);
|
||||
Xd.index_put_({ i, "..." }, torch::tensor(Xr[i], torch::kInt32));
|
||||
}
|
||||
states[className] = std::vector<int>(*max_element(y.begin(), y.end()) + 1);
|
||||
iota(begin(states.at(className)), end(states.at(className)), 0);
|
||||
} else {
|
||||
Xd = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, torch::kFloat32);
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
Xd.index_put_({ i, "..." }, torch::tensor(X[i]));
|
||||
}
|
||||
}
|
||||
return { Xd, torch::tensor(y, torch::kInt32), features, className, states };
|
||||
}
|
||||
|
||||
tuple<std::vector<std::vector<int>>, std::vector<int>, std::vector<std::string>, std::string, map<std::string, std::vector<int>>> loadFile(const std::string& name)
|
||||
{
|
||||
auto handler = ArffFiles();
|
||||
handler.load(Paths::datasets() + static_cast<std::string>(name) + ".arff");
|
||||
// Get Dataset X, y
|
||||
std::vector<mdlp::samples_t>& X = handler.getX();
|
||||
mdlp::labels_t& y = handler.getY();
|
||||
// Get className & Features
|
||||
auto className = handler.getClassName();
|
||||
std::vector<std::string> features;
|
||||
className = handler.getClassName();
|
||||
auto attributes = handler.getAttributes();
|
||||
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& pair) { return pair.first; });
|
||||
// Discretize Dataset
|
||||
std::vector<mdlp::labels_t> Xd;
|
||||
map<std::string, int> maxes;
|
||||
tie(Xd, maxes) = discretize(X, y, features);
|
||||
maxes[className] = *max_element(y.begin(), y.end()) + 1;
|
||||
map<std::string, std::vector<int>> states;
|
||||
for (auto feature : features) {
|
||||
states[feature] = std::vector<int>(maxes[feature]);
|
||||
auto maxValues = discretizeDataset(X);
|
||||
maxValues[className] = *max_element(yv.begin(), yv.end()) + 1;
|
||||
if (discretize) {
|
||||
// discretize the tensor as well
|
||||
Xt = torch::zeros({ static_cast<int>(Xv.size()), static_cast<int>(Xv[0].size()) }, torch::kInt32);
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
states[features[i]] = std::vector<int>(maxValues[features[i]]);
|
||||
iota(begin(states.at(features[i])), end(states.at(features[i])), 0);
|
||||
Xt.index_put_({ i, "..." }, torch::tensor(Xv[i], torch::kInt32));
|
||||
}
|
||||
states[className] = std::vector<int>(maxes[className]);
|
||||
return { Xd, y, features, className, states };
|
||||
states[className] = std::vector<int>(maxValues[className]);
|
||||
iota(begin(states.at(className)), end(states.at(className)), 0);
|
||||
} else {
|
||||
Xt = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, torch::kFloat32);
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
Xt.index_put_({ i, "..." }, torch::tensor(X[i]));
|
||||
}
|
||||
}
|
||||
yt = torch::tensor(yv, torch::kInt32);
|
||||
}
|
||||
|
||||
|
@@ -11,39 +11,62 @@
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <tuple>
|
||||
#include <ArffFiles.h>
|
||||
#include <ArffFiles.hpp>
|
||||
#include <CPPFImdlp.h>
|
||||
#include <folding.hpp>
|
||||
#include <bayesnet/network/Network.h>
|
||||
|
||||
bool file_exists(const std::string& name);
|
||||
std::pair<vector<mdlp::labels_t>, map<std::string, int>> discretize(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y, std::vector<string> features);
|
||||
std::vector<mdlp::labels_t> discretizeDataset(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y);
|
||||
std::tuple<vector<vector<int>>, std::vector<int>, std::vector<string>, std::string, map<std::string, std::vector<int>>> loadFile(const std::string& name);
|
||||
std::tuple<torch::Tensor, torch::Tensor, std::vector<string>, std::string, map<std::string, std::vector<int>>> loadDataset(const std::string& name, bool class_last, bool discretize_dataset);
|
||||
|
||||
class RawDatasets {
|
||||
public:
|
||||
RawDatasets(const std::string& file_name, bool discretize)
|
||||
{
|
||||
// Xt can be either discretized or not
|
||||
tie(Xt, yt, featurest, classNamet, statest) = loadDataset(file_name, true, discretize);
|
||||
// Xv is always discretized
|
||||
tie(Xv, yv, featuresv, classNamev, statesv) = loadFile(file_name);
|
||||
auto yresized = torch::transpose(yt.view({ yt.size(0), 1 }), 0, 1);
|
||||
dataset = torch::cat({ Xt, yresized }, 0);
|
||||
nSamples = dataset.size(1);
|
||||
weights = torch::full({ nSamples }, 1.0 / nSamples, torch::kDouble);
|
||||
weightsv = std::vector<double>(nSamples, 1.0 / nSamples);
|
||||
classNumStates = discretize ? statest.at(classNamet).size() : 0;
|
||||
}
|
||||
RawDatasets(const std::string& file_name, bool discretize_, int num_samples_ = 0, bool shuffle_ = false, bool class_last = true, bool debug = false);
|
||||
torch::Tensor Xt, yt, dataset, weights;
|
||||
torch::Tensor X_train, y_train, X_test, y_test;
|
||||
std::vector<vector<int>> Xv;
|
||||
std::vector<double> weightsv;
|
||||
std::vector<int> yv;
|
||||
std::vector<string> featurest, featuresv;
|
||||
map<std::string, std::vector<int>> statest, statesv;
|
||||
std::string classNamet, classNamev;
|
||||
std::vector<double> weightsv;
|
||||
std::vector<string> features;
|
||||
std::string className;
|
||||
map<std::string, std::vector<int>> states;
|
||||
int nSamples, classNumStates;
|
||||
double epsilon = 1e-5;
|
||||
bool discretize;
|
||||
int num_samples = 0;
|
||||
bool shuffle = false;
|
||||
bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::ORIGINAL;
|
||||
private:
|
||||
std::string to_string()
|
||||
{
|
||||
std::string features_ = "";
|
||||
for (auto& f : features) {
|
||||
features_ += f + " ";
|
||||
}
|
||||
std::string states_ = "";
|
||||
for (auto& s : states) {
|
||||
states_ += s.first + " ";
|
||||
for (auto& v : s.second) {
|
||||
states_ += std::to_string(v) + " ";
|
||||
}
|
||||
states_ += "\n";
|
||||
}
|
||||
return "Xt dimensions: " + std::to_string(Xt.size(0)) + " " + std::to_string(Xt.size(1)) + "\n"
|
||||
"Xv dimensions: " + std::to_string(Xv.size()) + " " + std::to_string(Xv[0].size()) + "\n"
|
||||
+ "yt dimensions: " + std::to_string(yt.size(0)) + "\n"
|
||||
+ "yv dimensions: " + std::to_string(yv.size()) + "\n"
|
||||
+ "X_train dimensions: " + std::to_string(X_train.size(0)) + " " + std::to_string(X_train.size(1)) + "\n"
|
||||
+ "X_test dimensions: " + std::to_string(X_test.size(0)) + " " + std::to_string(X_test.size(1)) + "\n"
|
||||
+ "y_train dimensions: " + std::to_string(y_train.size(0)) + "\n"
|
||||
+ "y_test dimensions: " + std::to_string(y_test.size(0)) + "\n"
|
||||
+ "features: " + std::to_string(features.size()) + "\n"
|
||||
+ features_ + "\n"
|
||||
+ "className: " + className + "\n"
|
||||
+ "states: " + std::to_string(states.size()) + "\n"
|
||||
+ "nSamples: " + std::to_string(nSamples) + "\n"
|
||||
+ "classNumStates: " + std::to_string(classNumStates) + "\n"
|
||||
+ "states: " + states_ + "\n";
|
||||
}
|
||||
map<std::string, int> discretizeDataset(std::vector<mdlp::samples_t>& X);
|
||||
void loadDataset(const std::string& name, bool class_last);
|
||||
};
|
||||
|
||||
#endif //TEST_UTILS_H
|
41
tests/Timer.h
Normal file
41
tests/Timer.h
Normal file
@@ -0,0 +1,41 @@
|
||||
#pragma once
|
||||
#include <chrono>
|
||||
#include <string>
|
||||
#include <sstream>
|
||||
|
||||
namespace platform {
|
||||
class Timer {
|
||||
private:
|
||||
std::chrono::high_resolution_clock::time_point begin;
|
||||
std::chrono::high_resolution_clock::time_point end;
|
||||
public:
|
||||
Timer() = default;
|
||||
~Timer() = default;
|
||||
void start() { begin = std::chrono::high_resolution_clock::now(); }
|
||||
void stop() { end = std::chrono::high_resolution_clock::now(); }
|
||||
double getDuration()
|
||||
{
|
||||
stop();
|
||||
std::chrono::duration<double> time_span = std::chrono::duration_cast<std::chrono::duration<double >> (end - begin);
|
||||
return time_span.count();
|
||||
}
|
||||
double getLapse()
|
||||
{
|
||||
std::chrono::duration<double> time_span = std::chrono::duration_cast<std::chrono::duration<double >> (std::chrono::high_resolution_clock::now() - begin);
|
||||
return time_span.count();
|
||||
}
|
||||
std::string getDurationString(bool lapse = false)
|
||||
{
|
||||
double duration = lapse ? getLapse() : getDuration();
|
||||
return translate2String(duration);
|
||||
}
|
||||
std::string translate2String(double duration)
|
||||
{
|
||||
double durationShow = duration > 3600 ? duration / 3600 : duration > 60 ? duration / 60 : duration;
|
||||
std::string durationUnit = duration > 3600 ? "h" : duration > 60 ? "m" : "s";
|
||||
std::stringstream ss;
|
||||
ss << std::setprecision(2) << std::fixed << durationShow << " " << durationUnit;
|
||||
return ss.str();
|
||||
}
|
||||
};
|
||||
} /* namespace platform */
|
File diff suppressed because it is too large
Load Diff
1
tests/lib/Files
Submodule
1
tests/lib/Files
Submodule
Submodule tests/lib/Files added at a5316928d4
1
tests/lib/catch2
Submodule
1
tests/lib/catch2
Submodule
Submodule tests/lib/catch2 added at 4e8d92bf02
@@ -11,24 +11,27 @@ readme_file = "README.md"
|
||||
print("Updating coverage...")
|
||||
# Generate badge line
|
||||
output = subprocess.check_output(
|
||||
"lcov --summary " + sys.argv[1] + "/coverage.info|cut -d' ' -f4 |head -2|"
|
||||
"tail -1",
|
||||
"lcov --summary " + sys.argv[1] + "/coverage.info",
|
||||
shell=True,
|
||||
)
|
||||
value = float(output.decode("utf-8").strip().replace("%", ""))
|
||||
if value < 90:
|
||||
value = output.decode("utf-8").strip()
|
||||
percentage = 0
|
||||
for line in value.splitlines():
|
||||
if "lines" in line:
|
||||
percentage = float(line.split(":")[1].split("%")[0])
|
||||
break
|
||||
print(f"Coverage: {percentage}%")
|
||||
if percentage < 90:
|
||||
print("⛔Coverage is less than 90%. I won't update the badge.")
|
||||
sys.exit(1)
|
||||
percentage = output.decode("utf-8").strip().replace(".", ",")
|
||||
coverage_line = (
|
||||
f""
|
||||
)
|
||||
percentage_label = str(percentage).replace('.', ',')
|
||||
coverage_line = f"[](html/index.html)"
|
||||
# Update README.md
|
||||
with open(readme_file, "r") as f:
|
||||
lines = f.readlines()
|
||||
with open(readme_file, "w") as f:
|
||||
for line in lines:
|
||||
if "Coverage" in line:
|
||||
if "img.shields.io/badge/Coverage" in line:
|
||||
f.write(coverage_line + "\n")
|
||||
else:
|
||||
f.write(line)
|
||||
|
Reference in New Issue
Block a user