Compare commits
10 Commits
optimize_m
...
a062ebf445
Author | SHA1 | Date | |
---|---|---|---|
a062ebf445 | |||
2a3fc9aa45
|
|||
55d21294d5
|
|||
3691cb4a61
|
|||
054567c65a
|
|||
2729b92f06
|
|||
f26ea1f0ac
|
|||
af0419c9da
|
|||
90c92e5c56 | |||
6679b90a82 |
16
.vscode/launch.json
vendored
16
.vscode/launch.json
vendored
@@ -25,12 +25,24 @@
|
||||
"program": "${workspaceFolder}/build/src/Platform/main",
|
||||
"args": [
|
||||
"-m",
|
||||
"SPODELd",
|
||||
"SPODE",
|
||||
"-p",
|
||||
"/Users/rmontanana/Code/discretizbench/datasets",
|
||||
"--stratified",
|
||||
"--discretize",
|
||||
"-d",
|
||||
"iris"
|
||||
"letter"
|
||||
],
|
||||
"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "manage",
|
||||
"program": "${workspaceFolder}/build/src/Platform/manage",
|
||||
"args": [
|
||||
"-n",
|
||||
"20"
|
||||
],
|
||||
"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
},
|
||||
|
@@ -32,7 +32,7 @@ namespace bayesnet {
|
||||
}
|
||||
return result;
|
||||
}
|
||||
torch::Tensor Metrics::conditionalEdge()
|
||||
torch::Tensor Metrics::conditionalEdge(const torch::Tensor& weights)
|
||||
{
|
||||
auto result = vector<double>();
|
||||
auto source = vector<string>(features);
|
||||
@@ -52,7 +52,7 @@ namespace bayesnet {
|
||||
auto mask = samples.index({ -1, "..." }) == value;
|
||||
auto first_dataset = samples.index({ index_first, mask });
|
||||
auto second_dataset = samples.index({ index_second, mask });
|
||||
auto mi = mutualInformation(first_dataset, second_dataset);
|
||||
auto mi = mutualInformation(first_dataset, second_dataset, weights);
|
||||
auto pb = margin[value].item<float>();
|
||||
accumulated += pb * mi;
|
||||
}
|
||||
@@ -70,15 +70,16 @@ namespace bayesnet {
|
||||
return matrix;
|
||||
}
|
||||
// To use in Python
|
||||
vector<float> Metrics::conditionalEdgeWeights()
|
||||
vector<float> Metrics::conditionalEdgeWeights(vector<float>& weights_)
|
||||
{
|
||||
auto matrix = conditionalEdge();
|
||||
const torch::Tensor weights = torch::tensor(weights_);
|
||||
auto matrix = conditionalEdge(weights);
|
||||
std::vector<float> v(matrix.data_ptr<float>(), matrix.data_ptr<float>() + matrix.numel());
|
||||
return v;
|
||||
}
|
||||
double Metrics::entropy(const torch::Tensor& feature)
|
||||
double Metrics::entropy(const torch::Tensor& feature, const torch::Tensor& weights)
|
||||
{
|
||||
torch::Tensor counts = feature.bincount();
|
||||
torch::Tensor counts = feature.bincount(weights);
|
||||
int totalWeight = counts.sum().item<int>();
|
||||
torch::Tensor probs = counts.to(torch::kFloat) / totalWeight;
|
||||
torch::Tensor logProbs = torch::log(probs);
|
||||
@@ -86,15 +87,15 @@ namespace bayesnet {
|
||||
return entropy.nansum().item<double>();
|
||||
}
|
||||
// H(Y|X) = sum_{x in X} p(x) H(Y|X=x)
|
||||
double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature)
|
||||
double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
|
||||
{
|
||||
int numSamples = firstFeature.sizes()[0];
|
||||
torch::Tensor featureCounts = secondFeature.bincount();
|
||||
torch::Tensor featureCounts = secondFeature.bincount(weights);
|
||||
unordered_map<int, unordered_map<int, double>> jointCounts;
|
||||
double totalWeight = 0;
|
||||
for (auto i = 0; i < numSamples; i++) {
|
||||
jointCounts[secondFeature[i].item<int>()][firstFeature[i].item<int>()] += 1;
|
||||
totalWeight += 1;
|
||||
totalWeight += weights[i].item<float>();
|
||||
}
|
||||
if (totalWeight == 0)
|
||||
return 0;
|
||||
@@ -115,9 +116,9 @@ namespace bayesnet {
|
||||
return entropyValue;
|
||||
}
|
||||
// I(X;Y) = H(Y) - H(Y|X)
|
||||
double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature)
|
||||
double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
|
||||
{
|
||||
return entropy(firstFeature) - conditionalEntropy(firstFeature, secondFeature);
|
||||
return entropy(firstFeature, weights) - conditionalEntropy(firstFeature, secondFeature, weights);
|
||||
}
|
||||
/*
|
||||
Compute the maximum spanning tree considering the weights as distances
|
||||
|
@@ -12,16 +12,16 @@ namespace bayesnet {
|
||||
vector<string> features;
|
||||
string className;
|
||||
int classNumStates = 0;
|
||||
double entropy(const Tensor& feature, const Tensor& weights);
|
||||
double conditionalEntropy(const Tensor& firstFeature, const Tensor& secondFeature, const Tensor& weights);
|
||||
vector<pair<string, string>> doCombinations(const vector<string>&);
|
||||
public:
|
||||
Metrics() = default;
|
||||
Metrics(const Tensor&, const vector<string>&, const string&, const int);
|
||||
Metrics(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&, const int);
|
||||
double entropy(const Tensor&);
|
||||
double conditionalEntropy(const Tensor&, const Tensor&);
|
||||
double mutualInformation(const Tensor&, const Tensor&);
|
||||
vector<float> conditionalEdgeWeights(); // To use in Python
|
||||
Tensor conditionalEdge();
|
||||
vector<pair<string, string>> doCombinations(const vector<string>&);
|
||||
Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates);
|
||||
Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates);
|
||||
double mutualInformation(const Tensor& firstFeature, const Tensor& secondFeature, const Tensor& weights);
|
||||
vector<float> conditionalEdgeWeights(vector<float>& weights); // To use in Python
|
||||
Tensor conditionalEdge(const torch::Tensor& weights);
|
||||
vector<pair<int, int>> maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root);
|
||||
};
|
||||
}
|
||||
|
@@ -37,7 +37,8 @@ namespace bayesnet {
|
||||
}
|
||||
void Classifier::trainModel()
|
||||
{
|
||||
model.fit(dataset, features, className, states);
|
||||
const torch::Tensor weights = torch::ones({ m });
|
||||
model.fit(dataset, weights, features, className, states);
|
||||
}
|
||||
// X is nxm where n is the number of features and m the number of samples
|
||||
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
|
@@ -14,13 +14,14 @@ namespace bayesnet {
|
||||
Classifier& build(vector<string>& features, string className, map<string, vector<int>>& states);
|
||||
protected:
|
||||
bool fitted;
|
||||
Network model;
|
||||
int m, n; // m: number of samples, n: number of features
|
||||
Tensor dataset; // (n+1)xm tensor
|
||||
Network model;
|
||||
Metrics metrics;
|
||||
vector<string> features;
|
||||
string className;
|
||||
map<string, vector<int>> states;
|
||||
Tensor dataset; // (n+1)xm tensor
|
||||
Tensor weights;
|
||||
void checkFitParameters();
|
||||
virtual void buildModel() = 0;
|
||||
void trainModel() override;
|
||||
|
@@ -32,10 +32,10 @@ namespace bayesnet {
|
||||
vector <float> mi;
|
||||
for (auto i = 0; i < features.size(); i++) {
|
||||
Tensor firstFeature = dataset.index({ i, "..." });
|
||||
mi.push_back(metrics.mutualInformation(firstFeature, y));
|
||||
mi.push_back(metrics.mutualInformation(firstFeature, y, weights));
|
||||
}
|
||||
// 2. Compute class conditional mutual information I(Xi;XjIC), f or each
|
||||
auto conditionalEdgeWeights = metrics.conditionalEdge();
|
||||
auto conditionalEdgeWeights = metrics.conditionalEdge(weights);
|
||||
// 3. Let the used variable list, S, be empty.
|
||||
vector<int> S;
|
||||
// 4. Let the DAG network being constructed, BN, begin with a single
|
||||
|
@@ -104,8 +104,11 @@ namespace bayesnet {
|
||||
{
|
||||
return nodes;
|
||||
}
|
||||
void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states, const torch::Tensor& weights)
|
||||
{
|
||||
if (weights.size(0) != n_samples) {
|
||||
throw invalid_argument("Weights must have the same number of elements as samples in Network::fit");
|
||||
}
|
||||
if (n_samples != n_samples_y) {
|
||||
throw invalid_argument("X and y must have the same number of samples in Network::fit (" + to_string(n_samples) + " != " + to_string(n_samples_y) + ")");
|
||||
}
|
||||
@@ -136,28 +139,29 @@ namespace bayesnet {
|
||||
classNumStates = nodes[className]->getNumStates();
|
||||
}
|
||||
// X comes in nxm, where n is the number of features and m the number of samples
|
||||
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
{
|
||||
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states);
|
||||
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states, weights);
|
||||
this->className = className;
|
||||
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
|
||||
samples = torch::cat({ X , ytmp }, 0);
|
||||
for (int i = 0; i < featureNames.size(); ++i) {
|
||||
auto row_feature = X.index({ i, "..." });
|
||||
}
|
||||
completeFit(states);
|
||||
completeFit(states, weights);
|
||||
}
|
||||
void Network::fit(const torch::Tensor& samples, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
void Network::fit(const torch::Tensor& samples, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
{
|
||||
checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states);
|
||||
checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states, weights);
|
||||
this->className = className;
|
||||
this->samples = samples;
|
||||
completeFit(states);
|
||||
completeFit(states, weights);
|
||||
}
|
||||
// input_data comes in nxm, where n is the number of features and m the number of samples
|
||||
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<float>& weights_, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
{
|
||||
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states);
|
||||
const torch::Tensor weights = torch::tensor(weights_, torch::kFloat64);
|
||||
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states, weights);
|
||||
this->className = className;
|
||||
// Build tensor of samples (nxm) (n+1 because of the class)
|
||||
samples = torch::zeros({ static_cast<int>(input_data.size() + 1), static_cast<int>(input_data[0].size()) }, torch::kInt32);
|
||||
@@ -165,9 +169,9 @@ namespace bayesnet {
|
||||
samples.index_put_({ i, "..." }, torch::tensor(input_data[i], torch::kInt32));
|
||||
}
|
||||
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
|
||||
completeFit(states);
|
||||
completeFit(states, weights);
|
||||
}
|
||||
void Network::completeFit(const map<string, vector<int>>& states)
|
||||
void Network::completeFit(const map<string, vector<int>>& states, const torch::Tensor& weights)
|
||||
{
|
||||
setStates(states);
|
||||
int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads);
|
||||
@@ -182,7 +186,7 @@ namespace bayesnet {
|
||||
while (nextNodeIndex < nodes.size()) {
|
||||
unique_lock<mutex> lock(mtx);
|
||||
cv.wait(lock, [&activeThreads, &maxThreadsRunning]() { return activeThreads < maxThreadsRunning; });
|
||||
threads.emplace_back([this, &nextNodeIndex, &mtx, &cv, &activeThreads]() {
|
||||
threads.emplace_back([this, &nextNodeIndex, &mtx, &cv, &activeThreads, &weights]() {
|
||||
while (true) {
|
||||
unique_lock<mutex> lock(mtx);
|
||||
if (nextNodeIndex >= nodes.size()) {
|
||||
@@ -191,7 +195,7 @@ namespace bayesnet {
|
||||
auto& pair = *std::next(nodes.begin(), nextNodeIndex);
|
||||
++nextNodeIndex;
|
||||
lock.unlock();
|
||||
pair.second->computeCPT(samples, features, laplaceSmoothing);
|
||||
pair.second->computeCPT(samples, features, laplaceSmoothing, weights);
|
||||
lock.lock();
|
||||
nodes[pair.first] = std::move(pair.second);
|
||||
lock.unlock();
|
||||
|
@@ -20,8 +20,8 @@ namespace bayesnet {
|
||||
vector<double> predict_sample(const torch::Tensor&);
|
||||
vector<double> exactInference(map<string, int>&);
|
||||
double computeFactor(map<string, int>&);
|
||||
void completeFit(const map<string, vector<int>>&);
|
||||
void checkFitData(int n_features, int n_samples, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>&);
|
||||
void completeFit(const map<string, vector<int>>& states, const torch::Tensor& weights);
|
||||
void checkFitData(int n_features, int n_samples, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states, const torch::Tensor& weights);
|
||||
void setStates(const map<string, vector<int>>&);
|
||||
public:
|
||||
Network();
|
||||
@@ -39,9 +39,9 @@ namespace bayesnet {
|
||||
int getNumEdges() const;
|
||||
int getClassNumStates() const;
|
||||
string getClassName() const;
|
||||
void fit(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&, const map<string, vector<int>>&);
|
||||
void fit(const torch::Tensor&, const torch::Tensor&, const vector<string>&, const string&, const map<string, vector<int>>&);
|
||||
void fit(const torch::Tensor&, const vector<string>&, const string&, const map<string, vector<int>>&);
|
||||
void fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<float>& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
|
||||
void fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
|
||||
void fit(const torch::Tensor& samples, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
|
||||
vector<int> predict(const vector<vector<int>>&); // Return mx1 vector of predictions
|
||||
torch::Tensor predict(const torch::Tensor&); // Return mx1 tensor of predictions
|
||||
torch::Tensor predict_tensor(const torch::Tensor& samples, const bool proba);
|
||||
|
@@ -84,7 +84,7 @@ namespace bayesnet {
|
||||
}
|
||||
return result;
|
||||
}
|
||||
void Node::computeCPT(const torch::Tensor& dataset, const vector<string>& features, const int laplaceSmoothing)
|
||||
void Node::computeCPT(const torch::Tensor& dataset, const vector<string>& features, const int laplaceSmoothing, const torch::Tensor& weights)
|
||||
{
|
||||
dimensions.clear();
|
||||
// Get dimensions of the CPT
|
||||
@@ -111,7 +111,7 @@ namespace bayesnet {
|
||||
coordinates.push_back(dataset.index({ parent_index, n_sample }));
|
||||
}
|
||||
// Increment the count of the corresponding coordinate
|
||||
cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + 1);
|
||||
cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + weights.index({ n_sample }).item<float>());
|
||||
}
|
||||
// Normalize the counts
|
||||
cpTable = cpTable / cpTable.sum(0);
|
||||
|
@@ -26,7 +26,7 @@ namespace bayesnet {
|
||||
vector<Node*>& getParents();
|
||||
vector<Node*>& getChildren();
|
||||
torch::Tensor& getCPT();
|
||||
void computeCPT(const torch::Tensor&, const vector<string>&, const int);
|
||||
void computeCPT(const torch::Tensor& dataset, const vector<string>& features, const int laplaceSmoothing, const torch::Tensor& weights);
|
||||
int getNumStates() const;
|
||||
void setNumStates(int);
|
||||
unsigned minFill();
|
||||
|
@@ -65,7 +65,8 @@ namespace bayesnet {
|
||||
//Update new states of the feature/node
|
||||
states[pFeatures[index]] = xStates;
|
||||
}
|
||||
model.fit(pDataset, pFeatures, pClassName, states);
|
||||
const torch::Tensor weights = torch::ones({ pDataset.size(1) }, torch::kFloat);
|
||||
model.fit(pDataset, weights, pFeatures, pClassName, states);
|
||||
}
|
||||
return states;
|
||||
}
|
||||
|
@@ -15,15 +15,15 @@ namespace bayesnet {
|
||||
Tensor class_dataset = dataset.index({ -1, "..." });
|
||||
for (int i = 0; i < static_cast<int>(features.size()); ++i) {
|
||||
Tensor feature_dataset = dataset.index({ i, "..." });
|
||||
auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset);
|
||||
auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset, weights);
|
||||
mi.push_back({ i, mi_value });
|
||||
}
|
||||
sort(mi.begin(), mi.end(), [](const auto& left, const auto& right) {return left.second < right.second;});
|
||||
auto root = mi[mi.size() - 1].first;
|
||||
// 2. Compute mutual information between each feature and the class
|
||||
auto weights = metrics.conditionalEdge();
|
||||
auto weights_matrix = metrics.conditionalEdge(weights);
|
||||
// 3. Compute the maximum spanning tree
|
||||
auto mst = metrics.maximumSpanningTree(features, weights, root);
|
||||
auto mst = metrics.maximumSpanningTree(features, weights_matrix, root);
|
||||
// 4. Add edges from the maximum spanning tree to the model
|
||||
for (auto i = 0; i < mst.size(); ++i) {
|
||||
auto [from, to] = mst[i];
|
||||
|
10
src/Platform/BestResult.h
Normal file
10
src/Platform/BestResult.h
Normal file
@@ -0,0 +1,10 @@
|
||||
#ifndef BESTRESULT_H
|
||||
#define BESTRESULT_H
|
||||
#include <string>
|
||||
class BestResult {
|
||||
public:
|
||||
static std::string title() { return "STree_default (linear-ovo)"; }
|
||||
static double score() { return 22.109799; }
|
||||
static std::string scoreName() { return "accuracy"; }
|
||||
};
|
||||
#endif
|
@@ -5,4 +5,6 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc Report.cc)
|
||||
target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
|
||||
add_executable(manage manage.cc Results.cc Report.cc)
|
||||
target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
|
||||
target_link_libraries(manage "${TORCH_LIBRARIES}")
|
14
src/Platform/Colors.h
Normal file
14
src/Platform/Colors.h
Normal file
@@ -0,0 +1,14 @@
|
||||
#ifndef COLORS_H
|
||||
#define COLORS_H
|
||||
class Colors {
|
||||
public:
|
||||
static std::string MAGENTA() { return "\033[1;35m"; }
|
||||
static std::string BLUE() { return "\033[1;34m"; }
|
||||
static std::string CYAN() { return "\033[1;36m"; }
|
||||
static std::string GREEN() { return "\033[1;32m"; }
|
||||
static std::string YELLOW() { return "\033[1;33m"; }
|
||||
static std::string RED() { return "\033[1;31m"; }
|
||||
static std::string WHITE() { return "\033[1;37m"; }
|
||||
static std::string RESET() { return "\033[0m"; }
|
||||
};
|
||||
#endif // COLORS_H
|
10
src/Platform/Paths.h
Normal file
10
src/Platform/Paths.h
Normal file
@@ -0,0 +1,10 @@
|
||||
#ifndef PATHS_H
|
||||
#define PATHS_H
|
||||
namespace platform {
|
||||
class Paths {
|
||||
public:
|
||||
static std::string datasets() { return "datasets/"; }
|
||||
static std::string results() { return "results/"; }
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,4 +1,5 @@
|
||||
#include "Report.h"
|
||||
#include "BestResult.h"
|
||||
|
||||
namespace platform {
|
||||
string headerLine(const string& text)
|
||||
@@ -28,10 +29,11 @@ namespace platform {
|
||||
{
|
||||
header();
|
||||
body();
|
||||
footer();
|
||||
}
|
||||
void Report::header()
|
||||
{
|
||||
cout << string(MAXL, '*') << endl;
|
||||
cout << Colors::MAGENTA() << string(MAXL, '*') << endl;
|
||||
cout << headerLine("Report " + data["model"].get<string>() + " ver. " + data["version"].get<string>() + " with " + to_string(data["folds"].get<int>()) + " Folds cross validation and " + to_string(data["seeds"].size()) + " random seeds. " + data["date"].get<string>() + " " + data["time"].get<string>());
|
||||
cout << headerLine(data["title"].get<string>());
|
||||
cout << headerLine("Random seeds: " + fromVector("seeds") + " Stratified: " + (data["stratified"].get<bool>() ? "True" : "False"));
|
||||
@@ -42,26 +44,50 @@ namespace platform {
|
||||
}
|
||||
void Report::body()
|
||||
{
|
||||
cout << "Dataset Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << endl;
|
||||
cout << "============================== ====== ===== === ======= ======= ======= =============== ================= ===============" << endl;
|
||||
cout << Colors::GREEN() << "Dataset Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << endl;
|
||||
cout << "============================== ====== ===== === ======= ======= ======= =============== ================== ===============" << endl;
|
||||
json lastResult;
|
||||
totalScore = 0;
|
||||
bool odd = true;
|
||||
for (const auto& r : data["results"]) {
|
||||
cout << setw(30) << left << r["dataset"].get<string>() << " ";
|
||||
auto color = odd ? Colors::CYAN() : Colors::BLUE();
|
||||
cout << color << setw(30) << left << r["dataset"].get<string>() << " ";
|
||||
cout << setw(6) << right << r["samples"].get<int>() << " ";
|
||||
cout << setw(5) << right << r["features"].get<int>() << " ";
|
||||
cout << setw(3) << right << r["classes"].get<int>() << " ";
|
||||
cout << setw(7) << setprecision(2) << fixed << r["nodes"].get<float>() << " ";
|
||||
cout << setw(7) << setprecision(2) << fixed << r["leaves"].get<float>() << " ";
|
||||
cout << setw(7) << setprecision(2) << fixed << r["depth"].get<float>() << " ";
|
||||
cout << setw(8) << right << setprecision(6) << fixed << r["score_test"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["score_test_std"].get<double>() << " ";
|
||||
cout << setw(10) << right << setprecision(6) << fixed << r["test_time"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["test_time_std"].get<double>() << " ";
|
||||
cout << " " << r["hyperparameters"].get<string>();
|
||||
cout << setw(8) << right << setprecision(6) << fixed << r["score"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["score_std"].get<double>() << " ";
|
||||
cout << setw(11) << right << setprecision(6) << fixed << r["time"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["time_std"].get<double>() << " ";
|
||||
try {
|
||||
cout << r["hyperparameters"].get<string>();
|
||||
}
|
||||
catch (const exception& err) {
|
||||
cout << r["hyperparameters"];
|
||||
}
|
||||
cout << endl;
|
||||
lastResult = r;
|
||||
totalScore += r["score"].get<double>();
|
||||
odd = !odd;
|
||||
}
|
||||
if (data["results"].size() == 1) {
|
||||
cout << string(MAXL, '*') << endl;
|
||||
cout << headerLine("Train scores: " + fVector(r["scores_train"]));
|
||||
cout << headerLine("Test scores: " + fVector(r["scores_test"]));
|
||||
cout << headerLine("Train times: " + fVector(r["times_train"]));
|
||||
cout << headerLine("Test times: " + fVector(r["times_test"]));
|
||||
cout << headerLine("Train scores: " + fVector(lastResult["scores_train"]));
|
||||
cout << headerLine("Test scores: " + fVector(lastResult["scores_test"]));
|
||||
cout << headerLine("Train times: " + fVector(lastResult["times_train"]));
|
||||
cout << headerLine("Test times: " + fVector(lastResult["times_test"]));
|
||||
cout << string(MAXL, '*') << endl;
|
||||
}
|
||||
}
|
||||
void Report::footer()
|
||||
{
|
||||
cout << Colors::MAGENTA() << string(MAXL, '*') << endl;
|
||||
auto score = data["score_name"].get<string>();
|
||||
if (score == BestResult::scoreName()) {
|
||||
cout << headerLine(score + " compared to " + BestResult::title() + " .: " + to_string(totalScore / BestResult::score()));
|
||||
}
|
||||
cout << string(MAXL, '*') << endl << Colors::RESET();
|
||||
|
||||
}
|
||||
}
|
@@ -3,6 +3,7 @@
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "Colors.h"
|
||||
|
||||
using json = nlohmann::json;
|
||||
const int MAXL = 121;
|
||||
@@ -16,8 +17,10 @@ namespace platform {
|
||||
private:
|
||||
void header();
|
||||
void body();
|
||||
void footer();
|
||||
string fromVector(const string& key);
|
||||
json data;
|
||||
double totalScore; // Total score of all results in a report
|
||||
};
|
||||
};
|
||||
#endif
|
239
src/Platform/Results.cc
Normal file
239
src/Platform/Results.cc
Normal file
@@ -0,0 +1,239 @@
|
||||
#include <filesystem>
|
||||
#include "platformUtils.h"
|
||||
#include "Results.h"
|
||||
#include "Report.h"
|
||||
#include "BestResult.h"
|
||||
#include "Colors.h"
|
||||
namespace platform {
|
||||
Result::Result(const string& path, const string& filename)
|
||||
: path(path)
|
||||
, filename(filename)
|
||||
{
|
||||
auto data = load();
|
||||
date = data["date"];
|
||||
score = 0;
|
||||
for (const auto& result : data["results"]) {
|
||||
score += result["score"].get<double>();
|
||||
}
|
||||
scoreName = data["score_name"];
|
||||
if (scoreName == BestResult::scoreName()) {
|
||||
score /= BestResult::score();
|
||||
}
|
||||
title = data["title"];
|
||||
duration = data["duration"];
|
||||
model = data["model"];
|
||||
}
|
||||
json Result::load() const
|
||||
{
|
||||
ifstream resultData(path + "/" + filename);
|
||||
if (resultData.is_open()) {
|
||||
json data = json::parse(resultData);
|
||||
return data;
|
||||
}
|
||||
throw invalid_argument("Unable to open result file. [" + path + "/" + filename + "]");
|
||||
}
|
||||
void Results::load()
|
||||
{
|
||||
using std::filesystem::directory_iterator;
|
||||
for (const auto& file : directory_iterator(path)) {
|
||||
auto filename = file.path().filename().string();
|
||||
if (filename.find(".json") != string::npos && filename.find("results_") == 0) {
|
||||
auto result = Result(path, filename);
|
||||
bool addResult = true;
|
||||
if (model != "any" && result.getModel() != model || scoreName != "any" && scoreName != result.getScoreName())
|
||||
addResult = false;
|
||||
if (addResult)
|
||||
files.push_back(result);
|
||||
}
|
||||
}
|
||||
}
|
||||
string Result::to_string() const
|
||||
{
|
||||
stringstream oss;
|
||||
oss << date << " ";
|
||||
oss << setw(12) << left << model << " ";
|
||||
oss << setw(11) << left << scoreName << " ";
|
||||
oss << right << setw(11) << setprecision(7) << fixed << score << " ";
|
||||
oss << setw(9) << setprecision(3) << fixed << duration << " ";
|
||||
oss << setw(50) << left << title << " ";
|
||||
return oss.str();
|
||||
}
|
||||
void Results::show() const
|
||||
{
|
||||
cout << Colors::GREEN() << "Results found: " << files.size() << endl;
|
||||
cout << "-------------------" << endl;
|
||||
auto i = 0;
|
||||
cout << " # Date Model Score Name Score Duration Title" << endl;
|
||||
cout << "=== ========== ============ =========== =========== ========= =============================================================" << endl;
|
||||
bool odd = true;
|
||||
for (const auto& result : files) {
|
||||
auto color = odd ? Colors::BLUE() : Colors::CYAN();
|
||||
cout << color << setw(3) << fixed << right << i++ << " ";
|
||||
cout << result.to_string() << endl;
|
||||
if (i == max && max != 0) {
|
||||
break;
|
||||
}
|
||||
odd = !odd;
|
||||
}
|
||||
}
|
||||
int Results::getIndex(const string& intent) const
|
||||
{
|
||||
string color;
|
||||
if (intent == "delete") {
|
||||
color = Colors::RED();
|
||||
} else {
|
||||
color = Colors::YELLOW();
|
||||
}
|
||||
cout << color << "Choose result to " << intent << " (cancel=-1): ";
|
||||
string line;
|
||||
getline(cin, line);
|
||||
int index = stoi(line);
|
||||
if (index >= -1 && index < static_cast<int>(files.size())) {
|
||||
return index;
|
||||
}
|
||||
cout << "Invalid index" << endl;
|
||||
return -1;
|
||||
}
|
||||
void Results::report(const int index) const
|
||||
{
|
||||
cout << Colors::YELLOW() << "Reporting " << files.at(index).getFilename() << endl;
|
||||
auto data = files.at(index).load();
|
||||
Report report(data);
|
||||
report.show();
|
||||
}
|
||||
void Results::menu()
|
||||
{
|
||||
char option;
|
||||
int index;
|
||||
bool finished = false;
|
||||
string filename, line, options = "qldhsr";
|
||||
while (!finished) {
|
||||
cout << Colors::RESET() << "Choose option (quit='q', list='l', delete='d', hide='h', sort='s', report='r'): ";
|
||||
getline(cin, line);
|
||||
if (line.size() == 0)
|
||||
continue;
|
||||
if (options.find(line[0]) != string::npos) {
|
||||
if (line.size() > 1) {
|
||||
cout << "Invalid option" << endl;
|
||||
continue;
|
||||
}
|
||||
option = line[0];
|
||||
} else {
|
||||
index = stoi(line);
|
||||
if (index >= 0 && index < files.size()) {
|
||||
report(index);
|
||||
} else {
|
||||
cout << "Invalid option" << endl;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
switch (option) {
|
||||
case 'q':
|
||||
finished = true;
|
||||
break;
|
||||
case 'l':
|
||||
show();
|
||||
break;
|
||||
case 'd':
|
||||
index = getIndex("delete");
|
||||
if (index == -1)
|
||||
break;
|
||||
filename = files[index].getFilename();
|
||||
cout << "Deleting " << filename << endl;
|
||||
remove((path + "/" + filename).c_str());
|
||||
files.erase(files.begin() + index);
|
||||
cout << "File: " + filename + " deleted!" << endl;
|
||||
show();
|
||||
break;
|
||||
case 'h':
|
||||
index = getIndex("hide");
|
||||
if (index == -1)
|
||||
break;
|
||||
filename = files[index].getFilename();
|
||||
cout << "Hiding " << filename << endl;
|
||||
rename((path + "/" + filename).c_str(), (path + "/." + filename).c_str());
|
||||
files.erase(files.begin() + index);
|
||||
show();
|
||||
menu();
|
||||
break;
|
||||
case 's':
|
||||
sortList();
|
||||
show();
|
||||
break;
|
||||
case 'r':
|
||||
index = getIndex("report");
|
||||
if (index == -1)
|
||||
break;
|
||||
report(index);
|
||||
break;
|
||||
default:
|
||||
cout << "Invalid option" << endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
void Results::sortList()
|
||||
{
|
||||
cout << Colors::YELLOW() << "Choose sorting field (date='d', score='s', duration='u', model='m'): ";
|
||||
string line;
|
||||
char option;
|
||||
getline(cin, line);
|
||||
if (line.size() == 0)
|
||||
return;
|
||||
if (line.size() > 1) {
|
||||
cout << "Invalid option" << endl;
|
||||
return;
|
||||
}
|
||||
option = line[0];
|
||||
switch (option) {
|
||||
case 'd':
|
||||
sortDate();
|
||||
break;
|
||||
case 's':
|
||||
sortScore();
|
||||
break;
|
||||
case 'u':
|
||||
sortDuration();
|
||||
break;
|
||||
case 'm':
|
||||
sortModel();
|
||||
break;
|
||||
default:
|
||||
cout << "Invalid option" << endl;
|
||||
}
|
||||
}
|
||||
void Results::sortDate()
|
||||
{
|
||||
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
|
||||
return a.getDate() > b.getDate();
|
||||
});
|
||||
}
|
||||
void Results::sortModel()
|
||||
{
|
||||
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
|
||||
return a.getModel() > b.getModel();
|
||||
});
|
||||
}
|
||||
void Results::sortDuration()
|
||||
{
|
||||
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
|
||||
return a.getDuration() > b.getDuration();
|
||||
});
|
||||
}
|
||||
void Results::sortScore()
|
||||
{
|
||||
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
|
||||
return a.getScore() > b.getScore();
|
||||
});
|
||||
}
|
||||
void Results::manage()
|
||||
{
|
||||
if (files.size() == 0) {
|
||||
cout << "No results found!" << endl;
|
||||
exit(0);
|
||||
}
|
||||
show();
|
||||
menu();
|
||||
cout << "Done!" << endl;
|
||||
}
|
||||
|
||||
}
|
56
src/Platform/Results.h
Normal file
56
src/Platform/Results.h
Normal file
@@ -0,0 +1,56 @@
|
||||
#ifndef RESULTS_H
|
||||
#define RESULTS_H
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <nlohmann/json.hpp>
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
using json = nlohmann::json;
|
||||
|
||||
class Result {
|
||||
public:
|
||||
Result(const string& path, const string& filename);
|
||||
json load() const;
|
||||
string to_string() const;
|
||||
string getFilename() const { return filename; };
|
||||
string getDate() const { return date; };
|
||||
double getScore() const { return score; };
|
||||
string getTitle() const { return title; };
|
||||
double getDuration() const { return duration; };
|
||||
string getModel() const { return model; };
|
||||
string getScoreName() const { return scoreName; };
|
||||
private:
|
||||
string path;
|
||||
string filename;
|
||||
string date;
|
||||
double score;
|
||||
string title;
|
||||
double duration;
|
||||
string model;
|
||||
string scoreName;
|
||||
};
|
||||
class Results {
|
||||
public:
|
||||
Results(const string& path, const int max, const string& model, const string& score) : path(path), max(max), model(model), scoreName(score) { load(); };
|
||||
void manage();
|
||||
private:
|
||||
string path;
|
||||
int max;
|
||||
string model;
|
||||
string scoreName;
|
||||
vector<Result> files;
|
||||
void load(); // Loads the list of results
|
||||
void show() const;
|
||||
void report(const int index) const;
|
||||
int getIndex(const string& intent) const;
|
||||
void menu();
|
||||
void sortList();
|
||||
void sortDate();
|
||||
void sortScore();
|
||||
void sortModel();
|
||||
void sortDuration();
|
||||
};
|
||||
};
|
||||
|
||||
#endif
|
@@ -6,20 +6,19 @@
|
||||
#include "DotEnv.h"
|
||||
#include "Models.h"
|
||||
#include "modelRegister.h"
|
||||
#include "Paths.h"
|
||||
|
||||
|
||||
using namespace std;
|
||||
const string PATH_RESULTS = "results";
|
||||
const string PATH_DATASETS = "datasets";
|
||||
|
||||
argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
{
|
||||
auto env = platform::DotEnv();
|
||||
argparse::ArgumentParser program("BayesNetSample");
|
||||
argparse::ArgumentParser program("main");
|
||||
program.add_argument("-d", "--dataset").default_value("").help("Dataset file name");
|
||||
program.add_argument("-p", "--path")
|
||||
.help("folder where the data files are located, default")
|
||||
.default_value(string{ PATH_DATASETS }
|
||||
);
|
||||
.default_value(string{ platform::Paths::datasets() });
|
||||
program.add_argument("-m", "--model")
|
||||
.help("Model to use " + platform::Models::instance()->toString())
|
||||
.action([](const std::string& value) {
|
||||
@@ -115,7 +114,7 @@ int main(int argc, char** argv)
|
||||
experiment.go(filesToTest, path);
|
||||
experiment.setDuration(timer.getDuration());
|
||||
if (saveResults)
|
||||
experiment.save(PATH_RESULTS);
|
||||
experiment.save(platform::Paths::results());
|
||||
else
|
||||
experiment.report();
|
||||
cout << "Done!" << endl;
|
||||
|
41
src/Platform/manage.cc
Normal file
41
src/Platform/manage.cc
Normal file
@@ -0,0 +1,41 @@
|
||||
#include <iostream>
|
||||
#include <argparse/argparse.hpp>
|
||||
#include "platformUtils.h"
|
||||
#include "Paths.h"
|
||||
#include "Results.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
{
|
||||
argparse::ArgumentParser program("manage");
|
||||
program.add_argument("-n", "--number").default_value(0).help("Number of results to show (0 = all)").scan<'i', int>();
|
||||
program.add_argument("-m", "--model").default_value("any").help("Filter results of the selected model)");
|
||||
program.add_argument("-s", "--score").default_value("any").help("Filter results of the score name supplied");
|
||||
try {
|
||||
program.parse_args(argc, argv);
|
||||
auto number = program.get<int>("number");
|
||||
if (number < 0) {
|
||||
throw runtime_error("Number of results must be greater than or equal to 0");
|
||||
}
|
||||
auto model = program.get<string>("model");
|
||||
auto score = program.get<string>("score");
|
||||
}
|
||||
catch (const exception& err) {
|
||||
cerr << err.what() << endl;
|
||||
cerr << program;
|
||||
exit(1);
|
||||
}
|
||||
return program;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
auto program = manageArguments(argc, argv);
|
||||
auto number = program.get<int>("number");
|
||||
auto model = program.get<string>("model");
|
||||
auto score = program.get<string>("score");
|
||||
auto results = platform::Results(platform::Paths::results(), number, model, score);
|
||||
results.manage();
|
||||
return 0;
|
||||
}
|
@@ -1,4 +1,5 @@
|
||||
#include "platformUtils.h"
|
||||
#include "Paths.h"
|
||||
|
||||
using namespace torch;
|
||||
|
||||
@@ -85,7 +86,7 @@ tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadData
|
||||
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(const string& name)
|
||||
{
|
||||
auto handler = ArffFiles();
|
||||
handler.load(PATH + static_cast<string>(name) + ".arff");
|
||||
handler.load(platform::Paths::datasets() + static_cast<string>(name) + ".arff");
|
||||
// Get Dataset X, y
|
||||
vector<mdlp::samples_t>& X = handler.getX();
|
||||
mdlp::labels_t& y = handler.getY();
|
||||
|
Reference in New Issue
Block a user