Compare commits
47 Commits
gridsearch
...
producer_c
Author | SHA1 | Date | |
---|---|---|---|
65a96851ef
|
|||
722da7f781
|
|||
b1833a5feb
|
|||
41a0bd4ddd
|
|||
9ab4fc7d76
|
|||
beadb7465f
|
|||
652e5f623f
|
|||
b7fef9a99d
|
|||
343269d48c
|
|||
21c4c6df51
|
|||
702f086706
|
|||
981bc8f98b
|
|||
e0b7b2d316
|
|||
9b9e91e856 | |||
18e8e84284
|
|||
7de11b0e6d
|
|||
9b8db37a4b
|
|||
49b26bd04b
|
|||
b5b5b48864
|
|||
19586a3a5a
|
|||
ffe6d37436
|
|||
b73f4be146
|
|||
dbf2f35502
|
|||
db9e80a70e
|
|||
40ae4ad7f9
|
|||
234342f2de
|
|||
aa0936abd1
|
|||
f0d6f0cc38
|
|||
cc316bb8d3
|
|||
0723564e66
|
|||
2e95e8999d
|
|||
fb9b395748
|
|||
03e4437fea
|
|||
33cd32c639
|
|||
c460ef46ed
|
|||
dee9c674da
|
|||
e3f6dc1e0b
|
|||
460d20a402
|
|||
8dbbb65a2f
|
|||
d06bf187b2
|
|||
4addaefb47
|
|||
82964190f6
|
|||
4fefe9a1d2
|
|||
7c12dd25e5
|
|||
c713c0b1df
|
|||
64069a6cb7
|
|||
ba2a3f9523 |
10
.gitmodules
vendored
10
.gitmodules
vendored
@@ -1,15 +1,25 @@
|
||||
[submodule "lib/mdlp"]
|
||||
path = lib/mdlp
|
||||
url = https://github.com/rmontanana/mdlp
|
||||
main = main
|
||||
update = merge
|
||||
[submodule "lib/catch2"]
|
||||
path = lib/catch2
|
||||
main = v2.x
|
||||
update = merge
|
||||
url = https://github.com/catchorg/Catch2.git
|
||||
[submodule "lib/argparse"]
|
||||
path = lib/argparse
|
||||
url = https://github.com/p-ranav/argparse
|
||||
master = master
|
||||
update = merge
|
||||
[submodule "lib/json"]
|
||||
path = lib/json
|
||||
url = https://github.com/nlohmann/json.git
|
||||
master = master
|
||||
update = merge
|
||||
[submodule "lib/libxlsxwriter"]
|
||||
path = lib/libxlsxwriter
|
||||
url = https://github.com/jmcnamara/libxlsxwriter.git
|
||||
main = main
|
||||
update = merge
|
||||
|
26
.vscode/launch.json
vendored
26
.vscode/launch.json
vendored
@@ -14,7 +14,7 @@
|
||||
"-s",
|
||||
"271",
|
||||
"-p",
|
||||
"/home/rmontanana/Code/discretizbench/datasets/",
|
||||
"/Users/rmontanana/Code/discretizbench/datasets/",
|
||||
],
|
||||
//"cwd": "${workspaceFolder}/build/sample/",
|
||||
},
|
||||
@@ -33,7 +33,23 @@
|
||||
// "--hyperparameters",
|
||||
// "{\"repeatSparent\": true, \"maxModels\": 12}"
|
||||
],
|
||||
"cwd": "/home/rmontanana/Code/discretizbench",
|
||||
"cwd": "${workspaceFolder}/../discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "gridsearch",
|
||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_grid",
|
||||
"args": [
|
||||
"-m",
|
||||
"KDB",
|
||||
"--discretize",
|
||||
"--continue",
|
||||
"glass",
|
||||
"--only",
|
||||
"--compute"
|
||||
],
|
||||
"cwd": "${workspaceFolder}/../discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
@@ -64,7 +80,7 @@
|
||||
"accuracy",
|
||||
"--build",
|
||||
],
|
||||
"cwd": "/home/rmontanana/Code/discretizbench",
|
||||
"cwd": "${workspaceFolder}/../discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
@@ -75,7 +91,7 @@
|
||||
"-n",
|
||||
"20"
|
||||
],
|
||||
"cwd": "/home/rmontanana/Code/discretizbench",
|
||||
"cwd": "${workspaceFolder}/../discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
@@ -84,7 +100,7 @@
|
||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_list",
|
||||
"args": [],
|
||||
//"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
"cwd": "/home/rmontanana/Code/covbench",
|
||||
"cwd": "${workspaceFolder}/../discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
|
@@ -25,12 +25,18 @@ set(CMAKE_CXX_EXTENSIONS OFF)
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
|
||||
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
|
||||
|
||||
# Options
|
||||
# -------
|
||||
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
|
||||
option(ENABLE_TESTING "Unit testing build" OFF)
|
||||
option(CODE_COVERAGE "Collect coverage from test library" OFF)
|
||||
option(MPI_ENABLED "Enable MPI options" ON)
|
||||
|
||||
if (MPI_ENABLED)
|
||||
find_package(MPI REQUIRED)
|
||||
message("MPI_CXX_LIBRARIES=${MPI_CXX_LIBRARIES}")
|
||||
message("MPI_CXX_INCLUDE_DIRS=${MPI_CXX_INCLUDE_DIRS}")
|
||||
endif (MPI_ENABLED)
|
||||
|
||||
# Boost Library
|
||||
set(Boost_USE_STATIC_LIBS OFF)
|
||||
|
4
Makefile
4
Makefile
@@ -49,10 +49,10 @@ dependency: ## Create a dependency graph diagram of the project (build/dependenc
|
||||
cd $(f_debug) && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
|
||||
|
||||
buildd: ## Build the debug targets
|
||||
cmake --build $(f_debug) -t $(app_targets) $(n_procs)
|
||||
cmake --build $(f_debug) -t $(app_targets) BayesNetSample $(n_procs)
|
||||
|
||||
buildr: ## Build the release targets
|
||||
cmake --build $(f_release) -t $(app_targets) $(n_procs)
|
||||
cmake --build $(f_release) -t $(app_targets) BayesNetSample $(n_procs)
|
||||
|
||||
clean: ## Clean the tests info
|
||||
@echo ">>> Cleaning Debug BayesNet tests...";
|
||||
|
26
README.md
26
README.md
@@ -8,6 +8,32 @@ Bayesian Network Classifier with libtorch from scratch
|
||||
|
||||
Before compiling BayesNet.
|
||||
|
||||
### Miniconda
|
||||
|
||||
To be able to run Python Classifiers such as STree, ODTE, SVC, etc. it is needed to install Miniconda. To do so, download the installer from [Miniconda](https://docs.conda.io/en/latest/miniconda.html) and run it. It is recommended to install it in the home folder.
|
||||
|
||||
In Linux sometimes the library libstdc++ is mistaken from the miniconda installation and produces the next message when running the b_xxxx executables:
|
||||
|
||||
```bash
|
||||
libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by b_xxxx)
|
||||
```
|
||||
|
||||
The solution is to erase the libstdc++ library from the miniconda installation:
|
||||
|
||||
### MPI
|
||||
|
||||
In Linux just install openmpi & openmpi-devel packages. Only if cmake can't find openmpi installation (like in Oracle Linux) set the following variable:
|
||||
|
||||
```bash
|
||||
export MPI_HOME="/usr/lib64/openmpi"
|
||||
```
|
||||
|
||||
In Mac OS X, install mpich with brew and if cmake doesn't find it, edit mpicxx wrapper to remove the ",-commons,use_dylibs" from final_ldflags
|
||||
|
||||
```bash
|
||||
vi /opt/homebrew/bin/mpicx
|
||||
```
|
||||
|
||||
### boost library
|
||||
|
||||
[Getting Started](<https://www.boost.org/doc/libs/1_83_0/more/getting_started/index.html>)
|
||||
|
Submodule lib/argparse updated: b0930ab028...69dabd88a8
@@ -1,8 +1,10 @@
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/PyClassifiers)
|
||||
include_directories(${Python3_INCLUDE_DIRS})
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
add_executable(BayesNetSample sample.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
|
||||
target_link_libraries(BayesNetSample BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
|
||||
target_link_libraries(BayesNetSample BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}" PyWrap)
|
@@ -29,7 +29,7 @@ pair<std::vector<mdlp::labels_t>, map<std::string, int>> discretize(std::vector<
|
||||
return { Xd, maxes };
|
||||
}
|
||||
|
||||
bool file_exists(const std::std::std::string& name)
|
||||
bool file_exists(const std::string& name)
|
||||
{
|
||||
if (FILE* file = fopen(name.c_str(), "r")) {
|
||||
fclose(file);
|
||||
@@ -72,7 +72,7 @@ int main(int argc, char** argv)
|
||||
argparse::ArgumentParser program("BayesNetSample");
|
||||
program.add_argument("-d", "--dataset")
|
||||
.help("Dataset file name")
|
||||
.action([valid_datasets](const std::std::std::string& value) {
|
||||
.action([valid_datasets](const std::string& value) {
|
||||
if (find(valid_datasets.begin(), valid_datasets.end(), value) != valid_datasets.end()) {
|
||||
return value;
|
||||
}
|
||||
@@ -84,20 +84,20 @@ int main(int argc, char** argv)
|
||||
.default_value(std::string{ PATH }
|
||||
);
|
||||
program.add_argument("-m", "--model")
|
||||
.help("Model to use " + platform::Models::instance()->tostd::string())
|
||||
.action([](const std::std::std::string& value) {
|
||||
.help("Model to use " + platform::Models::instance()->tostring())
|
||||
.action([](const std::string& value) {
|
||||
static const std::vector<std::string> choices = platform::Models::instance()->getNames();
|
||||
if (find(choices.begin(), choices.end(), value) != choices.end()) {
|
||||
return value;
|
||||
}
|
||||
throw runtime_error("Model must be one of " + platform::Models::instance()->tostd::string());
|
||||
throw runtime_error("Model must be one of " + platform::Models::instance()->tostring());
|
||||
}
|
||||
);
|
||||
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
|
||||
program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true);
|
||||
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
|
||||
program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true);
|
||||
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const std::std::string& value) {
|
||||
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const std::string& value) {
|
||||
try {
|
||||
auto k = stoi(value);
|
||||
if (k < 2) {
|
||||
@@ -184,8 +184,8 @@ int main(int argc, char** argv)
|
||||
file.close();
|
||||
std::cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << std::endl;
|
||||
std::cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << std::endl;
|
||||
std::string stratified_std::string = stratified ? " Stratified" : "";
|
||||
std::cout << nFolds << " Folds" << stratified_std::string << " Cross validation" << std::endl;
|
||||
std::string stratified_string = stratified ? " Stratified" : "";
|
||||
std::cout << nFolds << " Folds" << stratified_string << " Cross validation" << std::endl;
|
||||
std::cout << "==========================================" << std::endl;
|
||||
torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
|
||||
torch::Tensor yt = torch::tensor(y, torch::kInt32);
|
||||
|
@@ -12,7 +12,7 @@
|
||||
namespace bayesnet {
|
||||
BoostAODE::BoostAODE() : Ensemble()
|
||||
{
|
||||
validHyperparameters = { "repeatSparent", "maxModels", "ascending", "convergence", "threshold", "select_features" };
|
||||
validHyperparameters = { "repeatSparent", "maxModels", "ascending", "convergence", "threshold", "select_features", "tolerance" };
|
||||
|
||||
}
|
||||
void BoostAODE::buildModel(const torch::Tensor& weights)
|
||||
@@ -47,22 +47,32 @@ namespace bayesnet {
|
||||
y_train = y_;
|
||||
}
|
||||
}
|
||||
void BoostAODE::setHyperparameters(const nlohmann::json& hyperparameters)
|
||||
void BoostAODE::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("repeatSparent")) {
|
||||
repeatSparent = hyperparameters["repeatSparent"];
|
||||
hyperparameters.erase("repeatSparent");
|
||||
}
|
||||
if (hyperparameters.contains("maxModels")) {
|
||||
maxModels = hyperparameters["maxModels"];
|
||||
hyperparameters.erase("maxModels");
|
||||
}
|
||||
if (hyperparameters.contains("ascending")) {
|
||||
ascending = hyperparameters["ascending"];
|
||||
hyperparameters.erase("ascending");
|
||||
}
|
||||
if (hyperparameters.contains("convergence")) {
|
||||
convergence = hyperparameters["convergence"];
|
||||
hyperparameters.erase("convergence");
|
||||
}
|
||||
if (hyperparameters.contains("threshold")) {
|
||||
threshold = hyperparameters["threshold"];
|
||||
hyperparameters.erase("threshold");
|
||||
}
|
||||
if (hyperparameters.contains("tolerance")) {
|
||||
tolerance = hyperparameters["tolerance"];
|
||||
hyperparameters.erase("tolerance");
|
||||
}
|
||||
if (hyperparameters.contains("select_features")) {
|
||||
auto selectedAlgorithm = hyperparameters["select_features"];
|
||||
@@ -72,6 +82,10 @@ namespace bayesnet {
|
||||
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
|
||||
throw std::invalid_argument("Invalid selectFeatures value [IWSS, FCBF, CFS]");
|
||||
}
|
||||
hyperparameters.erase("select_features");
|
||||
}
|
||||
if (!hyperparameters.empty()) {
|
||||
throw std::invalid_argument("Invalid hyperparameters" + hyperparameters.dump());
|
||||
}
|
||||
}
|
||||
std::unordered_set<int> BoostAODE::initializeModels()
|
||||
@@ -109,10 +123,8 @@ namespace bayesnet {
|
||||
void BoostAODE::trainModel(const torch::Tensor& weights)
|
||||
{
|
||||
std::unordered_set<int> featuresUsed;
|
||||
int tolerance = 5; // number of times the accuracy can be lower than the threshold
|
||||
if (selectFeatures) {
|
||||
featuresUsed = initializeModels();
|
||||
tolerance = 0; // Remove tolerance if features are selected
|
||||
}
|
||||
if (maxModels == 0)
|
||||
maxModels = .1 * n > 10 ? .1 * n : n;
|
||||
|
@@ -21,6 +21,7 @@ namespace bayesnet {
|
||||
// Hyperparameters
|
||||
bool repeatSparent = false; // if true, a feature can be selected more than once
|
||||
int maxModels = 0;
|
||||
int tolerance = 0;
|
||||
bool ascending = false; //Process KBest features ascending or descending order
|
||||
bool convergence = false; //if true, stop when the model does not improve
|
||||
bool selectFeatures = false; // if true, use feature selection
|
||||
|
@@ -7,6 +7,7 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/libxlsxwriter/include)
|
||||
include_directories(${Python3_INCLUDE_DIRS})
|
||||
include_directories(${MPI_CXX_INCLUDE_DIRS})
|
||||
|
||||
add_executable(b_best b_best.cc BestResults.cc Result.cc Statistics.cc BestResultsExcel.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
|
||||
add_executable(b_grid b_grid.cc GridSearch.cc GridData.cc HyperParameters.cc Folding.cc Datasets.cc Dataset.cc)
|
||||
@@ -15,7 +16,7 @@ add_executable(b_main b_main.cc Folding.cc Experiment.cc Datasets.cc Dataset.cc
|
||||
add_executable(b_manage b_manage.cc Results.cc ManageResults.cc CommandParser.cc Result.cc ReportConsole.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
|
||||
|
||||
target_link_libraries(b_best Boost::boost "${XLSXWRITER_LIB}" "${TORCH_LIBRARIES}" ArffFiles mdlp)
|
||||
target_link_libraries(b_grid BayesNet PyWrap)
|
||||
target_link_libraries(b_grid BayesNet PyWrap ${MPI_CXX_LIBRARIES})
|
||||
target_link_libraries(b_list ArffFiles mdlp "${TORCH_LIBRARIES}")
|
||||
target_link_libraries(b_main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}" PyWrap)
|
||||
target_link_libraries(b_manage "${TORCH_LIBRARIES}" "${XLSXWRITER_LIB}" ArffFiles mdlp)
|
@@ -9,6 +9,7 @@ public:
|
||||
static std::string YELLOW() { return "\033[1;33m"; }
|
||||
static std::string RED() { return "\033[1;31m"; }
|
||||
static std::string WHITE() { return "\033[1;37m"; }
|
||||
static std::string IBLUE() { return "\033[0;94m"; }
|
||||
static std::string RESET() { return "\033[0m"; }
|
||||
};
|
||||
#endif // COLORS_H
|
@@ -4,12 +4,19 @@
|
||||
namespace platform {
|
||||
GridData::GridData(const std::string& fileName)
|
||||
{
|
||||
json grid_file;
|
||||
std::ifstream resultData(fileName);
|
||||
if (resultData.is_open()) {
|
||||
grid = json::parse(resultData);
|
||||
grid_file = json::parse(resultData);
|
||||
} else {
|
||||
throw std::invalid_argument("Unable to open input file. [" + fileName + "]");
|
||||
}
|
||||
for (const auto& item : grid_file.items()) {
|
||||
auto key = item.key();
|
||||
auto value = item.value();
|
||||
grid[key] = value;
|
||||
}
|
||||
|
||||
}
|
||||
int GridData::computeNumCombinations(const json& line)
|
||||
{
|
||||
@@ -19,10 +26,11 @@ namespace platform {
|
||||
}
|
||||
return numCombinations;
|
||||
}
|
||||
int GridData::getNumCombinations()
|
||||
int GridData::getNumCombinations(const std::string& dataset)
|
||||
{
|
||||
int numCombinations = 0;
|
||||
for (const auto& line : grid) {
|
||||
auto selected = decide_dataset(dataset);
|
||||
for (const auto& line : grid.at(selected)) {
|
||||
numCombinations += computeNumCombinations(line);
|
||||
}
|
||||
return numCombinations;
|
||||
@@ -44,12 +52,24 @@ namespace platform {
|
||||
}
|
||||
return currentCombination;
|
||||
}
|
||||
std::vector<json> GridData::getGrid()
|
||||
std::vector<json> GridData::getGrid(const std::string& dataset)
|
||||
{
|
||||
auto selected = decide_dataset(dataset);
|
||||
auto result = std::vector<json>();
|
||||
for (json line : grid) {
|
||||
for (json line : grid.at(selected)) {
|
||||
generateCombinations(line.begin(), line.end(), result, json({}));
|
||||
}
|
||||
return result;
|
||||
}
|
||||
json& GridData::getInputGrid(const std::string& dataset)
|
||||
{
|
||||
auto selected = decide_dataset(dataset);
|
||||
return grid.at(selected);
|
||||
}
|
||||
std::string GridData::decide_dataset(const std::string& dataset)
|
||||
{
|
||||
if (grid.find(dataset) != grid.end())
|
||||
return dataset;
|
||||
return ALL_DATASETS;
|
||||
}
|
||||
} /* namespace platform */
|
@@ -7,16 +7,20 @@
|
||||
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
const std::string ALL_DATASETS = "all";
|
||||
class GridData {
|
||||
public:
|
||||
explicit GridData(const std::string& fileName);
|
||||
~GridData() = default;
|
||||
std::vector<json> getGrid();
|
||||
int getNumCombinations();
|
||||
std::vector<json> getGrid(const std::string& dataset = ALL_DATASETS);
|
||||
int getNumCombinations(const std::string& dataset = ALL_DATASETS);
|
||||
json& getInputGrid(const std::string& dataset = ALL_DATASETS);
|
||||
std::map<std::string, json>& getGridFile() { return grid; }
|
||||
private:
|
||||
std::string decide_dataset(const std::string& dataset);
|
||||
json generateCombinations(json::iterator index, const json::iterator last, std::vector<json>& output, json currentCombination);
|
||||
int computeNumCombinations(const json& line);
|
||||
json grid;
|
||||
std::map<std::string, json> grid;
|
||||
};
|
||||
} /* namespace platform */
|
||||
#endif /* GRIDDATA_H */
|
@@ -1,4 +1,5 @@
|
||||
#include <iostream>
|
||||
#include <cstddef>
|
||||
#include <torch/torch.h>
|
||||
#include "GridSearch.h"
|
||||
#include "Models.h"
|
||||
@@ -7,124 +8,434 @@
|
||||
#include "Colors.h"
|
||||
|
||||
namespace platform {
|
||||
std::string get_date()
|
||||
{
|
||||
time_t rawtime;
|
||||
tm* timeinfo;
|
||||
time(&rawtime);
|
||||
timeinfo = std::localtime(&rawtime);
|
||||
std::ostringstream oss;
|
||||
oss << std::put_time(timeinfo, "%Y-%m-%d");
|
||||
return oss.str();
|
||||
}
|
||||
std::string get_time()
|
||||
{
|
||||
time_t rawtime;
|
||||
tm* timeinfo;
|
||||
time(&rawtime);
|
||||
timeinfo = std::localtime(&rawtime);
|
||||
std::ostringstream oss;
|
||||
oss << std::put_time(timeinfo, "%H:%M:%S");
|
||||
return oss.str();
|
||||
}
|
||||
std::string get_color_rank(int rank)
|
||||
{
|
||||
auto colors = { Colors::WHITE(), Colors::RED(), Colors::GREEN(), Colors::BLUE(), Colors::MAGENTA(), Colors::CYAN() };
|
||||
return *(colors.begin() + rank % colors.size());
|
||||
}
|
||||
GridSearch::GridSearch(struct ConfigGrid& config) : config(config)
|
||||
{
|
||||
this->config.output_file = config.path + "grid_" + config.model + "_output.json";
|
||||
this->config.input_file = config.path + "grid_" + config.model + "_input.json";
|
||||
}
|
||||
void showProgressComb(const int num, const int total, const std::string& color)
|
||||
json GridSearch::loadResults()
|
||||
{
|
||||
int spaces = int(log(total) / log(10)) + 1;
|
||||
int magic = 37 + 2 * spaces;
|
||||
std::string prefix = num == 1 ? "" : string(magic, '\b') + string(magic + 1, ' ') + string(magic + 1, '\b');
|
||||
std::cout << prefix << color << "(" << setw(spaces) << num << "/" << setw(spaces) << total << ") " << Colors::RESET() << flush;
|
||||
}
|
||||
void showProgressFold(int fold, const std::string& color, const std::string& phase)
|
||||
{
|
||||
std::string prefix = phase == "a" ? "" : "\b\b\b\b";
|
||||
std::cout << prefix << color << fold << Colors::RESET() << "(" << color << phase << Colors::RESET() << ")" << flush;
|
||||
}
|
||||
std::string getColor(bayesnet::status_t status)
|
||||
{
|
||||
switch (status) {
|
||||
case bayesnet::NORMAL:
|
||||
return Colors::GREEN();
|
||||
case bayesnet::WARNING:
|
||||
return Colors::YELLOW();
|
||||
case bayesnet::ERROR:
|
||||
return Colors::RED();
|
||||
default:
|
||||
return Colors::RESET();
|
||||
std::ifstream file(Paths::grid_output(config.model));
|
||||
if (file.is_open()) {
|
||||
return json::parse(file);
|
||||
}
|
||||
return json();
|
||||
}
|
||||
double GridSearch::processFile(std::string fileName, Datasets& datasets, HyperParameters& hyperparameters)
|
||||
{
|
||||
// Get dataset
|
||||
auto [X, y] = datasets.getTensors(fileName);
|
||||
auto states = datasets.getStates(fileName);
|
||||
auto features = datasets.getFeatures(fileName);
|
||||
auto samples = datasets.getNSamples(fileName);
|
||||
auto className = datasets.getClassName(fileName);
|
||||
double totalScore = 0.0;
|
||||
int numItems = 0;
|
||||
for (const auto& seed : config.seeds) {
|
||||
if (!config.quiet)
|
||||
std::cout << "(" << seed << ") doing Fold: " << flush;
|
||||
Fold* fold;
|
||||
if (config.stratified)
|
||||
fold = new StratifiedKFold(config.n_folds, y, seed);
|
||||
else
|
||||
fold = new KFold(config.n_folds, y.size(0), seed);
|
||||
double bestScore = 0.0;
|
||||
for (int nfold = 0; nfold < config.n_folds; nfold++) {
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
clf->setHyperparameters(hyperparameters.get(fileName));
|
||||
auto [train, test] = fold->getFold(nfold);
|
||||
auto train_t = torch::tensor(train);
|
||||
auto test_t = torch::tensor(test);
|
||||
auto X_train = X.index({ "...", train_t });
|
||||
auto y_train = y.index({ train_t });
|
||||
auto X_test = X.index({ "...", test_t });
|
||||
auto y_test = y.index({ test_t });
|
||||
// Train model
|
||||
if (!config.quiet)
|
||||
showProgressFold(nfold + 1, getColor(clf->getStatus()), "a");
|
||||
clf->fit(X_train, y_train, features, className, states);
|
||||
// Test model
|
||||
if (!config.quiet)
|
||||
showProgressFold(nfold + 1, getColor(clf->getStatus()), "b");
|
||||
totalScore += clf->score(X_test, y_test);
|
||||
numItems++;
|
||||
if (!config.quiet)
|
||||
std::cout << "\b\b\b, \b" << flush;
|
||||
}
|
||||
delete fold;
|
||||
}
|
||||
return numItems == 0 ? 0.0 : totalScore / numItems;
|
||||
}
|
||||
void GridSearch::go()
|
||||
std::vector<std::string> GridSearch::filterDatasets(Datasets& datasets) const
|
||||
{
|
||||
// Load datasets
|
||||
auto datasets = Datasets(config.discretize, Paths::datasets());
|
||||
// Create model
|
||||
std::cout << "***************** Starting Gridsearch *****************" << std::endl;
|
||||
std::cout << "input file=" << config.input_file << std::endl;
|
||||
auto grid = GridData(config.input_file);
|
||||
auto totalComb = grid.getNumCombinations();
|
||||
std::cout << "* Doing " << totalComb << " combinations for each dataset/seed/fold" << std::endl;
|
||||
// Generate hyperparameters grid & run gridsearch
|
||||
// Check each combination of hyperparameters for each dataset and each seed
|
||||
for (const auto& dataset : datasets.getNames()) {
|
||||
if (!config.quiet)
|
||||
std::cout << "- " << setw(20) << left << dataset << " " << right << flush;
|
||||
int num = 0;
|
||||
double bestScore = 0.0;
|
||||
json bestHyperparameters;
|
||||
for (const auto& hyperparam_line : grid.getGrid()) {
|
||||
if (!config.quiet)
|
||||
showProgressComb(++num, totalComb, Colors::CYAN());
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
||||
double score = processFile(dataset, datasets, hyperparameters);
|
||||
if (score > bestScore) {
|
||||
bestScore = score;
|
||||
bestHyperparameters = hyperparam_line;
|
||||
auto datasets_names = datasets.getNames();
|
||||
if (config.continue_from != NO_CONTINUE()) {
|
||||
// Continue previous execution:
|
||||
if (std::find(datasets_names.begin(), datasets_names.end(), config.continue_from) == datasets_names.end()) {
|
||||
throw std::invalid_argument("Dataset " + config.continue_from + " not found");
|
||||
}
|
||||
// Remove datasets already processed
|
||||
std::vector<string>::iterator it = datasets_names.begin();
|
||||
while (it != datasets_names.end()) {
|
||||
if (*it != config.continue_from) {
|
||||
it = datasets_names.erase(it);
|
||||
} else {
|
||||
if (config.only)
|
||||
++it;
|
||||
else
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!config.quiet) {
|
||||
std::cout << "end." << " Score: " << setw(9) << setprecision(7) << fixed
|
||||
<< bestScore << " [" << bestHyperparameters.dump() << "]" << std::endl;
|
||||
}
|
||||
results[dataset]["score"] = bestScore;
|
||||
results[dataset]["hyperparameters"] = bestHyperparameters;
|
||||
}
|
||||
// Save results
|
||||
save();
|
||||
std::cout << "***************** Ending Gridsearch *******************" << std::endl;
|
||||
// Exclude datasets
|
||||
for (const auto& name : config.excluded) {
|
||||
auto dataset = name.get<std::string>();
|
||||
auto it = std::find(datasets_names.begin(), datasets_names.end(), dataset);
|
||||
if (it == datasets_names.end()) {
|
||||
throw std::invalid_argument("Dataset " + dataset + " already excluded or doesn't exist!");
|
||||
}
|
||||
datasets_names.erase(it);
|
||||
}
|
||||
return datasets_names;
|
||||
}
|
||||
void GridSearch::save() const
|
||||
json GridSearch::build_tasks_mpi(int rank)
|
||||
{
|
||||
std::ofstream file(config.output_file);
|
||||
file << results.dump(4);
|
||||
file.close();
|
||||
auto tasks = json::array();
|
||||
auto grid = GridData(Paths::grid_input(config.model));
|
||||
auto datasets = Datasets(false, Paths::datasets());
|
||||
auto all_datasets = datasets.getNames();
|
||||
auto datasets_names = filterDatasets(datasets);
|
||||
for (int idx_dataset = 0; idx_dataset < datasets_names.size(); ++idx_dataset) {
|
||||
auto dataset = datasets_names[idx_dataset];
|
||||
for (const auto& seed : config.seeds) {
|
||||
auto combinations = grid.getGrid(dataset);
|
||||
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
|
||||
json task = {
|
||||
{ "dataset", dataset },
|
||||
{ "idx_dataset", idx_dataset},
|
||||
{ "seed", seed },
|
||||
{ "fold", n_fold},
|
||||
};
|
||||
tasks.push_back(task);
|
||||
}
|
||||
}
|
||||
}
|
||||
// Shuffle the array so heavy datasets are spread across the workers
|
||||
std::mt19937 g{ 271 }; // Use fixed seed to obtain the same shuffle
|
||||
std::shuffle(tasks.begin(), tasks.end(), g);
|
||||
std::cout << get_color_rank(rank) << "* Number of tasks: " << tasks.size() << std::endl;
|
||||
std::cout << "|";
|
||||
for (int i = 0; i < tasks.size(); ++i) {
|
||||
std::cout << (i + 1) % 10;
|
||||
}
|
||||
std::cout << "|" << std::endl << "|" << std::flush;
|
||||
return tasks;
|
||||
}
|
||||
void process_task_mpi_consumer(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result)
|
||||
{
|
||||
// initialize
|
||||
Timer timer;
|
||||
timer.start();
|
||||
json task = tasks[n_task];
|
||||
auto model = config.model;
|
||||
auto grid = GridData(Paths::grid_input(model));
|
||||
auto dataset = task["dataset"].get<std::string>();
|
||||
auto idx_dataset = task["idx_dataset"].get<int>();
|
||||
auto seed = task["seed"].get<int>();
|
||||
auto n_fold = task["fold"].get<int>();
|
||||
bool stratified = config.stratified;
|
||||
// Generate the hyperparamters combinations
|
||||
auto combinations = grid.getGrid(dataset);
|
||||
auto [X, y] = datasets.getTensors(dataset);
|
||||
auto states = datasets.getStates(dataset);
|
||||
auto features = datasets.getFeatures(dataset);
|
||||
auto className = datasets.getClassName(dataset);
|
||||
//
|
||||
// Start working on task
|
||||
//
|
||||
Fold* fold;
|
||||
if (stratified)
|
||||
fold = new StratifiedKFold(config.n_folds, y, seed);
|
||||
else
|
||||
fold = new KFold(config.n_folds, y.size(0), seed);
|
||||
auto [train, test] = fold->getFold(n_fold);
|
||||
auto train_t = torch::tensor(train);
|
||||
auto test_t = torch::tensor(test);
|
||||
auto X_train = X.index({ "...", train_t });
|
||||
auto y_train = y.index({ train_t });
|
||||
auto X_test = X.index({ "...", test_t });
|
||||
auto y_test = y.index({ test_t });
|
||||
double best_fold_score = 0.0;
|
||||
int best_idx_combination = -1;
|
||||
json best_fold_hyper;
|
||||
for (int idx_combination = 0; idx_combination < combinations.size(); ++idx_combination) {
|
||||
auto hyperparam_line = combinations[idx_combination];
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
||||
Fold* nested_fold;
|
||||
if (config.stratified)
|
||||
nested_fold = new StratifiedKFold(config.nested, y_train, seed);
|
||||
else
|
||||
nested_fold = new KFold(config.nested, y_train.size(0), seed);
|
||||
double score = 0.0;
|
||||
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
|
||||
// Nested level fold
|
||||
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
|
||||
auto train_nested_t = torch::tensor(train_nested);
|
||||
auto test_nested_t = torch::tensor(test_nested);
|
||||
auto X_nested_train = X_train.index({ "...", train_nested_t });
|
||||
auto y_nested_train = y_train.index({ train_nested_t });
|
||||
auto X_nested_test = X_train.index({ "...", test_nested_t });
|
||||
auto y_nested_test = y_train.index({ test_nested_t });
|
||||
// Build Classifier with selected hyperparameters
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, dataset);
|
||||
clf->setHyperparameters(hyperparameters.get(dataset));
|
||||
// Train model
|
||||
clf->fit(X_nested_train, y_nested_train, features, className, states);
|
||||
// Test model
|
||||
score += clf->score(X_nested_test, y_nested_test);
|
||||
}
|
||||
delete nested_fold;
|
||||
score /= config.nested;
|
||||
if (score > best_fold_score) {
|
||||
best_fold_score = score;
|
||||
best_idx_combination = idx_combination;
|
||||
best_fold_hyper = hyperparam_line;
|
||||
}
|
||||
}
|
||||
delete fold;
|
||||
// Build Classifier with the best hyperparameters to obtain the best score
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, dataset);
|
||||
clf->setHyperparameters(best_fold_hyper);
|
||||
clf->fit(X_train, y_train, features, className, states);
|
||||
best_fold_score = clf->score(X_test, y_test);
|
||||
// Return the result
|
||||
result->idx_dataset = task["idx_dataset"].get<int>();
|
||||
result->idx_combination = best_idx_combination;
|
||||
result->score = best_fold_score;
|
||||
result->n_fold = n_fold;
|
||||
result->time = timer.getDuration();
|
||||
// Update progress bar
|
||||
std::cout << get_color_rank(config_mpi.rank) << "*" << std::flush;
|
||||
}
|
||||
json store_result(std::vector<std::string>& names, Task_Result& result, json& results)
|
||||
{
|
||||
json json_result = {
|
||||
{ "score", result.score },
|
||||
{ "combination", result.idx_combination },
|
||||
{ "fold", result.n_fold },
|
||||
{ "time", result.time },
|
||||
{ "dataset", result.idx_dataset }
|
||||
};
|
||||
auto name = names[result.idx_dataset];
|
||||
if (!results.contains(name)) {
|
||||
results[name] = json::array();
|
||||
}
|
||||
results[name].push_back(json_result);
|
||||
return results;
|
||||
}
|
||||
json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||
{
|
||||
Task_Result result;
|
||||
json results;
|
||||
int num_tasks = tasks.size();
|
||||
|
||||
//
|
||||
// 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
|
||||
//
|
||||
for (int i = 0; i < num_tasks; ++i) {
|
||||
MPI_Status status;
|
||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_RESULT) {
|
||||
//Store result
|
||||
store_result(names, result, results);
|
||||
}
|
||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
|
||||
}
|
||||
//
|
||||
// 2a.2 Producer will send the end message to all the consumers
|
||||
//
|
||||
for (int i = 0; i < config_mpi.n_procs - 1; ++i) {
|
||||
MPI_Status status;
|
||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_RESULT) {
|
||||
//Store result
|
||||
store_result(names, result, results);
|
||||
}
|
||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
|
||||
}
|
||||
return results;
|
||||
}
|
||||
void select_best_results_folds(json& results, json& all_results, std::string& model)
|
||||
{
|
||||
Timer timer;
|
||||
auto grid = GridData(Paths::grid_input(model));
|
||||
//
|
||||
// Select the best result of the computed outer folds
|
||||
//
|
||||
for (const auto& result : all_results.items()) {
|
||||
// each result has the results of all the outer folds as each one were a different task
|
||||
double best_score = 0.0;
|
||||
json best;
|
||||
for (const auto& result_fold : result.value()) {
|
||||
double score = result_fold["score"].get<double>();
|
||||
if (score > best_score) {
|
||||
best_score = score;
|
||||
best = result_fold;
|
||||
}
|
||||
}
|
||||
auto dataset = result.key();
|
||||
auto combinations = grid.getGrid(dataset);
|
||||
json json_best = {
|
||||
{ "score", best_score },
|
||||
{ "hyperparameters", combinations[best["combination"].get<int>()] },
|
||||
{ "date", get_date() + " " + get_time() },
|
||||
{ "grid", grid.getInputGrid(dataset) },
|
||||
{ "duration", timer.translate2String(best["time"].get<double>()) }
|
||||
};
|
||||
results[dataset] = json_best;
|
||||
}
|
||||
}
|
||||
void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||
{
|
||||
Task_Result result;
|
||||
//
|
||||
// 2b.1 Consumers announce to the producer that they are ready to receive a task
|
||||
//
|
||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD);
|
||||
int task;
|
||||
while (true) {
|
||||
MPI_Status status;
|
||||
//
|
||||
// 2b.2 Consumers receive the task from the producer and process it
|
||||
//
|
||||
MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_END) {
|
||||
break;
|
||||
}
|
||||
process_task_mpi_consumer(config, config_mpi, tasks, task, datasets, &result);
|
||||
//
|
||||
// 2b.3 Consumers send the result to the producer
|
||||
//
|
||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
|
||||
}
|
||||
}
|
||||
void GridSearch::go(struct ConfigMPI& config_mpi)
|
||||
{
|
||||
/*
|
||||
* Each task is a json object with the following structure:
|
||||
* {
|
||||
* "dataset": "dataset_name",
|
||||
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
|
||||
* // this index is relative to the used datasets in the actual run not to the whole datasets
|
||||
* "seed": # of seed to use,
|
||||
* "Fold": # of fold to process
|
||||
* }
|
||||
*
|
||||
* The overall process consists in these steps:
|
||||
* 0. Create the MPI result type & tasks
|
||||
* 0.1 Create the MPI result type
|
||||
* 0.2 Manager creates the tasks
|
||||
* 1. Manager will broadcast the tasks to all the processes
|
||||
* 1.1 Broadcast the number of tasks
|
||||
* 1.2 Broadcast the length of the following string
|
||||
* 1.2 Broadcast the tasks as a char* string
|
||||
* 2a. Producer delivers the tasks to the consumers
|
||||
* 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
|
||||
* 2a.2 Producer will send the end message to all the consumers
|
||||
* 2b. Consumers process the tasks and send the results to the producer
|
||||
* 2b.1 Consumers announce to the producer that they are ready to receive a task
|
||||
* 2b.2 Consumers receive the task from the producer and process it
|
||||
* 2b.3 Consumers send the result to the producer
|
||||
* 3. Manager select the bests sccores for each dataset
|
||||
* 3.1 Loop thru all the results obtained from each outer fold (task) and select the best
|
||||
* 3.2 Save the results
|
||||
*/
|
||||
//
|
||||
// 0.1 Create the MPI result type
|
||||
//
|
||||
Task_Result result;
|
||||
int tasks_size;
|
||||
MPI_Datatype MPI_Result;
|
||||
MPI_Datatype type[5] = { MPI_UNSIGNED, MPI_UNSIGNED, MPI_INT, MPI_DOUBLE, MPI_DOUBLE };
|
||||
int blocklen[5] = { 1, 1, 1, 1, 1 };
|
||||
MPI_Aint disp[5];
|
||||
disp[0] = offsetof(Task_Result, idx_dataset);
|
||||
disp[1] = offsetof(Task_Result, idx_combination);
|
||||
disp[2] = offsetof(Task_Result, n_fold);
|
||||
disp[3] = offsetof(Task_Result, score);
|
||||
disp[4] = offsetof(Task_Result, time);
|
||||
MPI_Type_create_struct(5, blocklen, disp, type, &MPI_Result);
|
||||
MPI_Type_commit(&MPI_Result);
|
||||
//
|
||||
// 0.2 Manager creates the tasks
|
||||
//
|
||||
char* msg;
|
||||
json tasks;
|
||||
if (config_mpi.rank == config_mpi.manager) {
|
||||
timer.start();
|
||||
tasks = build_tasks_mpi(config_mpi.rank);
|
||||
auto tasks_str = tasks.dump();
|
||||
tasks_size = tasks_str.size();
|
||||
msg = new char[tasks_size + 1];
|
||||
strcpy(msg, tasks_str.c_str());
|
||||
}
|
||||
//
|
||||
// 1. Manager will broadcast the tasks to all the processes
|
||||
//
|
||||
MPI_Bcast(&tasks_size, 1, MPI_INT, config_mpi.manager, MPI_COMM_WORLD);
|
||||
if (config_mpi.rank != config_mpi.manager) {
|
||||
msg = new char[tasks_size + 1];
|
||||
}
|
||||
MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
|
||||
tasks = json::parse(msg);
|
||||
delete[] msg;
|
||||
auto datasets = Datasets(config.discretize, Paths::datasets());
|
||||
if (config_mpi.rank == config_mpi.manager) {
|
||||
//
|
||||
// 2a. Producer delivers the tasks to the consumers
|
||||
//
|
||||
auto datasets_names = filterDatasets(datasets);
|
||||
json all_results = producer(datasets_names, tasks, config_mpi, MPI_Result);
|
||||
std::cout << get_color_rank(config_mpi.rank) << "|" << std::endl;
|
||||
//
|
||||
// 3. Manager select the bests sccores for each dataset
|
||||
//
|
||||
auto results = initializeResults();
|
||||
select_best_results_folds(results, all_results, config.model);
|
||||
//
|
||||
// 3.2 Save the results
|
||||
//
|
||||
save(results);
|
||||
} else {
|
||||
//
|
||||
// 2b. Consumers process the tasks and send the results to the producer
|
||||
//
|
||||
consumer(datasets, tasks, config, config_mpi, MPI_Result);
|
||||
}
|
||||
}
|
||||
json GridSearch::initializeResults()
|
||||
{
|
||||
// Load previous results if continue is set
|
||||
json results;
|
||||
if (config.continue_from != NO_CONTINUE()) {
|
||||
if (!config.quiet)
|
||||
std::cout << "* Loading previous results" << std::endl;
|
||||
try {
|
||||
std::ifstream file(Paths::grid_output(config.model));
|
||||
if (file.is_open()) {
|
||||
results = json::parse(file);
|
||||
results = results["results"];
|
||||
}
|
||||
}
|
||||
catch (const std::exception& e) {
|
||||
std::cerr << "* There were no previous results" << std::endl;
|
||||
std::cerr << "* Initizalizing new results" << std::endl;
|
||||
results = json();
|
||||
}
|
||||
}
|
||||
return results;
|
||||
}
|
||||
void GridSearch::save(json& results)
|
||||
{
|
||||
std::ofstream file(Paths::grid_output(config.model));
|
||||
json output = {
|
||||
{ "model", config.model },
|
||||
{ "score", config.score },
|
||||
{ "discretize", config.discretize },
|
||||
{ "stratified", config.stratified },
|
||||
{ "n_folds", config.n_folds },
|
||||
{ "seeds", config.seeds },
|
||||
{ "date", get_date() + " " + get_time()},
|
||||
{ "nested", config.nested},
|
||||
{ "platform", config.platform },
|
||||
{ "duration", timer.getDurationString(true)},
|
||||
{ "results", results }
|
||||
|
||||
};
|
||||
file << output.dump(4);
|
||||
}
|
||||
} /* namespace platform */
|
@@ -1,36 +1,60 @@
|
||||
#ifndef GRIDSEARCH_H
|
||||
#define GRIDSEARCH_H
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <mpi.h>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "Datasets.h"
|
||||
#include "HyperParameters.h"
|
||||
#include "GridData.h"
|
||||
#include "Timer.h"
|
||||
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
struct ConfigGrid {
|
||||
std::string model;
|
||||
std::string score;
|
||||
std::string path;
|
||||
std::string input_file;
|
||||
std::string output_file;
|
||||
std::string continue_from;
|
||||
std::string platform;
|
||||
bool quiet;
|
||||
bool only; // used with continue_from to only compute that dataset
|
||||
bool discretize;
|
||||
bool stratified;
|
||||
int nested;
|
||||
int n_folds;
|
||||
json excluded;
|
||||
std::vector<int> seeds;
|
||||
};
|
||||
struct ConfigMPI {
|
||||
int rank;
|
||||
int n_procs;
|
||||
int manager;
|
||||
};
|
||||
typedef struct {
|
||||
uint idx_dataset;
|
||||
uint idx_combination;
|
||||
int n_fold;
|
||||
double score;
|
||||
double time;
|
||||
} Task_Result;
|
||||
const int TAG_QUERY = 1;
|
||||
const int TAG_RESULT = 2;
|
||||
const int TAG_TASK = 3;
|
||||
const int TAG_END = 4;
|
||||
class GridSearch {
|
||||
public:
|
||||
explicit GridSearch(struct ConfigGrid& config);
|
||||
void go();
|
||||
void save() const;
|
||||
void go(struct ConfigMPI& config_mpi);
|
||||
~GridSearch() = default;
|
||||
json loadResults();
|
||||
static inline std::string NO_CONTINUE() { return "NO_CONTINUE"; }
|
||||
private:
|
||||
double processFile(std::string fileName, Datasets& datasets, HyperParameters& hyperparameters);
|
||||
json results;
|
||||
void save(json& results);
|
||||
json initializeResults();
|
||||
std::vector<std::string> filterDatasets(Datasets& datasets) const;
|
||||
struct ConfigGrid config;
|
||||
json build_tasks_mpi(int rank);
|
||||
Timer timer; // used to measure the time of the whole process
|
||||
};
|
||||
} /* namespace platform */
|
||||
#endif /* GRIDSEARCH_H */
|
@@ -35,7 +35,7 @@ namespace platform {
|
||||
hyperparameters[dataset] = json({});
|
||||
continue;
|
||||
}
|
||||
hyperparameters[dataset] = input_hyperparameters[dataset].get<json>();
|
||||
hyperparameters[dataset] = input_hyperparameters[dataset]["hyperparameters"].get<json>();
|
||||
}
|
||||
}
|
||||
void HyperParameters::check(const std::vector<std::string>& valid, const std::string& fileName)
|
||||
|
@@ -26,6 +26,14 @@ namespace platform {
|
||||
}
|
||||
}
|
||||
static std::string excelResults() { return "some_results.xlsx"; }
|
||||
static std::string grid_input(const std::string& model)
|
||||
{
|
||||
return grid() + "grid_" + model + "_input.json";
|
||||
}
|
||||
static std::string grid_output(const std::string& model)
|
||||
{
|
||||
return grid() + "grid_" + model + "_output.json";
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -32,5 +32,4 @@ namespace platform {
|
||||
bool complete;
|
||||
};
|
||||
};
|
||||
|
||||
#endif
|
@@ -7,7 +7,6 @@
|
||||
#include "Result.h"
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
|
||||
class Results {
|
||||
public:
|
||||
Results(const std::string& path, const std::string& model, const std::string& score, bool complete, bool partial);
|
||||
@@ -34,5 +33,4 @@ namespace platform {
|
||||
void load(); // Loads the list of results
|
||||
};
|
||||
};
|
||||
|
||||
#endif
|
@@ -20,13 +20,22 @@ namespace platform {
|
||||
std::chrono::duration<double> time_span = std::chrono::duration_cast<std::chrono::duration<double >> (end - begin);
|
||||
return time_span.count();
|
||||
}
|
||||
std::string getDurationString()
|
||||
double getLapse()
|
||||
{
|
||||
std::chrono::duration<double> time_span = std::chrono::duration_cast<std::chrono::duration<double >> (std::chrono::high_resolution_clock::now() - begin);
|
||||
return time_span.count();
|
||||
}
|
||||
std::string getDurationString(bool lapse = false)
|
||||
{
|
||||
double duration = lapse ? getLapse() : getDuration();
|
||||
return translate2String(duration);
|
||||
}
|
||||
std::string translate2String(double duration)
|
||||
{
|
||||
double duration = getDuration();
|
||||
double durationShow = duration > 3600 ? duration / 3600 : duration > 60 ? duration / 60 : duration;
|
||||
std::string durationUnit = duration > 3600 ? "h" : duration > 60 ? "m" : "s";
|
||||
std::stringstream ss;
|
||||
ss << std::setw(7) << std::setprecision(2) << std::fixed << durationShow << " " << durationUnit << " ";
|
||||
ss << std::setprecision(2) << std::fixed << durationShow << " " << durationUnit;
|
||||
return ss.str();
|
||||
}
|
||||
};
|
||||
|
@@ -5,9 +5,8 @@
|
||||
#include "Colors.h"
|
||||
|
||||
|
||||
argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
void manageArguments(argparse::ArgumentParser& program, int argc, char** argv)
|
||||
{
|
||||
argparse::ArgumentParser program("b_sbest");
|
||||
program.add_argument("-m", "--model").default_value("").help("Filter results of the selected model) (any for all models)");
|
||||
program.add_argument("-s", "--score").default_value("").help("Filter results of the score name supplied");
|
||||
program.add_argument("--build").help("build best score results file").default_value(false).implicit_value(true);
|
||||
@@ -28,12 +27,12 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
catch (...) {
|
||||
throw std::runtime_error("Number of folds must be an decimal number");
|
||||
}});
|
||||
return program;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
auto program = manageArguments(argc, argv);
|
||||
argparse::ArgumentParser program("b_sbest");
|
||||
manageArguments(program, argc, argv);
|
||||
std::string model, score;
|
||||
bool build, report, friedman, excel;
|
||||
double level;
|
||||
|
@@ -1,17 +1,23 @@
|
||||
#include <iostream>
|
||||
#include <argparse/argparse.hpp>
|
||||
#include <map>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include <mpi.h>
|
||||
#include "DotEnv.h"
|
||||
#include "Models.h"
|
||||
#include "modelRegister.h"
|
||||
#include "GridSearch.h"
|
||||
#include "Paths.h"
|
||||
#include "Timer.h"
|
||||
#include "Colors.h"
|
||||
|
||||
using json = nlohmann::json;
|
||||
const int MAXL = 133;
|
||||
|
||||
argparse::ArgumentParser manageArguments(std::string program_name)
|
||||
void manageArguments(argparse::ArgumentParser& program)
|
||||
{
|
||||
auto env = platform::DotEnv();
|
||||
argparse::ArgumentParser program(program_name);
|
||||
auto& group = program.add_mutually_exclusive_group(true);
|
||||
program.add_argument("-m", "--model")
|
||||
.help("Model to use " + platform::Models::instance()->tostring())
|
||||
.action([](const std::string& value) {
|
||||
@@ -22,9 +28,29 @@ argparse::ArgumentParser manageArguments(std::string program_name)
|
||||
throw std::runtime_error("Model must be one of " + platform::Models::instance()->tostring());
|
||||
}
|
||||
);
|
||||
group.add_argument("--dump").help("Show the grid combinations").default_value(false).implicit_value(true);
|
||||
group.add_argument("--report").help("Report the computed hyperparameters").default_value(false).implicit_value(true);
|
||||
group.add_argument("--compute").help("Perform computation of the grid output hyperparameters").default_value(false).implicit_value(true);
|
||||
program.add_argument("--discretize").help("Discretize input datasets").default_value((bool)stoi(env.get("discretize"))).implicit_value(true);
|
||||
program.add_argument("--quiet").help("Don't display detailed progress").default_value(false).implicit_value(true);
|
||||
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value((bool)stoi(env.get("stratified"))).implicit_value(true);
|
||||
program.add_argument("--quiet").help("Don't display detailed progress").default_value(false).implicit_value(true);
|
||||
program.add_argument("--continue").help("Continue computing from that dataset").default_value(platform::GridSearch::NO_CONTINUE());
|
||||
program.add_argument("--only").help("Used with continue to compute that dataset only").default_value(false).implicit_value(true);
|
||||
program.add_argument("--exclude").default_value("[]").help("Datasets to exclude in json format, e.g. [\"dataset1\", \"dataset2\"]");
|
||||
program.add_argument("--nested").help("Set the double/nested cross validation number of folds").default_value(5).scan<'i', int>().action([](const std::string& value) {
|
||||
try {
|
||||
auto k = stoi(value);
|
||||
if (k < 2) {
|
||||
throw std::runtime_error("Number of nested folds must be greater than 1");
|
||||
}
|
||||
return k;
|
||||
}
|
||||
catch (const runtime_error& err) {
|
||||
throw std::runtime_error(err.what());
|
||||
}
|
||||
catch (...) {
|
||||
throw std::runtime_error("Number of nested folds must be an integer");
|
||||
}});
|
||||
program.add_argument("--score").help("Score used in gridsearch").default_value("accuracy");
|
||||
program.add_argument("-f", "--folds").help("Number of folds").default_value(stoi(env.get("n_folds"))).scan<'i', int>().action([](const std::string& value) {
|
||||
try {
|
||||
@@ -42,13 +68,98 @@ argparse::ArgumentParser manageArguments(std::string program_name)
|
||||
}});
|
||||
auto seed_values = env.getSeeds();
|
||||
program.add_argument("-s", "--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
|
||||
return program;
|
||||
}
|
||||
|
||||
void list_dump(std::string& model)
|
||||
{
|
||||
auto data = platform::GridData(platform::Paths::grid_input(model));
|
||||
std::cout << Colors::MAGENTA() << "Listing configuration input file (Grid)" << std::endl << std::endl;
|
||||
int index = 0;
|
||||
int max_hyper = 15;
|
||||
int max_dataset = 7;
|
||||
auto combinations = data.getGridFile();
|
||||
for (auto const& item : combinations) {
|
||||
if (item.first.size() > max_dataset) {
|
||||
max_dataset = item.first.size();
|
||||
}
|
||||
if (item.second.dump().size() > max_hyper) {
|
||||
max_hyper = item.second.dump().size();
|
||||
}
|
||||
}
|
||||
std::cout << Colors::GREEN() << left << " # " << left << setw(max_dataset) << "Dataset" << " #Com. "
|
||||
<< setw(max_hyper) << "Hyperparameters" << std::endl;
|
||||
std::cout << "=== " << string(max_dataset, '=') << " ===== " << string(max_hyper, '=') << std::endl;
|
||||
bool odd = true;
|
||||
for (auto const& item : combinations) {
|
||||
auto color = odd ? Colors::CYAN() : Colors::BLUE();
|
||||
std::cout << color;
|
||||
auto num_combinations = data.getNumCombinations(item.first);
|
||||
std::cout << setw(3) << fixed << right << ++index << left << " " << setw(max_dataset) << item.first
|
||||
<< " " << setw(5) << right << num_combinations << " " << setw(max_hyper) << item.second.dump() << std::endl;
|
||||
odd = !odd;
|
||||
}
|
||||
std::cout << Colors::RESET() << std::endl;
|
||||
}
|
||||
std::string headerLine(const std::string& text, int utf = 0)
|
||||
{
|
||||
int n = MAXL - text.length() - 3;
|
||||
n = n < 0 ? 0 : n;
|
||||
return "* " + text + std::string(n + utf, ' ') + "*\n";
|
||||
}
|
||||
void list_results(json& results, std::string& model)
|
||||
{
|
||||
std::cout << Colors::MAGENTA() << std::string(MAXL, '*') << std::endl;
|
||||
std::cout << headerLine("Listing computed hyperparameters for model " + model);
|
||||
std::cout << headerLine("Date & time: " + results["date"].get<std::string>() + " Duration: " + results["duration"].get<std::string>());
|
||||
std::cout << headerLine("Score: " + results["score"].get<std::string>());
|
||||
std::cout << headerLine(
|
||||
"Random seeds: " + results["seeds"].dump()
|
||||
+ " Discretized: " + (results["discretize"].get<bool>() ? "True" : "False")
|
||||
+ " Stratified: " + (results["stratified"].get<bool>() ? "True" : "False")
|
||||
+ " #Folds: " + std::to_string(results["n_folds"].get<int>())
|
||||
+ " Nested: " + (results["nested"].get<int>() == 0 ? "False" : to_string(results["nested"].get<int>()))
|
||||
);
|
||||
std::cout << std::string(MAXL, '*') << std::endl;
|
||||
int spaces = 7;
|
||||
int hyperparameters_spaces = 15;
|
||||
for (const auto& item : results["results"].items()) {
|
||||
auto key = item.key();
|
||||
auto value = item.value();
|
||||
if (key.size() > spaces) {
|
||||
spaces = key.size();
|
||||
}
|
||||
if (value["hyperparameters"].dump().size() > hyperparameters_spaces) {
|
||||
hyperparameters_spaces = value["hyperparameters"].dump().size();
|
||||
}
|
||||
}
|
||||
std::cout << Colors::GREEN() << " # " << left << setw(spaces) << "Dataset" << " " << setw(19) << "Date" << " "
|
||||
<< "Duration " << setw(8) << "Score" << " " << "Hyperparameters" << std::endl;
|
||||
std::cout << "=== " << string(spaces, '=') << " " << string(19, '=') << " " << string(8, '=') << " "
|
||||
<< string(8, '=') << " " << string(hyperparameters_spaces, '=') << std::endl;
|
||||
bool odd = true;
|
||||
int index = 0;
|
||||
for (const auto& item : results["results"].items()) {
|
||||
auto color = odd ? Colors::CYAN() : Colors::BLUE();
|
||||
auto value = item.value();
|
||||
std::cout << color;
|
||||
std::cout << std::setw(3) << std::right << index++ << " ";
|
||||
std::cout << left << setw(spaces) << item.key() << " " << value["date"].get<string>()
|
||||
<< " " << setw(8) << right << value["duration"].get<string>() << " " << setw(8) << setprecision(6)
|
||||
<< fixed << right << value["score"].get<double>() << " " << value["hyperparameters"].dump() << std::endl;
|
||||
odd = !odd;
|
||||
}
|
||||
std::cout << Colors::RESET() << std::endl;
|
||||
}
|
||||
|
||||
/*
|
||||
* Main
|
||||
*/
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
auto program = manageArguments("b_grid");
|
||||
argparse::ArgumentParser program("b_grid");
|
||||
manageArguments(program);
|
||||
struct platform::ConfigGrid config;
|
||||
bool dump, compute;
|
||||
try {
|
||||
program.parse_args(argc, argv);
|
||||
config.model = program.get<std::string>("model");
|
||||
@@ -57,7 +168,20 @@ int main(int argc, char** argv)
|
||||
config.stratified = program.get<bool>("stratified");
|
||||
config.n_folds = program.get<int>("folds");
|
||||
config.quiet = program.get<bool>("quiet");
|
||||
config.only = program.get<bool>("only");
|
||||
config.seeds = program.get<std::vector<int>>("seeds");
|
||||
config.nested = program.get<int>("nested");
|
||||
config.continue_from = program.get<std::string>("continue");
|
||||
if (config.continue_from == platform::GridSearch::NO_CONTINUE() && config.only) {
|
||||
throw std::runtime_error("Cannot use --only without --continue");
|
||||
}
|
||||
dump = program.get<bool>("dump");
|
||||
compute = program.get<bool>("compute");
|
||||
if (dump && (config.continue_from != platform::GridSearch::NO_CONTINUE() || config.only)) {
|
||||
throw std::runtime_error("Cannot use --dump with --continue or --only");
|
||||
}
|
||||
auto excluded = program.get<std::string>("exclude");
|
||||
config.excluded = json::parse(excluded);
|
||||
}
|
||||
catch (const exception& err) {
|
||||
cerr << err.what() << std::endl;
|
||||
@@ -68,14 +192,40 @@ int main(int argc, char** argv)
|
||||
* Begin Processing
|
||||
*/
|
||||
auto env = platform::DotEnv();
|
||||
config.platform = env.get("platform");
|
||||
platform::Paths::createPath(platform::Paths::grid());
|
||||
config.path = platform::Paths::grid();
|
||||
auto grid_search = platform::GridSearch(config);
|
||||
platform::Timer timer;
|
||||
timer.start();
|
||||
grid_search.go();
|
||||
std::cout << "Process took " << timer.getDurationString() << std::endl;
|
||||
grid_search.save();
|
||||
if (dump) {
|
||||
list_dump(config.model);
|
||||
} else {
|
||||
if (compute) {
|
||||
struct platform::ConfigMPI mpi_config;
|
||||
mpi_config.manager = 0; // which process is the manager
|
||||
MPI_Init(&argc, &argv);
|
||||
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_config.rank);
|
||||
MPI_Comm_size(MPI_COMM_WORLD, &mpi_config.n_procs);
|
||||
if (mpi_config.n_procs < 2) {
|
||||
throw std::runtime_error("Cannot use --compute with less than 2 mpi processes, try mpirun -np 2 ...");
|
||||
}
|
||||
grid_search.go(mpi_config);
|
||||
if (mpi_config.rank == mpi_config.manager) {
|
||||
auto results = grid_search.loadResults();
|
||||
list_results(results, config.model);
|
||||
std::cout << "Process took " << timer.getDurationString() << std::endl;
|
||||
}
|
||||
MPI_Finalize();
|
||||
} else {
|
||||
// List results
|
||||
auto results = grid_search.loadResults();
|
||||
if (results.empty()) {
|
||||
std::cout << "** No results found" << std::endl;
|
||||
} else {
|
||||
list_results(results, config.model);
|
||||
}
|
||||
}
|
||||
}
|
||||
std::cout << "Done!" << std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
@@ -11,10 +11,9 @@
|
||||
|
||||
using json = nlohmann::json;
|
||||
|
||||
argparse::ArgumentParser manageArguments(std::string program_name)
|
||||
void manageArguments(argparse::ArgumentParser& program)
|
||||
{
|
||||
auto env = platform::DotEnv();
|
||||
argparse::ArgumentParser program(program_name);
|
||||
program.add_argument("-d", "--dataset").default_value("").help("Dataset file name");
|
||||
program.add_argument("--hyperparameters").default_value("{}").help("Hyperparameters passed to the model in Experiment");
|
||||
program.add_argument("--hyper-file").default_value("").help("Hyperparameters file name." \
|
||||
@@ -50,18 +49,18 @@ argparse::ArgumentParser manageArguments(std::string program_name)
|
||||
}});
|
||||
auto seed_values = env.getSeeds();
|
||||
program.add_argument("-s", "--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
|
||||
return program;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
argparse::ArgumentParser program("b_main");
|
||||
manageArguments(program);
|
||||
std::string file_name, model_name, title, hyperparameters_file;
|
||||
json hyperparameters_json;
|
||||
bool discretize_dataset, stratified, saveResults, quiet;
|
||||
std::vector<int> seeds;
|
||||
std::vector<std::string> filesToTest;
|
||||
int n_folds;
|
||||
auto program = manageArguments("b_main");
|
||||
try {
|
||||
program.parse_args(argc, argv);
|
||||
file_name = program.get<std::string>("dataset");
|
||||
|
@@ -3,9 +3,8 @@
|
||||
#include "ManageResults.h"
|
||||
|
||||
|
||||
argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
void manageArguments(argparse::ArgumentParser& program, int argc, char** argv)
|
||||
{
|
||||
argparse::ArgumentParser program("b_manage");
|
||||
program.add_argument("-n", "--number").default_value(0).help("Number of results to show (0 = all)").scan<'i', int>();
|
||||
program.add_argument("-m", "--model").default_value("any").help("Filter results of the selected model)");
|
||||
program.add_argument("-s", "--score").default_value("any").help("Filter results of the score name supplied");
|
||||
@@ -29,12 +28,12 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
std::cerr << program;
|
||||
exit(1);
|
||||
}
|
||||
return program;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
auto program = manageArguments(argc, argv);
|
||||
auto program = argparse::ArgumentParser("b_manage");
|
||||
manageArguments(program, argc, argv);
|
||||
int number = program.get<int>("number");
|
||||
std::string model = program.get<std::string>("model");
|
||||
std::string score = program.get<std::string>("score");
|
||||
|
@@ -5,6 +5,18 @@ namespace pywrap {
|
||||
{
|
||||
validHyperparameters = { "n_jobs", "n_estimators", "random_state" };
|
||||
}
|
||||
int ODTE::getNumberOfNodes() const
|
||||
{
|
||||
return callMethodInt("get_nodes");
|
||||
}
|
||||
int ODTE::getNumberOfEdges() const
|
||||
{
|
||||
return callMethodInt("get_leaves");
|
||||
}
|
||||
int ODTE::getNumberOfStates() const
|
||||
{
|
||||
return callMethodInt("get_depth");
|
||||
}
|
||||
std::string ODTE::graph()
|
||||
{
|
||||
return callMethodString("graph");
|
||||
|
@@ -8,6 +8,9 @@ namespace pywrap {
|
||||
public:
|
||||
ODTE();
|
||||
~ODTE() = default;
|
||||
int getNumberOfNodes() const override;
|
||||
int getNumberOfEdges() const override;
|
||||
int getNumberOfStates() const override;
|
||||
std::string graph();
|
||||
};
|
||||
} /* namespace pywrap */
|
||||
|
@@ -38,6 +38,14 @@ namespace pywrap {
|
||||
{
|
||||
return pyWrap->callMethodString(id, method);
|
||||
}
|
||||
int PyClassifier::callMethodSumOfItems(const std::string& method) const
|
||||
{
|
||||
return pyWrap->callMethodSumOfItems(id, method);
|
||||
}
|
||||
int PyClassifier::callMethodInt(const std::string& method) const
|
||||
{
|
||||
return pyWrap->callMethodInt(id, method);
|
||||
}
|
||||
PyClassifier& PyClassifier::fit(torch::Tensor& X, torch::Tensor& y)
|
||||
{
|
||||
if (!fitted && hyperparameters.size() > 0) {
|
||||
|
@@ -29,10 +29,11 @@ namespace pywrap {
|
||||
float score(torch::Tensor& X, torch::Tensor& y) override;
|
||||
std::string version();
|
||||
std::string callMethodString(const std::string& method);
|
||||
int callMethodSumOfItems(const std::string& method) const;
|
||||
int callMethodInt(const std::string& method) const;
|
||||
std::string getVersion() override { return this->version(); };
|
||||
// TODO: Implement these 3 methods
|
||||
int getNumberOfNodes()const override { return 0; };
|
||||
int getNumberOfEdges()const override { return 0; };
|
||||
int getNumberOfNodes() const override { return 0; };
|
||||
int getNumberOfEdges() const override { return 0; };
|
||||
int getNumberOfStates() const override { return 0; };
|
||||
std::vector<std::string> show() const override { return std::vector<std::string>(); }
|
||||
std::vector<std::string> graph(const std::string& title = "") const override { return std::vector<std::string>(); }
|
||||
|
@@ -110,17 +110,80 @@ namespace pywrap {
|
||||
Py_XDECREF(result);
|
||||
return value;
|
||||
}
|
||||
int PyWrap::callMethodInt(const clfId_t id, const std::string& method)
|
||||
{
|
||||
PyObject* instance = getClass(id);
|
||||
PyObject* result;
|
||||
try {
|
||||
if (!(result = PyObject_CallMethod(instance, method.c_str(), NULL)))
|
||||
errorAbort("Couldn't call method " + method);
|
||||
}
|
||||
catch (const std::exception& e) {
|
||||
errorAbort(e.what());
|
||||
}
|
||||
int value = PyLong_AsLong(result);
|
||||
Py_XDECREF(result);
|
||||
return value;
|
||||
}
|
||||
std::string PyWrap::sklearnVersion()
|
||||
{
|
||||
return "1.0";
|
||||
// CPyObject data = PyRun_SimpleString("import sklearn;return sklearn.__version__");
|
||||
// std::string result = PyUnicode_AsUTF8(data);
|
||||
// return result;
|
||||
PyObject* sklearnModule = PyImport_ImportModule("sklearn");
|
||||
if (sklearnModule == nullptr) {
|
||||
errorAbort("Couldn't import sklearn");
|
||||
}
|
||||
PyObject* versionAttr = PyObject_GetAttrString(sklearnModule, "__version__");
|
||||
if (versionAttr == nullptr || !PyUnicode_Check(versionAttr)) {
|
||||
Py_XDECREF(sklearnModule);
|
||||
errorAbort("Couldn't get sklearn version");
|
||||
}
|
||||
std::string result = PyUnicode_AsUTF8(versionAttr);
|
||||
Py_XDECREF(versionAttr);
|
||||
Py_XDECREF(sklearnModule);
|
||||
return result;
|
||||
}
|
||||
std::string PyWrap::version(const clfId_t id)
|
||||
{
|
||||
return callMethodString(id, "version");
|
||||
}
|
||||
int PyWrap::callMethodSumOfItems(const clfId_t id, const std::string& method)
|
||||
{
|
||||
// Call method on each estimator and sum the results (made for RandomForest)
|
||||
PyObject* instance = getClass(id);
|
||||
PyObject* estimators = PyObject_GetAttrString(instance, "estimators_");
|
||||
if (estimators == nullptr) {
|
||||
errorAbort("Failed to get attribute: " + method);
|
||||
}
|
||||
int sumOfItems = 0;
|
||||
Py_ssize_t len = PyList_Size(estimators);
|
||||
for (Py_ssize_t i = 0; i < len; i++) {
|
||||
PyObject* estimator = PyList_GetItem(estimators, i);
|
||||
PyObject* result;
|
||||
if (method == "node_count") {
|
||||
PyObject* owner = PyObject_GetAttrString(estimator, "tree_");
|
||||
if (owner == nullptr) {
|
||||
Py_XDECREF(estimators);
|
||||
errorAbort("Failed to get attribute tree_ for: " + method);
|
||||
}
|
||||
result = PyObject_GetAttrString(owner, method.c_str());
|
||||
if (result == nullptr) {
|
||||
Py_XDECREF(estimators);
|
||||
Py_XDECREF(owner);
|
||||
errorAbort("Failed to get attribute node_count: " + method);
|
||||
}
|
||||
Py_DECREF(owner);
|
||||
} else {
|
||||
result = PyObject_CallMethod(estimator, method.c_str(), nullptr);
|
||||
if (result == nullptr) {
|
||||
Py_XDECREF(estimators);
|
||||
errorAbort("Failed to call method: " + method);
|
||||
}
|
||||
}
|
||||
sumOfItems += PyLong_AsLong(result);
|
||||
Py_DECREF(result);
|
||||
}
|
||||
Py_DECREF(estimators);
|
||||
return sumOfItems;
|
||||
}
|
||||
void PyWrap::setHyperparameters(const clfId_t id, const json& hyperparameters)
|
||||
{
|
||||
// Set hyperparameters as attributes of the class
|
||||
|
@@ -24,8 +24,10 @@ namespace pywrap {
|
||||
void operator=(const PyWrap&) = delete;
|
||||
~PyWrap() = default;
|
||||
std::string callMethodString(const clfId_t id, const std::string& method);
|
||||
int callMethodInt(const clfId_t id, const std::string& method);
|
||||
std::string sklearnVersion();
|
||||
std::string version(const clfId_t id);
|
||||
int callMethodSumOfItems(const clfId_t id, const std::string& method);
|
||||
void setHyperparameters(const clfId_t id, const json& hyperparameters);
|
||||
void fit(const clfId_t id, CPyObject& X, CPyObject& y);
|
||||
PyObject* predict(const clfId_t id, CPyObject& X);
|
||||
|
@@ -5,4 +5,16 @@ namespace pywrap {
|
||||
{
|
||||
validHyperparameters = { "n_estimators", "n_jobs", "random_state" };
|
||||
}
|
||||
int RandomForest::getNumberOfEdges() const
|
||||
{
|
||||
return callMethodSumOfItems("get_n_leaves");
|
||||
}
|
||||
int RandomForest::getNumberOfStates() const
|
||||
{
|
||||
return callMethodSumOfItems("get_depth");
|
||||
}
|
||||
int RandomForest::getNumberOfNodes() const
|
||||
{
|
||||
return callMethodSumOfItems("node_count");
|
||||
}
|
||||
} /* namespace pywrap */
|
@@ -7,6 +7,9 @@ namespace pywrap {
|
||||
public:
|
||||
RandomForest();
|
||||
~RandomForest() = default;
|
||||
int getNumberOfEdges() const override;
|
||||
int getNumberOfStates() const override;
|
||||
int getNumberOfNodes() const override;
|
||||
};
|
||||
} /* namespace pywrap */
|
||||
#endif /* RANDOMFOREST_H */
|
@@ -5,6 +5,18 @@ namespace pywrap {
|
||||
{
|
||||
validHyperparameters = { "C", "kernel", "max_iter", "max_depth", "random_state", "multiclass_strategy", "gamma", "max_features", "degree" };
|
||||
};
|
||||
int STree::getNumberOfNodes() const
|
||||
{
|
||||
return callMethodInt("get_nodes");
|
||||
}
|
||||
int STree::getNumberOfEdges() const
|
||||
{
|
||||
return callMethodInt("get_leaves");
|
||||
}
|
||||
int STree::getNumberOfStates() const
|
||||
{
|
||||
return callMethodInt("get_depth");
|
||||
}
|
||||
std::string STree::graph()
|
||||
{
|
||||
return callMethodString("graph");
|
||||
|
@@ -8,6 +8,9 @@ namespace pywrap {
|
||||
public:
|
||||
STree();
|
||||
~STree() = default;
|
||||
int getNumberOfNodes() const override;
|
||||
int getNumberOfEdges() const override;
|
||||
int getNumberOfStates() const override;
|
||||
std::string graph();
|
||||
};
|
||||
} /* namespace pywrap */
|
||||
|
Reference in New Issue
Block a user