Compare commits
33 Commits
gridsearch
...
mpi_grid
Author | SHA1 | Date | |
---|---|---|---|
18e8e84284
|
|||
7de11b0e6d
|
|||
9b8db37a4b
|
|||
49b26bd04b
|
|||
b5b5b48864
|
|||
19586a3a5a
|
|||
ffe6d37436
|
|||
b73f4be146
|
|||
dbf2f35502
|
|||
db9e80a70e
|
|||
40ae4ad7f9
|
|||
234342f2de
|
|||
aa0936abd1
|
|||
f0d6f0cc38
|
|||
cc316bb8d3
|
|||
0723564e66
|
|||
2e95e8999d
|
|||
fb9b395748
|
|||
03e4437fea
|
|||
33cd32c639
|
|||
c460ef46ed
|
|||
dee9c674da
|
|||
e3f6dc1e0b
|
|||
460d20a402
|
|||
8dbbb65a2f
|
|||
d06bf187b2
|
|||
4addaefb47
|
|||
82964190f6
|
|||
4fefe9a1d2
|
|||
7c12dd25e5
|
|||
c713c0b1df
|
|||
64069a6cb7
|
|||
ba2a3f9523 |
10
.gitmodules
vendored
10
.gitmodules
vendored
@@ -1,15 +1,25 @@
|
|||||||
[submodule "lib/mdlp"]
|
[submodule "lib/mdlp"]
|
||||||
path = lib/mdlp
|
path = lib/mdlp
|
||||||
url = https://github.com/rmontanana/mdlp
|
url = https://github.com/rmontanana/mdlp
|
||||||
|
main = main
|
||||||
|
update = merge
|
||||||
[submodule "lib/catch2"]
|
[submodule "lib/catch2"]
|
||||||
path = lib/catch2
|
path = lib/catch2
|
||||||
|
main = v2.x
|
||||||
|
update = merge
|
||||||
url = https://github.com/catchorg/Catch2.git
|
url = https://github.com/catchorg/Catch2.git
|
||||||
[submodule "lib/argparse"]
|
[submodule "lib/argparse"]
|
||||||
path = lib/argparse
|
path = lib/argparse
|
||||||
url = https://github.com/p-ranav/argparse
|
url = https://github.com/p-ranav/argparse
|
||||||
|
master = master
|
||||||
|
update = merge
|
||||||
[submodule "lib/json"]
|
[submodule "lib/json"]
|
||||||
path = lib/json
|
path = lib/json
|
||||||
url = https://github.com/nlohmann/json.git
|
url = https://github.com/nlohmann/json.git
|
||||||
|
master = master
|
||||||
|
update = merge
|
||||||
[submodule "lib/libxlsxwriter"]
|
[submodule "lib/libxlsxwriter"]
|
||||||
path = lib/libxlsxwriter
|
path = lib/libxlsxwriter
|
||||||
url = https://github.com/jmcnamara/libxlsxwriter.git
|
url = https://github.com/jmcnamara/libxlsxwriter.git
|
||||||
|
main = main
|
||||||
|
update = merge
|
||||||
|
26
.vscode/launch.json
vendored
26
.vscode/launch.json
vendored
@@ -14,7 +14,7 @@
|
|||||||
"-s",
|
"-s",
|
||||||
"271",
|
"271",
|
||||||
"-p",
|
"-p",
|
||||||
"/home/rmontanana/Code/discretizbench/datasets/",
|
"/Users/rmontanana/Code/discretizbench/datasets/",
|
||||||
],
|
],
|
||||||
//"cwd": "${workspaceFolder}/build/sample/",
|
//"cwd": "${workspaceFolder}/build/sample/",
|
||||||
},
|
},
|
||||||
@@ -33,7 +33,23 @@
|
|||||||
// "--hyperparameters",
|
// "--hyperparameters",
|
||||||
// "{\"repeatSparent\": true, \"maxModels\": 12}"
|
// "{\"repeatSparent\": true, \"maxModels\": 12}"
|
||||||
],
|
],
|
||||||
"cwd": "/home/rmontanana/Code/discretizbench",
|
"cwd": "${workspaceFolder}/../discretizbench",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "lldb",
|
||||||
|
"request": "launch",
|
||||||
|
"name": "gridsearch",
|
||||||
|
"program": "${workspaceFolder}/build_debug/src/Platform/b_grid",
|
||||||
|
"args": [
|
||||||
|
"-m",
|
||||||
|
"KDB",
|
||||||
|
"--discretize",
|
||||||
|
"--continue",
|
||||||
|
"glass",
|
||||||
|
"--only",
|
||||||
|
"--compute"
|
||||||
|
],
|
||||||
|
"cwd": "${workspaceFolder}/../discretizbench",
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"type": "lldb",
|
"type": "lldb",
|
||||||
@@ -64,7 +80,7 @@
|
|||||||
"accuracy",
|
"accuracy",
|
||||||
"--build",
|
"--build",
|
||||||
],
|
],
|
||||||
"cwd": "/home/rmontanana/Code/discretizbench",
|
"cwd": "${workspaceFolder}/../discretizbench",
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"type": "lldb",
|
"type": "lldb",
|
||||||
@@ -75,7 +91,7 @@
|
|||||||
"-n",
|
"-n",
|
||||||
"20"
|
"20"
|
||||||
],
|
],
|
||||||
"cwd": "/home/rmontanana/Code/discretizbench",
|
"cwd": "${workspaceFolder}/../discretizbench",
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"type": "lldb",
|
"type": "lldb",
|
||||||
@@ -84,7 +100,7 @@
|
|||||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_list",
|
"program": "${workspaceFolder}/build_debug/src/Platform/b_list",
|
||||||
"args": [],
|
"args": [],
|
||||||
//"cwd": "/Users/rmontanana/Code/discretizbench",
|
//"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||||
"cwd": "/home/rmontanana/Code/covbench",
|
"cwd": "${workspaceFolder}/../discretizbench",
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"type": "lldb",
|
"type": "lldb",
|
||||||
|
@@ -25,12 +25,18 @@ set(CMAKE_CXX_EXTENSIONS OFF)
|
|||||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
|
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
|
||||||
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
|
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
|
||||||
|
|
||||||
# Options
|
# Options
|
||||||
# -------
|
# -------
|
||||||
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
|
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
|
||||||
option(ENABLE_TESTING "Unit testing build" OFF)
|
option(ENABLE_TESTING "Unit testing build" OFF)
|
||||||
option(CODE_COVERAGE "Collect coverage from test library" OFF)
|
option(CODE_COVERAGE "Collect coverage from test library" OFF)
|
||||||
|
option(MPI_ENABLED "Enable MPI options" ON)
|
||||||
|
|
||||||
|
if (MPI_ENABLED)
|
||||||
|
find_package(MPI REQUIRED)
|
||||||
|
message("MPI_CXX_LIBRARIES=${MPI_CXX_LIBRARIES}")
|
||||||
|
message("MPI_CXX_INCLUDE_DIRS=${MPI_CXX_INCLUDE_DIRS}")
|
||||||
|
endif (MPI_ENABLED)
|
||||||
|
|
||||||
# Boost Library
|
# Boost Library
|
||||||
set(Boost_USE_STATIC_LIBS OFF)
|
set(Boost_USE_STATIC_LIBS OFF)
|
||||||
|
4
Makefile
4
Makefile
@@ -49,10 +49,10 @@ dependency: ## Create a dependency graph diagram of the project (build/dependenc
|
|||||||
cd $(f_debug) && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
|
cd $(f_debug) && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
|
||||||
|
|
||||||
buildd: ## Build the debug targets
|
buildd: ## Build the debug targets
|
||||||
cmake --build $(f_debug) -t $(app_targets) $(n_procs)
|
cmake --build $(f_debug) -t $(app_targets) BayesNetSample $(n_procs)
|
||||||
|
|
||||||
buildr: ## Build the release targets
|
buildr: ## Build the release targets
|
||||||
cmake --build $(f_release) -t $(app_targets) $(n_procs)
|
cmake --build $(f_release) -t $(app_targets) BayesNetSample $(n_procs)
|
||||||
|
|
||||||
clean: ## Clean the tests info
|
clean: ## Clean the tests info
|
||||||
@echo ">>> Cleaning Debug BayesNet tests...";
|
@echo ">>> Cleaning Debug BayesNet tests...";
|
||||||
|
14
README.md
14
README.md
@@ -8,6 +8,20 @@ Bayesian Network Classifier with libtorch from scratch
|
|||||||
|
|
||||||
Before compiling BayesNet.
|
Before compiling BayesNet.
|
||||||
|
|
||||||
|
### MPI
|
||||||
|
|
||||||
|
In Linux just install openmpi & openmpi-devel packages. Only cmake can't find openmpi install (like in Oracle Linux) set the following variable:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export MPI_HOME="/usr/lib64/openmpi"
|
||||||
|
```
|
||||||
|
|
||||||
|
In Mac OS X, install mpich with brew and if cmake doesn't find it, edit mpicxx wrapper to remove the ",-commons,use_dylibs" from final_ldflags
|
||||||
|
|
||||||
|
```bash
|
||||||
|
vi /opt/homebrew/bin/mpicx
|
||||||
|
```
|
||||||
|
|
||||||
### boost library
|
### boost library
|
||||||
|
|
||||||
[Getting Started](<https://www.boost.org/doc/libs/1_83_0/more/getting_started/index.html>)
|
[Getting Started](<https://www.boost.org/doc/libs/1_83_0/more/getting_started/index.html>)
|
||||||
|
Submodule lib/argparse updated: b0930ab028...69dabd88a8
@@ -1,8 +1,10 @@
|
|||||||
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
|
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
|
||||||
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
|
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
|
||||||
|
include_directories(${BayesNet_SOURCE_DIR}/src/PyClassifiers)
|
||||||
|
include_directories(${Python3_INCLUDE_DIRS})
|
||||||
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||||
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
||||||
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
|
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
|
||||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||||
add_executable(BayesNetSample sample.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
|
add_executable(BayesNetSample sample.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
|
||||||
target_link_libraries(BayesNetSample BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
|
target_link_libraries(BayesNetSample BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}" PyWrap)
|
@@ -29,7 +29,7 @@ pair<std::vector<mdlp::labels_t>, map<std::string, int>> discretize(std::vector<
|
|||||||
return { Xd, maxes };
|
return { Xd, maxes };
|
||||||
}
|
}
|
||||||
|
|
||||||
bool file_exists(const std::std::std::string& name)
|
bool file_exists(const std::string& name)
|
||||||
{
|
{
|
||||||
if (FILE* file = fopen(name.c_str(), "r")) {
|
if (FILE* file = fopen(name.c_str(), "r")) {
|
||||||
fclose(file);
|
fclose(file);
|
||||||
@@ -72,7 +72,7 @@ int main(int argc, char** argv)
|
|||||||
argparse::ArgumentParser program("BayesNetSample");
|
argparse::ArgumentParser program("BayesNetSample");
|
||||||
program.add_argument("-d", "--dataset")
|
program.add_argument("-d", "--dataset")
|
||||||
.help("Dataset file name")
|
.help("Dataset file name")
|
||||||
.action([valid_datasets](const std::std::std::string& value) {
|
.action([valid_datasets](const std::string& value) {
|
||||||
if (find(valid_datasets.begin(), valid_datasets.end(), value) != valid_datasets.end()) {
|
if (find(valid_datasets.begin(), valid_datasets.end(), value) != valid_datasets.end()) {
|
||||||
return value;
|
return value;
|
||||||
}
|
}
|
||||||
@@ -84,20 +84,20 @@ int main(int argc, char** argv)
|
|||||||
.default_value(std::string{ PATH }
|
.default_value(std::string{ PATH }
|
||||||
);
|
);
|
||||||
program.add_argument("-m", "--model")
|
program.add_argument("-m", "--model")
|
||||||
.help("Model to use " + platform::Models::instance()->tostd::string())
|
.help("Model to use " + platform::Models::instance()->tostring())
|
||||||
.action([](const std::std::std::string& value) {
|
.action([](const std::string& value) {
|
||||||
static const std::vector<std::string> choices = platform::Models::instance()->getNames();
|
static const std::vector<std::string> choices = platform::Models::instance()->getNames();
|
||||||
if (find(choices.begin(), choices.end(), value) != choices.end()) {
|
if (find(choices.begin(), choices.end(), value) != choices.end()) {
|
||||||
return value;
|
return value;
|
||||||
}
|
}
|
||||||
throw runtime_error("Model must be one of " + platform::Models::instance()->tostd::string());
|
throw runtime_error("Model must be one of " + platform::Models::instance()->tostring());
|
||||||
}
|
}
|
||||||
);
|
);
|
||||||
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
|
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
|
||||||
program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true);
|
program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true);
|
||||||
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
|
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
|
||||||
program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true);
|
program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true);
|
||||||
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const std::std::string& value) {
|
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const std::string& value) {
|
||||||
try {
|
try {
|
||||||
auto k = stoi(value);
|
auto k = stoi(value);
|
||||||
if (k < 2) {
|
if (k < 2) {
|
||||||
@@ -184,8 +184,8 @@ int main(int argc, char** argv)
|
|||||||
file.close();
|
file.close();
|
||||||
std::cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << std::endl;
|
std::cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << std::endl;
|
||||||
std::cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << std::endl;
|
std::cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << std::endl;
|
||||||
std::string stratified_std::string = stratified ? " Stratified" : "";
|
std::string stratified_string = stratified ? " Stratified" : "";
|
||||||
std::cout << nFolds << " Folds" << stratified_std::string << " Cross validation" << std::endl;
|
std::cout << nFolds << " Folds" << stratified_string << " Cross validation" << std::endl;
|
||||||
std::cout << "==========================================" << std::endl;
|
std::cout << "==========================================" << std::endl;
|
||||||
torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
|
torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
|
||||||
torch::Tensor yt = torch::tensor(y, torch::kInt32);
|
torch::Tensor yt = torch::tensor(y, torch::kInt32);
|
||||||
|
@@ -12,7 +12,7 @@
|
|||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
BoostAODE::BoostAODE() : Ensemble()
|
BoostAODE::BoostAODE() : Ensemble()
|
||||||
{
|
{
|
||||||
validHyperparameters = { "repeatSparent", "maxModels", "ascending", "convergence", "threshold", "select_features" };
|
validHyperparameters = { "repeatSparent", "maxModels", "ascending", "convergence", "threshold", "select_features", "tolerance" };
|
||||||
|
|
||||||
}
|
}
|
||||||
void BoostAODE::buildModel(const torch::Tensor& weights)
|
void BoostAODE::buildModel(const torch::Tensor& weights)
|
||||||
@@ -47,22 +47,32 @@ namespace bayesnet {
|
|||||||
y_train = y_;
|
y_train = y_;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
void BoostAODE::setHyperparameters(const nlohmann::json& hyperparameters)
|
void BoostAODE::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||||
{
|
{
|
||||||
|
auto hyperparameters = hyperparameters_;
|
||||||
if (hyperparameters.contains("repeatSparent")) {
|
if (hyperparameters.contains("repeatSparent")) {
|
||||||
repeatSparent = hyperparameters["repeatSparent"];
|
repeatSparent = hyperparameters["repeatSparent"];
|
||||||
|
hyperparameters.erase("repeatSparent");
|
||||||
}
|
}
|
||||||
if (hyperparameters.contains("maxModels")) {
|
if (hyperparameters.contains("maxModels")) {
|
||||||
maxModels = hyperparameters["maxModels"];
|
maxModels = hyperparameters["maxModels"];
|
||||||
|
hyperparameters.erase("maxModels");
|
||||||
}
|
}
|
||||||
if (hyperparameters.contains("ascending")) {
|
if (hyperparameters.contains("ascending")) {
|
||||||
ascending = hyperparameters["ascending"];
|
ascending = hyperparameters["ascending"];
|
||||||
|
hyperparameters.erase("ascending");
|
||||||
}
|
}
|
||||||
if (hyperparameters.contains("convergence")) {
|
if (hyperparameters.contains("convergence")) {
|
||||||
convergence = hyperparameters["convergence"];
|
convergence = hyperparameters["convergence"];
|
||||||
|
hyperparameters.erase("convergence");
|
||||||
}
|
}
|
||||||
if (hyperparameters.contains("threshold")) {
|
if (hyperparameters.contains("threshold")) {
|
||||||
threshold = hyperparameters["threshold"];
|
threshold = hyperparameters["threshold"];
|
||||||
|
hyperparameters.erase("threshold");
|
||||||
|
}
|
||||||
|
if (hyperparameters.contains("tolerance")) {
|
||||||
|
tolerance = hyperparameters["tolerance"];
|
||||||
|
hyperparameters.erase("tolerance");
|
||||||
}
|
}
|
||||||
if (hyperparameters.contains("select_features")) {
|
if (hyperparameters.contains("select_features")) {
|
||||||
auto selectedAlgorithm = hyperparameters["select_features"];
|
auto selectedAlgorithm = hyperparameters["select_features"];
|
||||||
@@ -72,6 +82,10 @@ namespace bayesnet {
|
|||||||
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
|
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
|
||||||
throw std::invalid_argument("Invalid selectFeatures value [IWSS, FCBF, CFS]");
|
throw std::invalid_argument("Invalid selectFeatures value [IWSS, FCBF, CFS]");
|
||||||
}
|
}
|
||||||
|
hyperparameters.erase("select_features");
|
||||||
|
}
|
||||||
|
if (!hyperparameters.empty()) {
|
||||||
|
throw std::invalid_argument("Invalid hyperparameters" + hyperparameters.dump());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
std::unordered_set<int> BoostAODE::initializeModels()
|
std::unordered_set<int> BoostAODE::initializeModels()
|
||||||
@@ -109,10 +123,8 @@ namespace bayesnet {
|
|||||||
void BoostAODE::trainModel(const torch::Tensor& weights)
|
void BoostAODE::trainModel(const torch::Tensor& weights)
|
||||||
{
|
{
|
||||||
std::unordered_set<int> featuresUsed;
|
std::unordered_set<int> featuresUsed;
|
||||||
int tolerance = 5; // number of times the accuracy can be lower than the threshold
|
|
||||||
if (selectFeatures) {
|
if (selectFeatures) {
|
||||||
featuresUsed = initializeModels();
|
featuresUsed = initializeModels();
|
||||||
tolerance = 0; // Remove tolerance if features are selected
|
|
||||||
}
|
}
|
||||||
if (maxModels == 0)
|
if (maxModels == 0)
|
||||||
maxModels = .1 * n > 10 ? .1 * n : n;
|
maxModels = .1 * n > 10 ? .1 * n : n;
|
||||||
|
@@ -21,6 +21,7 @@ namespace bayesnet {
|
|||||||
// Hyperparameters
|
// Hyperparameters
|
||||||
bool repeatSparent = false; // if true, a feature can be selected more than once
|
bool repeatSparent = false; // if true, a feature can be selected more than once
|
||||||
int maxModels = 0;
|
int maxModels = 0;
|
||||||
|
int tolerance = 0;
|
||||||
bool ascending = false; //Process KBest features ascending or descending order
|
bool ascending = false; //Process KBest features ascending or descending order
|
||||||
bool convergence = false; //if true, stop when the model does not improve
|
bool convergence = false; //if true, stop when the model does not improve
|
||||||
bool selectFeatures = false; // if true, use feature selection
|
bool selectFeatures = false; // if true, use feature selection
|
||||||
|
@@ -7,6 +7,7 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
|
|||||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||||
include_directories(${BayesNet_SOURCE_DIR}/lib/libxlsxwriter/include)
|
include_directories(${BayesNet_SOURCE_DIR}/lib/libxlsxwriter/include)
|
||||||
include_directories(${Python3_INCLUDE_DIRS})
|
include_directories(${Python3_INCLUDE_DIRS})
|
||||||
|
include_directories(${MPI_CXX_INCLUDE_DIRS})
|
||||||
|
|
||||||
add_executable(b_best b_best.cc BestResults.cc Result.cc Statistics.cc BestResultsExcel.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
|
add_executable(b_best b_best.cc BestResults.cc Result.cc Statistics.cc BestResultsExcel.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
|
||||||
add_executable(b_grid b_grid.cc GridSearch.cc GridData.cc HyperParameters.cc Folding.cc Datasets.cc Dataset.cc)
|
add_executable(b_grid b_grid.cc GridSearch.cc GridData.cc HyperParameters.cc Folding.cc Datasets.cc Dataset.cc)
|
||||||
@@ -15,7 +16,7 @@ add_executable(b_main b_main.cc Folding.cc Experiment.cc Datasets.cc Dataset.cc
|
|||||||
add_executable(b_manage b_manage.cc Results.cc ManageResults.cc CommandParser.cc Result.cc ReportConsole.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
|
add_executable(b_manage b_manage.cc Results.cc ManageResults.cc CommandParser.cc Result.cc ReportConsole.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
|
||||||
|
|
||||||
target_link_libraries(b_best Boost::boost "${XLSXWRITER_LIB}" "${TORCH_LIBRARIES}" ArffFiles mdlp)
|
target_link_libraries(b_best Boost::boost "${XLSXWRITER_LIB}" "${TORCH_LIBRARIES}" ArffFiles mdlp)
|
||||||
target_link_libraries(b_grid BayesNet PyWrap)
|
target_link_libraries(b_grid BayesNet PyWrap ${MPI_CXX_LIBRARIES})
|
||||||
target_link_libraries(b_list ArffFiles mdlp "${TORCH_LIBRARIES}")
|
target_link_libraries(b_list ArffFiles mdlp "${TORCH_LIBRARIES}")
|
||||||
target_link_libraries(b_main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}" PyWrap)
|
target_link_libraries(b_main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}" PyWrap)
|
||||||
target_link_libraries(b_manage "${TORCH_LIBRARIES}" "${XLSXWRITER_LIB}" ArffFiles mdlp)
|
target_link_libraries(b_manage "${TORCH_LIBRARIES}" "${XLSXWRITER_LIB}" ArffFiles mdlp)
|
@@ -9,6 +9,7 @@ public:
|
|||||||
static std::string YELLOW() { return "\033[1;33m"; }
|
static std::string YELLOW() { return "\033[1;33m"; }
|
||||||
static std::string RED() { return "\033[1;31m"; }
|
static std::string RED() { return "\033[1;31m"; }
|
||||||
static std::string WHITE() { return "\033[1;37m"; }
|
static std::string WHITE() { return "\033[1;37m"; }
|
||||||
|
static std::string IBLUE() { return "\033[0;94m"; }
|
||||||
static std::string RESET() { return "\033[0m"; }
|
static std::string RESET() { return "\033[0m"; }
|
||||||
};
|
};
|
||||||
#endif // COLORS_H
|
#endif // COLORS_H
|
@@ -4,12 +4,19 @@
|
|||||||
namespace platform {
|
namespace platform {
|
||||||
GridData::GridData(const std::string& fileName)
|
GridData::GridData(const std::string& fileName)
|
||||||
{
|
{
|
||||||
|
json grid_file;
|
||||||
std::ifstream resultData(fileName);
|
std::ifstream resultData(fileName);
|
||||||
if (resultData.is_open()) {
|
if (resultData.is_open()) {
|
||||||
grid = json::parse(resultData);
|
grid_file = json::parse(resultData);
|
||||||
} else {
|
} else {
|
||||||
throw std::invalid_argument("Unable to open input file. [" + fileName + "]");
|
throw std::invalid_argument("Unable to open input file. [" + fileName + "]");
|
||||||
}
|
}
|
||||||
|
for (const auto& item : grid_file.items()) {
|
||||||
|
auto key = item.key();
|
||||||
|
auto value = item.value();
|
||||||
|
grid[key] = value;
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
int GridData::computeNumCombinations(const json& line)
|
int GridData::computeNumCombinations(const json& line)
|
||||||
{
|
{
|
||||||
@@ -19,10 +26,11 @@ namespace platform {
|
|||||||
}
|
}
|
||||||
return numCombinations;
|
return numCombinations;
|
||||||
}
|
}
|
||||||
int GridData::getNumCombinations()
|
int GridData::getNumCombinations(const std::string& dataset)
|
||||||
{
|
{
|
||||||
int numCombinations = 0;
|
int numCombinations = 0;
|
||||||
for (const auto& line : grid) {
|
auto selected = decide_dataset(dataset);
|
||||||
|
for (const auto& line : grid.at(selected)) {
|
||||||
numCombinations += computeNumCombinations(line);
|
numCombinations += computeNumCombinations(line);
|
||||||
}
|
}
|
||||||
return numCombinations;
|
return numCombinations;
|
||||||
@@ -44,12 +52,24 @@ namespace platform {
|
|||||||
}
|
}
|
||||||
return currentCombination;
|
return currentCombination;
|
||||||
}
|
}
|
||||||
std::vector<json> GridData::getGrid()
|
std::vector<json> GridData::getGrid(const std::string& dataset)
|
||||||
{
|
{
|
||||||
|
auto selected = decide_dataset(dataset);
|
||||||
auto result = std::vector<json>();
|
auto result = std::vector<json>();
|
||||||
for (json line : grid) {
|
for (json line : grid.at(selected)) {
|
||||||
generateCombinations(line.begin(), line.end(), result, json({}));
|
generateCombinations(line.begin(), line.end(), result, json({}));
|
||||||
}
|
}
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
json& GridData::getInputGrid(const std::string& dataset)
|
||||||
|
{
|
||||||
|
auto selected = decide_dataset(dataset);
|
||||||
|
return grid.at(selected);
|
||||||
|
}
|
||||||
|
std::string GridData::decide_dataset(const std::string& dataset)
|
||||||
|
{
|
||||||
|
if (grid.find(dataset) != grid.end())
|
||||||
|
return dataset;
|
||||||
|
return ALL_DATASETS;
|
||||||
|
}
|
||||||
} /* namespace platform */
|
} /* namespace platform */
|
@@ -7,16 +7,20 @@
|
|||||||
|
|
||||||
namespace platform {
|
namespace platform {
|
||||||
using json = nlohmann::json;
|
using json = nlohmann::json;
|
||||||
|
const std::string ALL_DATASETS = "all";
|
||||||
class GridData {
|
class GridData {
|
||||||
public:
|
public:
|
||||||
explicit GridData(const std::string& fileName);
|
explicit GridData(const std::string& fileName);
|
||||||
~GridData() = default;
|
~GridData() = default;
|
||||||
std::vector<json> getGrid();
|
std::vector<json> getGrid(const std::string& dataset = ALL_DATASETS);
|
||||||
int getNumCombinations();
|
int getNumCombinations(const std::string& dataset = ALL_DATASETS);
|
||||||
|
json& getInputGrid(const std::string& dataset = ALL_DATASETS);
|
||||||
|
std::map<std::string, json>& getGridFile() { return grid; }
|
||||||
private:
|
private:
|
||||||
|
std::string decide_dataset(const std::string& dataset);
|
||||||
json generateCombinations(json::iterator index, const json::iterator last, std::vector<json>& output, json currentCombination);
|
json generateCombinations(json::iterator index, const json::iterator last, std::vector<json>& output, json currentCombination);
|
||||||
int computeNumCombinations(const json& line);
|
int computeNumCombinations(const json& line);
|
||||||
json grid;
|
std::map<std::string, json> grid;
|
||||||
};
|
};
|
||||||
} /* namespace platform */
|
} /* namespace platform */
|
||||||
#endif /* GRIDDATA_H */
|
#endif /* GRIDDATA_H */
|
@@ -7,15 +7,74 @@
|
|||||||
#include "Colors.h"
|
#include "Colors.h"
|
||||||
|
|
||||||
namespace platform {
|
namespace platform {
|
||||||
|
std::string get_date()
|
||||||
|
{
|
||||||
|
time_t rawtime;
|
||||||
|
tm* timeinfo;
|
||||||
|
time(&rawtime);
|
||||||
|
timeinfo = std::localtime(&rawtime);
|
||||||
|
std::ostringstream oss;
|
||||||
|
oss << std::put_time(timeinfo, "%Y-%m-%d");
|
||||||
|
return oss.str();
|
||||||
|
}
|
||||||
|
std::string get_time()
|
||||||
|
{
|
||||||
|
time_t rawtime;
|
||||||
|
tm* timeinfo;
|
||||||
|
time(&rawtime);
|
||||||
|
timeinfo = std::localtime(&rawtime);
|
||||||
|
std::ostringstream oss;
|
||||||
|
oss << std::put_time(timeinfo, "%H:%M:%S");
|
||||||
|
return oss.str();
|
||||||
|
}
|
||||||
GridSearch::GridSearch(struct ConfigGrid& config) : config(config)
|
GridSearch::GridSearch(struct ConfigGrid& config) : config(config)
|
||||||
{
|
{
|
||||||
this->config.output_file = config.path + "grid_" + config.model + "_output.json";
|
|
||||||
this->config.input_file = config.path + "grid_" + config.model + "_input.json";
|
|
||||||
}
|
}
|
||||||
void showProgressComb(const int num, const int total, const std::string& color)
|
json GridSearch::getResults()
|
||||||
|
{
|
||||||
|
std::ifstream file(Paths::grid_output(config.model));
|
||||||
|
if (file.is_open()) {
|
||||||
|
return json::parse(file);
|
||||||
|
}
|
||||||
|
return json();
|
||||||
|
}
|
||||||
|
vector<std::string> GridSearch::processDatasets(Datasets& datasets)
|
||||||
|
{
|
||||||
|
// Load datasets
|
||||||
|
auto datasets_names = datasets.getNames();
|
||||||
|
if (config.continue_from != NO_CONTINUE()) {
|
||||||
|
// Continue previous execution:
|
||||||
|
if (std::find(datasets_names.begin(), datasets_names.end(), config.continue_from) == datasets_names.end()) {
|
||||||
|
throw std::invalid_argument("Dataset " + config.continue_from + " not found");
|
||||||
|
}
|
||||||
|
// Remove datasets already processed
|
||||||
|
vector< string >::iterator it = datasets_names.begin();
|
||||||
|
while (it != datasets_names.end()) {
|
||||||
|
if (*it != config.continue_from) {
|
||||||
|
it = datasets_names.erase(it);
|
||||||
|
} else {
|
||||||
|
if (config.only)
|
||||||
|
++it;
|
||||||
|
else
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// Exclude datasets
|
||||||
|
for (const auto& name : config.excluded) {
|
||||||
|
auto dataset = name.get<std::string>();
|
||||||
|
auto it = std::find(datasets_names.begin(), datasets_names.end(), dataset);
|
||||||
|
if (it == datasets_names.end()) {
|
||||||
|
throw std::invalid_argument("Dataset " + dataset + " already excluded or doesn't exist!");
|
||||||
|
}
|
||||||
|
datasets_names.erase(it);
|
||||||
|
}
|
||||||
|
return datasets_names;
|
||||||
|
}
|
||||||
|
void showProgressComb(const int num, const int n_folds, const int total, const std::string& color)
|
||||||
{
|
{
|
||||||
int spaces = int(log(total) / log(10)) + 1;
|
int spaces = int(log(total) / log(10)) + 1;
|
||||||
int magic = 37 + 2 * spaces;
|
int magic = n_folds * 3 + 22 + 2 * spaces;
|
||||||
std::string prefix = num == 1 ? "" : string(magic, '\b') + string(magic + 1, ' ') + string(magic + 1, '\b');
|
std::string prefix = num == 1 ? "" : string(magic, '\b') + string(magic + 1, ' ') + string(magic + 1, '\b');
|
||||||
std::cout << prefix << color << "(" << setw(spaces) << num << "/" << setw(spaces) << total << ") " << Colors::RESET() << flush;
|
std::cout << prefix << color << "(" << setw(spaces) << num << "/" << setw(spaces) << total << ") " << Colors::RESET() << flush;
|
||||||
}
|
}
|
||||||
@@ -37,28 +96,384 @@ namespace platform {
|
|||||||
return Colors::RESET();
|
return Colors::RESET();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
double GridSearch::processFile(std::string fileName, Datasets& datasets, HyperParameters& hyperparameters)
|
json GridSearch::build_tasks_mpi()
|
||||||
|
{
|
||||||
|
auto tasks = json::array();
|
||||||
|
auto grid = GridData(Paths::grid_input(config.model));
|
||||||
|
auto datasets = Datasets(false, Paths::datasets());
|
||||||
|
auto datasets_names = processDatasets(datasets);
|
||||||
|
for (const auto& dataset : datasets_names) {
|
||||||
|
for (const auto& seed : config.seeds) {
|
||||||
|
auto combinations = grid.getGrid(dataset);
|
||||||
|
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
|
||||||
|
json task = {
|
||||||
|
{ "dataset", dataset },
|
||||||
|
{ "seed", seed },
|
||||||
|
{ "fold", n_fold}
|
||||||
|
};
|
||||||
|
tasks.push_back(task);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// It's important to shuffle the array so heavy datasets are spread across the Workers
|
||||||
|
std::mt19937 g{ 271 }; // Use fixed seed to obtain the same shuffle
|
||||||
|
std::shuffle(tasks.begin(), tasks.end(), g);
|
||||||
|
std::cout << "Tasks size: " << tasks.size() << std::endl;
|
||||||
|
std::cout << "|";
|
||||||
|
for (int i = 0; i < tasks.size(); ++i) {
|
||||||
|
std::cout << (i + 1) % 10;
|
||||||
|
}
|
||||||
|
std::cout << "|" << std::endl << "|" << std::flush;
|
||||||
|
return tasks;
|
||||||
|
}
|
||||||
|
std::pair<int, int> GridSearch::part_range_mpi(int n_tasks, int nprocs, int rank)
|
||||||
|
{
|
||||||
|
int assigned = 0;
|
||||||
|
int remainder = n_tasks % nprocs;
|
||||||
|
int start = 0;
|
||||||
|
if (rank < remainder) {
|
||||||
|
assigned = n_tasks / nprocs + 1;
|
||||||
|
} else {
|
||||||
|
assigned = n_tasks / nprocs;
|
||||||
|
start = remainder;
|
||||||
|
}
|
||||||
|
start += rank * assigned;
|
||||||
|
int end = start + assigned;
|
||||||
|
if (rank == nprocs - 1) {
|
||||||
|
end = n_tasks;
|
||||||
|
}
|
||||||
|
return { start, end };
|
||||||
|
}
|
||||||
|
std::string get_color_rank(int rank)
|
||||||
|
{
|
||||||
|
auto colors = { Colors::RED(), Colors::GREEN(), Colors::BLUE(), Colors::MAGENTA(), Colors::CYAN() };
|
||||||
|
return *(colors.begin() + rank % colors.size());
|
||||||
|
}
|
||||||
|
void GridSearch::process_task_mpi(struct ConfigMPI& config_mpi, json& task, Datasets& datasets, json& results)
|
||||||
|
{
|
||||||
|
// Process the task and store the result in the results json
|
||||||
|
Timer timer;
|
||||||
|
timer.start();
|
||||||
|
auto grid = GridData(Paths::grid_input(config.model));
|
||||||
|
auto dataset = task["dataset"].get<std::string>();
|
||||||
|
auto seed = task["seed"].get<int>();
|
||||||
|
auto n_fold = task["fold"].get<int>();
|
||||||
|
// Generate the hyperparamters combinations
|
||||||
|
auto combinations = grid.getGrid(dataset);
|
||||||
|
auto [X, y] = datasets.getTensors(dataset);
|
||||||
|
auto states = datasets.getStates(dataset);
|
||||||
|
auto features = datasets.getFeatures(dataset);
|
||||||
|
auto className = datasets.getClassName(dataset);
|
||||||
|
//
|
||||||
|
// Start working on task
|
||||||
|
//
|
||||||
|
Fold* fold;
|
||||||
|
if (config.stratified)
|
||||||
|
fold = new StratifiedKFold(config.n_folds, y, seed);
|
||||||
|
else
|
||||||
|
fold = new KFold(config.n_folds, y.size(0), seed);
|
||||||
|
auto [train, test] = fold->getFold(n_fold);
|
||||||
|
auto train_t = torch::tensor(train);
|
||||||
|
auto test_t = torch::tensor(test);
|
||||||
|
auto X_train = X.index({ "...", train_t });
|
||||||
|
auto y_train = y.index({ train_t });
|
||||||
|
auto X_test = X.index({ "...", test_t });
|
||||||
|
auto y_test = y.index({ test_t });
|
||||||
|
auto num = 0;
|
||||||
|
double best_fold_score = 0.0;
|
||||||
|
json best_fold_hyper;
|
||||||
|
for (const auto& hyperparam_line : combinations) {
|
||||||
|
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
||||||
|
Fold* nested_fold;
|
||||||
|
if (config.stratified)
|
||||||
|
nested_fold = new StratifiedKFold(config.nested, y_train, seed);
|
||||||
|
else
|
||||||
|
nested_fold = new KFold(config.nested, y_train.size(0), seed);
|
||||||
|
double score = 0.0;
|
||||||
|
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
|
||||||
|
// Nested level fold
|
||||||
|
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
|
||||||
|
auto train_nested_t = torch::tensor(train_nested);
|
||||||
|
auto test_nested_t = torch::tensor(test_nested);
|
||||||
|
auto X_nested_train = X_train.index({ "...", train_nested_t });
|
||||||
|
auto y_nested_train = y_train.index({ train_nested_t });
|
||||||
|
auto X_nested_test = X_train.index({ "...", test_nested_t });
|
||||||
|
auto y_nested_test = y_train.index({ test_nested_t });
|
||||||
|
// Build Classifier with selected hyperparameters
|
||||||
|
auto clf = Models::instance()->create(config.model);
|
||||||
|
auto valid = clf->getValidHyperparameters();
|
||||||
|
hyperparameters.check(valid, dataset);
|
||||||
|
clf->setHyperparameters(hyperparameters.get(dataset));
|
||||||
|
// Train model
|
||||||
|
clf->fit(X_nested_train, y_nested_train, features, className, states);
|
||||||
|
// Test model
|
||||||
|
score += clf->score(X_nested_test, y_nested_test);
|
||||||
|
}
|
||||||
|
delete nested_fold;
|
||||||
|
score /= config.nested;
|
||||||
|
if (score > best_fold_score) {
|
||||||
|
best_fold_score = score;
|
||||||
|
best_fold_hyper = hyperparam_line;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
delete fold;
|
||||||
|
// Build Classifier with the best hyperparameters to obtain the best score
|
||||||
|
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
|
||||||
|
auto clf = Models::instance()->create(config.model);
|
||||||
|
auto valid = clf->getValidHyperparameters();
|
||||||
|
hyperparameters.check(valid, dataset);
|
||||||
|
clf->setHyperparameters(best_fold_hyper);
|
||||||
|
clf->fit(X_train, y_train, features, className, states);
|
||||||
|
best_fold_score = clf->score(X_test, y_test);
|
||||||
|
// Save results
|
||||||
|
results[dataset][std::to_string(n_fold)]["score"] = best_fold_score;
|
||||||
|
results[dataset][std::to_string(n_fold)]["hyperparameters"] = best_fold_hyper;
|
||||||
|
results[dataset][std::to_string(n_fold)]["seed"] = seed;
|
||||||
|
results[dataset][std::to_string(n_fold)]["duration"] = timer.getDuration();
|
||||||
|
std::cout << get_color_rank(config_mpi.rank) << "*" << std::flush;
|
||||||
|
}
|
||||||
|
void GridSearch::go_mpi(struct ConfigMPI& config_mpi)
|
||||||
|
{
|
||||||
|
/*
|
||||||
|
* Each task is a json object with the following structure:
|
||||||
|
* {
|
||||||
|
* "dataset": "dataset_name",
|
||||||
|
* "seed": # of seed to use,
|
||||||
|
* "model": "model_name",
|
||||||
|
* "Fold": # of fold to process
|
||||||
|
* }
|
||||||
|
*
|
||||||
|
* The overall process consists in these steps:
|
||||||
|
* 1. Manager will broadcast the tasks to all the processes
|
||||||
|
* 1.1 Broadcast the number of tasks
|
||||||
|
* 1.2 Broadcast the length of the following string
|
||||||
|
* 1.2 Broadcast the tasks as a char* string
|
||||||
|
* 2. Workers will receive the tasks and start the process
|
||||||
|
* 2.1 A method will tell each worker the range of tasks to process
|
||||||
|
* 2.2 Each worker will process the tasks and generate the best score for each task
|
||||||
|
* 3. Manager gather the scores from all the workers and find out the best hyperparameters for each dataset
|
||||||
|
* 3.1 Obtain the maximum size of the results message of all the workers
|
||||||
|
* 3.2 Gather all the results from the workers into the manager
|
||||||
|
* 3.3 Compile the results from all the workers
|
||||||
|
* 3.4 Filter the best hyperparameters for each dataset
|
||||||
|
*/
|
||||||
|
char* msg;
|
||||||
|
int tasks_size;
|
||||||
|
if (config_mpi.rank == config_mpi.manager) {
|
||||||
|
timer.start();
|
||||||
|
auto tasks = build_tasks_mpi();
|
||||||
|
auto tasks_str = tasks.dump();
|
||||||
|
tasks_size = tasks_str.size();
|
||||||
|
msg = new char[tasks_size + 1];
|
||||||
|
strcpy(msg, tasks_str.c_str());
|
||||||
|
}
|
||||||
|
//
|
||||||
|
// 1. Manager will broadcast the tasks to all the processes
|
||||||
|
//
|
||||||
|
MPI_Bcast(&tasks_size, 1, MPI_INT, config_mpi.manager, MPI_COMM_WORLD);
|
||||||
|
if (config_mpi.rank != config_mpi.manager) {
|
||||||
|
msg = new char[tasks_size + 1];
|
||||||
|
}
|
||||||
|
MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
|
||||||
|
json tasks = json::parse(msg);
|
||||||
|
delete[] msg;
|
||||||
|
//
|
||||||
|
// 2. All Workers will receive the tasks and start the process
|
||||||
|
//
|
||||||
|
int num_tasks = tasks.size();
|
||||||
|
// 2.1 A method will tell each worker the range of tasks to process
|
||||||
|
auto [start, end] = part_range_mpi(num_tasks, config_mpi.n_procs, config_mpi.rank);
|
||||||
|
// 2.2 Each worker will process the tasks and return the best scores obtained
|
||||||
|
auto datasets = Datasets(config.discretize, Paths::datasets());
|
||||||
|
json results;
|
||||||
|
for (int i = start; i < end; ++i) {
|
||||||
|
// Process task
|
||||||
|
process_task_mpi(config_mpi, tasks[i], datasets, results);
|
||||||
|
}
|
||||||
|
int size = results.dump().size() + 1;
|
||||||
|
int max_size = 0;
|
||||||
|
//
|
||||||
|
// 3. Manager gather the scores from all the workers and find out the best hyperparameters for each dataset
|
||||||
|
//
|
||||||
|
//3.1 Obtain the maximum size of the results message of all the workers
|
||||||
|
MPI_Allreduce(&size, &max_size, 1, MPI_INT, MPI_MAX, MPI_COMM_WORLD);
|
||||||
|
// Assign the memory to the message and initialize it to 0s
|
||||||
|
char* total = NULL;
|
||||||
|
msg = new char[max_size];
|
||||||
|
strncpy(msg, results.dump().c_str(), size);
|
||||||
|
if (config_mpi.rank == config_mpi.manager) {
|
||||||
|
total = new char[max_size * config_mpi.n_procs];
|
||||||
|
}
|
||||||
|
// 3.2 Gather all the results from the workers into the manager
|
||||||
|
MPI_Gather(msg, max_size, MPI_CHAR, total, max_size, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
|
||||||
|
delete[] msg;
|
||||||
|
if (config_mpi.rank == config_mpi.manager) {
|
||||||
|
std::cout << Colors::RESET() << "|" << std::endl;
|
||||||
|
json total_results;
|
||||||
|
json best_results;
|
||||||
|
// 3.3 Compile the results from all the workers
|
||||||
|
for (int i = 0; i < config_mpi.n_procs; ++i) {
|
||||||
|
json partial_results = json::parse(total + i * max_size);
|
||||||
|
for (auto& [dataset, folds] : partial_results.items()) {
|
||||||
|
for (auto& [fold, result] : folds.items()) {
|
||||||
|
total_results[dataset][fold] = result;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
delete[] total;
|
||||||
|
// 3.4 Filter the best hyperparameters for each dataset
|
||||||
|
auto grid = GridData(Paths::grid_input(config.model));
|
||||||
|
for (auto& [dataset, folds] : total_results.items()) {
|
||||||
|
double best_score = 0.0;
|
||||||
|
double duration = 0.0;
|
||||||
|
json best_hyper;
|
||||||
|
for (auto& [fold, result] : folds.items()) {
|
||||||
|
duration += result["duration"].get<double>();
|
||||||
|
if (result["score"] > best_score) {
|
||||||
|
best_score = result["score"];
|
||||||
|
best_hyper = result["hyperparameters"];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
auto timer = Timer();
|
||||||
|
json result = {
|
||||||
|
{ "score", best_score },
|
||||||
|
{ "hyperparameters", best_hyper },
|
||||||
|
{ "date", get_date() + " " + get_time() },
|
||||||
|
{ "grid", grid.getInputGrid(dataset) },
|
||||||
|
{ "duration", timer.translate2String(duration) }
|
||||||
|
};
|
||||||
|
best_results[dataset] = result;
|
||||||
|
}
|
||||||
|
save(best_results);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
void GridSearch::go()
|
||||||
|
{
|
||||||
|
timer.start();
|
||||||
|
auto grid_type = config.nested == 0 ? "Single" : "Nested";
|
||||||
|
auto datasets = Datasets(config.discretize, Paths::datasets());
|
||||||
|
auto datasets_names = processDatasets(datasets);
|
||||||
|
json results = initializeResults();
|
||||||
|
std::cout << "***************** Starting " << grid_type << " Gridsearch *****************" << std::endl;
|
||||||
|
std::cout << "input file=" << Paths::grid_input(config.model) << std::endl;
|
||||||
|
auto grid = GridData(Paths::grid_input(config.model));
|
||||||
|
Timer timer_dataset;
|
||||||
|
double bestScore = 0;
|
||||||
|
json bestHyperparameters;
|
||||||
|
for (const auto& dataset : datasets_names) {
|
||||||
|
if (!config.quiet)
|
||||||
|
std::cout << "- " << setw(20) << left << dataset << " " << right << flush;
|
||||||
|
auto combinations = grid.getGrid(dataset);
|
||||||
|
timer_dataset.start();
|
||||||
|
if (config.nested == 0)
|
||||||
|
// for dataset // for hyperparameters // for seed // for fold
|
||||||
|
tie(bestScore, bestHyperparameters) = processFileSingle(dataset, datasets, combinations);
|
||||||
|
else
|
||||||
|
// for dataset // for seed // for fold // for hyperparameters // for nested fold
|
||||||
|
tie(bestScore, bestHyperparameters) = processFileNested(dataset, datasets, combinations);
|
||||||
|
if (!config.quiet) {
|
||||||
|
std::cout << "end." << " Score: " << Colors::IBLUE() << setw(9) << setprecision(7) << fixed
|
||||||
|
<< bestScore << Colors::BLUE() << " [" << bestHyperparameters.dump() << "]"
|
||||||
|
<< Colors::RESET() << ::endl;
|
||||||
|
}
|
||||||
|
json result = {
|
||||||
|
{ "score", bestScore },
|
||||||
|
{ "hyperparameters", bestHyperparameters },
|
||||||
|
{ "date", get_date() + " " + get_time() },
|
||||||
|
{ "grid", grid.getInputGrid(dataset) },
|
||||||
|
{ "duration", timer_dataset.getDurationString() }
|
||||||
|
};
|
||||||
|
results[dataset] = result;
|
||||||
|
// Save partial results
|
||||||
|
save(results);
|
||||||
|
}
|
||||||
|
// Save final results
|
||||||
|
save(results);
|
||||||
|
std::cout << "***************** Ending " << grid_type << " Gridsearch *******************" << std::endl;
|
||||||
|
}
|
||||||
|
pair<double, json> GridSearch::processFileSingle(std::string fileName, Datasets& datasets, vector<json>& combinations)
|
||||||
|
{
|
||||||
|
int num = 0;
|
||||||
|
double bestScore = 0.0;
|
||||||
|
json bestHyperparameters;
|
||||||
|
auto totalComb = combinations.size();
|
||||||
|
for (const auto& hyperparam_line : combinations) {
|
||||||
|
if (!config.quiet)
|
||||||
|
showProgressComb(++num, config.n_folds, totalComb, Colors::CYAN());
|
||||||
|
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
||||||
|
// Get dataset
|
||||||
|
auto [X, y] = datasets.getTensors(fileName);
|
||||||
|
auto states = datasets.getStates(fileName);
|
||||||
|
auto features = datasets.getFeatures(fileName);
|
||||||
|
auto className = datasets.getClassName(fileName);
|
||||||
|
double totalScore = 0.0;
|
||||||
|
int numItems = 0;
|
||||||
|
for (const auto& seed : config.seeds) {
|
||||||
|
if (!config.quiet)
|
||||||
|
std::cout << "(" << seed << ") doing Fold: " << flush;
|
||||||
|
Fold* fold;
|
||||||
|
if (config.stratified)
|
||||||
|
fold = new StratifiedKFold(config.n_folds, y, seed);
|
||||||
|
else
|
||||||
|
fold = new KFold(config.n_folds, y.size(0), seed);
|
||||||
|
for (int nfold = 0; nfold < config.n_folds; nfold++) {
|
||||||
|
auto clf = Models::instance()->create(config.model);
|
||||||
|
auto valid = clf->getValidHyperparameters();
|
||||||
|
hyperparameters.check(valid, fileName);
|
||||||
|
clf->setHyperparameters(hyperparameters.get(fileName));
|
||||||
|
auto [train, test] = fold->getFold(nfold);
|
||||||
|
auto train_t = torch::tensor(train);
|
||||||
|
auto test_t = torch::tensor(test);
|
||||||
|
auto X_train = X.index({ "...", train_t });
|
||||||
|
auto y_train = y.index({ train_t });
|
||||||
|
auto X_test = X.index({ "...", test_t });
|
||||||
|
auto y_test = y.index({ test_t });
|
||||||
|
// Train model
|
||||||
|
if (!config.quiet)
|
||||||
|
showProgressFold(nfold + 1, getColor(clf->getStatus()), "a");
|
||||||
|
clf->fit(X_train, y_train, features, className, states);
|
||||||
|
// Test model
|
||||||
|
if (!config.quiet)
|
||||||
|
showProgressFold(nfold + 1, getColor(clf->getStatus()), "b");
|
||||||
|
totalScore += clf->score(X_test, y_test);
|
||||||
|
numItems++;
|
||||||
|
if (!config.quiet)
|
||||||
|
std::cout << "\b\b\b, \b" << flush;
|
||||||
|
}
|
||||||
|
delete fold;
|
||||||
|
}
|
||||||
|
double score = numItems == 0 ? 0.0 : totalScore / numItems;
|
||||||
|
if (score > bestScore) {
|
||||||
|
bestScore = score;
|
||||||
|
bestHyperparameters = hyperparam_line;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return { bestScore, bestHyperparameters };
|
||||||
|
}
|
||||||
|
pair<double, json> GridSearch::processFileNested(std::string fileName, Datasets& datasets, vector<json>& combinations)
|
||||||
{
|
{
|
||||||
// Get dataset
|
// Get dataset
|
||||||
auto [X, y] = datasets.getTensors(fileName);
|
auto [X, y] = datasets.getTensors(fileName);
|
||||||
auto states = datasets.getStates(fileName);
|
auto states = datasets.getStates(fileName);
|
||||||
auto features = datasets.getFeatures(fileName);
|
auto features = datasets.getFeatures(fileName);
|
||||||
auto samples = datasets.getNSamples(fileName);
|
|
||||||
auto className = datasets.getClassName(fileName);
|
auto className = datasets.getClassName(fileName);
|
||||||
double totalScore = 0.0;
|
int spcs_combinations = int(log(combinations.size()) / log(10)) + 1;
|
||||||
int numItems = 0;
|
double goatScore = 0.0;
|
||||||
|
json goatHyperparameters;
|
||||||
|
// for dataset // for seed // for fold // for hyperparameters // for nested fold
|
||||||
for (const auto& seed : config.seeds) {
|
for (const auto& seed : config.seeds) {
|
||||||
if (!config.quiet)
|
|
||||||
std::cout << "(" << seed << ") doing Fold: " << flush;
|
|
||||||
Fold* fold;
|
Fold* fold;
|
||||||
if (config.stratified)
|
if (config.stratified)
|
||||||
fold = new StratifiedKFold(config.n_folds, y, seed);
|
fold = new StratifiedKFold(config.n_folds, y, seed);
|
||||||
else
|
else
|
||||||
fold = new KFold(config.n_folds, y.size(0), seed);
|
fold = new KFold(config.n_folds, y.size(0), seed);
|
||||||
double bestScore = 0.0;
|
double bestScore = 0.0;
|
||||||
|
json bestHyperparameters;
|
||||||
|
std::cout << "(" << seed << ") doing Fold: " << flush;
|
||||||
for (int nfold = 0; nfold < config.n_folds; nfold++) {
|
for (int nfold = 0; nfold < config.n_folds; nfold++) {
|
||||||
auto clf = Models::instance()->create(config.model);
|
if (!config.quiet)
|
||||||
clf->setHyperparameters(hyperparameters.get(fileName));
|
std::cout << Colors::GREEN() << nfold + 1 << " " << flush;
|
||||||
|
// First level fold
|
||||||
auto [train, test] = fold->getFold(nfold);
|
auto [train, test] = fold->getFold(nfold);
|
||||||
auto train_t = torch::tensor(train);
|
auto train_t = torch::tensor(train);
|
||||||
auto test_t = torch::tensor(test);
|
auto test_t = torch::tensor(test);
|
||||||
@@ -66,6 +481,57 @@ namespace platform {
|
|||||||
auto y_train = y.index({ train_t });
|
auto y_train = y.index({ train_t });
|
||||||
auto X_test = X.index({ "...", test_t });
|
auto X_test = X.index({ "...", test_t });
|
||||||
auto y_test = y.index({ test_t });
|
auto y_test = y.index({ test_t });
|
||||||
|
auto num = 0;
|
||||||
|
json result_fold;
|
||||||
|
double hypScore = 0.0;
|
||||||
|
double bestHypScore = 0.0;
|
||||||
|
json bestHypHyperparameters;
|
||||||
|
for (const auto& hyperparam_line : combinations) {
|
||||||
|
std::cout << "[" << setw(spcs_combinations) << ++num << "/" << setw(spcs_combinations)
|
||||||
|
<< combinations.size() << "] " << std::flush;
|
||||||
|
Fold* nested_fold;
|
||||||
|
if (config.stratified)
|
||||||
|
nested_fold = new StratifiedKFold(config.nested, y_train, seed);
|
||||||
|
else
|
||||||
|
nested_fold = new KFold(config.nested, y_train.size(0), seed);
|
||||||
|
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
|
||||||
|
// Nested level fold
|
||||||
|
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
|
||||||
|
auto train_nested_t = torch::tensor(train_nested);
|
||||||
|
auto test_nested_t = torch::tensor(test_nested);
|
||||||
|
auto X_nexted_train = X_train.index({ "...", train_nested_t });
|
||||||
|
auto y_nested_train = y_train.index({ train_nested_t });
|
||||||
|
auto X_nested_test = X_train.index({ "...", test_nested_t });
|
||||||
|
auto y_nested_test = y_train.index({ test_nested_t });
|
||||||
|
// Build Classifier with selected hyperparameters
|
||||||
|
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
||||||
|
auto clf = Models::instance()->create(config.model);
|
||||||
|
auto valid = clf->getValidHyperparameters();
|
||||||
|
hyperparameters.check(valid, fileName);
|
||||||
|
clf->setHyperparameters(hyperparameters.get(fileName));
|
||||||
|
// Train model
|
||||||
|
if (!config.quiet)
|
||||||
|
showProgressFold(n_nested_fold + 1, getColor(clf->getStatus()), "a");
|
||||||
|
clf->fit(X_nexted_train, y_nested_train, features, className, states);
|
||||||
|
// Test model
|
||||||
|
if (!config.quiet)
|
||||||
|
showProgressFold(n_nested_fold + 1, getColor(clf->getStatus()), "b");
|
||||||
|
hypScore += clf->score(X_nested_test, y_nested_test);
|
||||||
|
if (!config.quiet)
|
||||||
|
std::cout << "\b\b\b, \b" << flush;
|
||||||
|
}
|
||||||
|
int magic = 3 * config.nested + 2 * spcs_combinations + 4;
|
||||||
|
std::cout << string(magic, '\b') << string(magic, ' ') << string(magic, '\b') << flush;
|
||||||
|
delete nested_fold;
|
||||||
|
hypScore /= config.nested;
|
||||||
|
if (hypScore > bestHypScore) {
|
||||||
|
bestHypScore = hypScore;
|
||||||
|
bestHypHyperparameters = hyperparam_line;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// Build Classifier with selected hyperparameters
|
||||||
|
auto clf = Models::instance()->create(config.model);
|
||||||
|
clf->setHyperparameters(bestHypHyperparameters);
|
||||||
// Train model
|
// Train model
|
||||||
if (!config.quiet)
|
if (!config.quiet)
|
||||||
showProgressFold(nfold + 1, getColor(clf->getStatus()), "a");
|
showProgressFold(nfold + 1, getColor(clf->getStatus()), "a");
|
||||||
@@ -73,58 +539,61 @@ namespace platform {
|
|||||||
// Test model
|
// Test model
|
||||||
if (!config.quiet)
|
if (!config.quiet)
|
||||||
showProgressFold(nfold + 1, getColor(clf->getStatus()), "b");
|
showProgressFold(nfold + 1, getColor(clf->getStatus()), "b");
|
||||||
totalScore += clf->score(X_test, y_test);
|
double score = clf->score(X_test, y_test);
|
||||||
numItems++;
|
|
||||||
if (!config.quiet)
|
if (!config.quiet)
|
||||||
std::cout << "\b\b\b, \b" << flush;
|
std::cout << string(2 * config.nested - 1, '\b') << "," << string(2 * config.nested, ' ') << string(2 * config.nested - 1, '\b') << flush;
|
||||||
|
if (score > bestScore) {
|
||||||
|
bestScore = score;
|
||||||
|
bestHyperparameters = bestHypHyperparameters;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (bestScore > goatScore) {
|
||||||
|
goatScore = bestScore;
|
||||||
|
goatHyperparameters = bestHyperparameters;
|
||||||
}
|
}
|
||||||
delete fold;
|
delete fold;
|
||||||
}
|
}
|
||||||
return numItems == 0 ? 0.0 : totalScore / numItems;
|
return { goatScore, goatHyperparameters };
|
||||||
}
|
}
|
||||||
void GridSearch::go()
|
json GridSearch::initializeResults()
|
||||||
{
|
{
|
||||||
// Load datasets
|
// Load previous results
|
||||||
auto datasets = Datasets(config.discretize, Paths::datasets());
|
json results;
|
||||||
// Create model
|
if (config.continue_from != NO_CONTINUE()) {
|
||||||
std::cout << "***************** Starting Gridsearch *****************" << std::endl;
|
|
||||||
std::cout << "input file=" << config.input_file << std::endl;
|
|
||||||
auto grid = GridData(config.input_file);
|
|
||||||
auto totalComb = grid.getNumCombinations();
|
|
||||||
std::cout << "* Doing " << totalComb << " combinations for each dataset/seed/fold" << std::endl;
|
|
||||||
// Generate hyperparameters grid & run gridsearch
|
|
||||||
// Check each combination of hyperparameters for each dataset and each seed
|
|
||||||
for (const auto& dataset : datasets.getNames()) {
|
|
||||||
if (!config.quiet)
|
if (!config.quiet)
|
||||||
std::cout << "- " << setw(20) << left << dataset << " " << right << flush;
|
std::cout << "* Loading previous results" << std::endl;
|
||||||
int num = 0;
|
try {
|
||||||
double bestScore = 0.0;
|
std::ifstream file(Paths::grid_output(config.model));
|
||||||
json bestHyperparameters;
|
if (file.is_open()) {
|
||||||
for (const auto& hyperparam_line : grid.getGrid()) {
|
results = json::parse(file);
|
||||||
if (!config.quiet)
|
results = results["results"];
|
||||||
showProgressComb(++num, totalComb, Colors::CYAN());
|
|
||||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
|
||||||
double score = processFile(dataset, datasets, hyperparameters);
|
|
||||||
if (score > bestScore) {
|
|
||||||
bestScore = score;
|
|
||||||
bestHyperparameters = hyperparam_line;
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (!config.quiet) {
|
catch (const std::exception& e) {
|
||||||
std::cout << "end." << " Score: " << setw(9) << setprecision(7) << fixed
|
std::cerr << "* There were no previous results" << std::endl;
|
||||||
<< bestScore << " [" << bestHyperparameters.dump() << "]" << std::endl;
|
std::cerr << "* Initizalizing new results" << std::endl;
|
||||||
|
results = json();
|
||||||
}
|
}
|
||||||
results[dataset]["score"] = bestScore;
|
|
||||||
results[dataset]["hyperparameters"] = bestHyperparameters;
|
|
||||||
}
|
}
|
||||||
// Save results
|
return results;
|
||||||
save();
|
|
||||||
std::cout << "***************** Ending Gridsearch *******************" << std::endl;
|
|
||||||
}
|
}
|
||||||
void GridSearch::save() const
|
void GridSearch::save(json& results)
|
||||||
{
|
{
|
||||||
std::ofstream file(config.output_file);
|
std::ofstream file(Paths::grid_output(config.model));
|
||||||
file << results.dump(4);
|
json output = {
|
||||||
file.close();
|
{ "model", config.model },
|
||||||
|
{ "score", config.score },
|
||||||
|
{ "discretize", config.discretize },
|
||||||
|
{ "stratified", config.stratified },
|
||||||
|
{ "n_folds", config.n_folds },
|
||||||
|
{ "seeds", config.seeds },
|
||||||
|
{ "date", get_date() + " " + get_time()},
|
||||||
|
{ "nested", config.nested},
|
||||||
|
{ "platform", config.platform },
|
||||||
|
{ "duration", timer.getDurationString(true)},
|
||||||
|
{ "results", results }
|
||||||
|
|
||||||
|
};
|
||||||
|
file << output.dump(4);
|
||||||
}
|
}
|
||||||
} /* namespace platform */
|
} /* namespace platform */
|
@@ -1,36 +1,54 @@
|
|||||||
#ifndef GRIDSEARCH_H
|
#ifndef GRIDSEARCH_H
|
||||||
#define GRIDSEARCH_H
|
#define GRIDSEARCH_H
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <vector>
|
#include <map>
|
||||||
|
#include <mpi.h>
|
||||||
#include <nlohmann/json.hpp>
|
#include <nlohmann/json.hpp>
|
||||||
#include "Datasets.h"
|
#include "Datasets.h"
|
||||||
#include "HyperParameters.h"
|
#include "HyperParameters.h"
|
||||||
#include "GridData.h"
|
#include "GridData.h"
|
||||||
|
#include "Timer.h"
|
||||||
|
|
||||||
namespace platform {
|
namespace platform {
|
||||||
using json = nlohmann::json;
|
using json = nlohmann::json;
|
||||||
struct ConfigGrid {
|
struct ConfigGrid {
|
||||||
std::string model;
|
std::string model;
|
||||||
std::string score;
|
std::string score;
|
||||||
std::string path;
|
std::string continue_from;
|
||||||
std::string input_file;
|
std::string platform;
|
||||||
std::string output_file;
|
|
||||||
bool quiet;
|
bool quiet;
|
||||||
|
bool only; // used with continue_from to only compute that dataset
|
||||||
bool discretize;
|
bool discretize;
|
||||||
bool stratified;
|
bool stratified;
|
||||||
|
int nested;
|
||||||
int n_folds;
|
int n_folds;
|
||||||
|
json excluded;
|
||||||
std::vector<int> seeds;
|
std::vector<int> seeds;
|
||||||
};
|
};
|
||||||
|
struct ConfigMPI {
|
||||||
|
int rank;
|
||||||
|
int n_procs;
|
||||||
|
int manager;
|
||||||
|
};
|
||||||
class GridSearch {
|
class GridSearch {
|
||||||
public:
|
public:
|
||||||
explicit GridSearch(struct ConfigGrid& config);
|
explicit GridSearch(struct ConfigGrid& config);
|
||||||
void go();
|
void go();
|
||||||
void save() const;
|
void go_mpi(struct ConfigMPI& config_mpi);
|
||||||
~GridSearch() = default;
|
~GridSearch() = default;
|
||||||
|
json getResults();
|
||||||
|
static inline std::string NO_CONTINUE() { return "NO_CONTINUE"; }
|
||||||
private:
|
private:
|
||||||
double processFile(std::string fileName, Datasets& datasets, HyperParameters& hyperparameters);
|
void save(json& results);
|
||||||
json results;
|
json initializeResults();
|
||||||
|
vector<std::string> processDatasets(Datasets& datasets);
|
||||||
|
pair<double, json> processFileSingle(std::string fileName, Datasets& datasets, std::vector<json>& combinations);
|
||||||
|
pair<double, json> processFileNested(std::string fileName, Datasets& datasets, std::vector<json>& combinations);
|
||||||
struct ConfigGrid config;
|
struct ConfigGrid config;
|
||||||
|
pair<int, int> part_range_mpi(int n_tasks, int nprocs, int rank);
|
||||||
|
json build_tasks_mpi();
|
||||||
|
void process_task_mpi(struct ConfigMPI& config_mpi, json& task, Datasets& datasets, json& results);
|
||||||
|
Timer timer; // used to measure the time of the whole process
|
||||||
};
|
};
|
||||||
} /* namespace platform */
|
} /* namespace platform */
|
||||||
#endif /* GRIDSEARCH_H */
|
#endif /* GRIDSEARCH_H */
|
@@ -35,7 +35,7 @@ namespace platform {
|
|||||||
hyperparameters[dataset] = json({});
|
hyperparameters[dataset] = json({});
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
hyperparameters[dataset] = input_hyperparameters[dataset].get<json>();
|
hyperparameters[dataset] = input_hyperparameters[dataset]["hyperparameters"].get<json>();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
void HyperParameters::check(const std::vector<std::string>& valid, const std::string& fileName)
|
void HyperParameters::check(const std::vector<std::string>& valid, const std::string& fileName)
|
||||||
|
@@ -26,6 +26,14 @@ namespace platform {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
static std::string excelResults() { return "some_results.xlsx"; }
|
static std::string excelResults() { return "some_results.xlsx"; }
|
||||||
|
static std::string grid_input(const std::string& model)
|
||||||
|
{
|
||||||
|
return grid() + "grid_" + model + "_input.json";
|
||||||
|
}
|
||||||
|
static std::string grid_output(const std::string& model)
|
||||||
|
{
|
||||||
|
return grid() + "grid_" + model + "_output.json";
|
||||||
|
}
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
@@ -32,5 +32,4 @@ namespace platform {
|
|||||||
bool complete;
|
bool complete;
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
#endif
|
#endif
|
@@ -7,7 +7,6 @@
|
|||||||
#include "Result.h"
|
#include "Result.h"
|
||||||
namespace platform {
|
namespace platform {
|
||||||
using json = nlohmann::json;
|
using json = nlohmann::json;
|
||||||
|
|
||||||
class Results {
|
class Results {
|
||||||
public:
|
public:
|
||||||
Results(const std::string& path, const std::string& model, const std::string& score, bool complete, bool partial);
|
Results(const std::string& path, const std::string& model, const std::string& score, bool complete, bool partial);
|
||||||
@@ -34,5 +33,4 @@ namespace platform {
|
|||||||
void load(); // Loads the list of results
|
void load(); // Loads the list of results
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
#endif
|
#endif
|
@@ -20,13 +20,22 @@ namespace platform {
|
|||||||
std::chrono::duration<double> time_span = std::chrono::duration_cast<std::chrono::duration<double >> (end - begin);
|
std::chrono::duration<double> time_span = std::chrono::duration_cast<std::chrono::duration<double >> (end - begin);
|
||||||
return time_span.count();
|
return time_span.count();
|
||||||
}
|
}
|
||||||
std::string getDurationString()
|
double getLapse()
|
||||||
|
{
|
||||||
|
std::chrono::duration<double> time_span = std::chrono::duration_cast<std::chrono::duration<double >> (std::chrono::high_resolution_clock::now() - begin);
|
||||||
|
return time_span.count();
|
||||||
|
}
|
||||||
|
std::string getDurationString(bool lapse = false)
|
||||||
|
{
|
||||||
|
double duration = lapse ? getLapse() : getDuration();
|
||||||
|
return translate2String(duration);
|
||||||
|
}
|
||||||
|
std::string translate2String(double duration)
|
||||||
{
|
{
|
||||||
double duration = getDuration();
|
|
||||||
double durationShow = duration > 3600 ? duration / 3600 : duration > 60 ? duration / 60 : duration;
|
double durationShow = duration > 3600 ? duration / 3600 : duration > 60 ? duration / 60 : duration;
|
||||||
std::string durationUnit = duration > 3600 ? "h" : duration > 60 ? "m" : "s";
|
std::string durationUnit = duration > 3600 ? "h" : duration > 60 ? "m" : "s";
|
||||||
std::stringstream ss;
|
std::stringstream ss;
|
||||||
ss << std::setw(7) << std::setprecision(2) << std::fixed << durationShow << " " << durationUnit << " ";
|
ss << std::setprecision(2) << std::fixed << durationShow << " " << durationUnit;
|
||||||
return ss.str();
|
return ss.str();
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
@@ -5,9 +5,8 @@
|
|||||||
#include "Colors.h"
|
#include "Colors.h"
|
||||||
|
|
||||||
|
|
||||||
argparse::ArgumentParser manageArguments(int argc, char** argv)
|
void manageArguments(argparse::ArgumentParser& program, int argc, char** argv)
|
||||||
{
|
{
|
||||||
argparse::ArgumentParser program("b_sbest");
|
|
||||||
program.add_argument("-m", "--model").default_value("").help("Filter results of the selected model) (any for all models)");
|
program.add_argument("-m", "--model").default_value("").help("Filter results of the selected model) (any for all models)");
|
||||||
program.add_argument("-s", "--score").default_value("").help("Filter results of the score name supplied");
|
program.add_argument("-s", "--score").default_value("").help("Filter results of the score name supplied");
|
||||||
program.add_argument("--build").help("build best score results file").default_value(false).implicit_value(true);
|
program.add_argument("--build").help("build best score results file").default_value(false).implicit_value(true);
|
||||||
@@ -28,12 +27,12 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
|
|||||||
catch (...) {
|
catch (...) {
|
||||||
throw std::runtime_error("Number of folds must be an decimal number");
|
throw std::runtime_error("Number of folds must be an decimal number");
|
||||||
}});
|
}});
|
||||||
return program;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
int main(int argc, char** argv)
|
int main(int argc, char** argv)
|
||||||
{
|
{
|
||||||
auto program = manageArguments(argc, argv);
|
argparse::ArgumentParser program("b_sbest");
|
||||||
|
manageArguments(program, argc, argv);
|
||||||
std::string model, score;
|
std::string model, score;
|
||||||
bool build, report, friedman, excel;
|
bool build, report, friedman, excel;
|
||||||
double level;
|
double level;
|
||||||
|
@@ -1,17 +1,23 @@
|
|||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <argparse/argparse.hpp>
|
#include <argparse/argparse.hpp>
|
||||||
|
#include <map>
|
||||||
|
#include <nlohmann/json.hpp>
|
||||||
|
#include <mpi.h>
|
||||||
#include "DotEnv.h"
|
#include "DotEnv.h"
|
||||||
#include "Models.h"
|
#include "Models.h"
|
||||||
#include "modelRegister.h"
|
#include "modelRegister.h"
|
||||||
#include "GridSearch.h"
|
#include "GridSearch.h"
|
||||||
#include "Paths.h"
|
#include "Paths.h"
|
||||||
#include "Timer.h"
|
#include "Timer.h"
|
||||||
|
#include "Colors.h"
|
||||||
|
|
||||||
|
using json = nlohmann::json;
|
||||||
|
const int MAXL = 133;
|
||||||
|
|
||||||
argparse::ArgumentParser manageArguments(std::string program_name)
|
void manageArguments(argparse::ArgumentParser& program)
|
||||||
{
|
{
|
||||||
auto env = platform::DotEnv();
|
auto env = platform::DotEnv();
|
||||||
argparse::ArgumentParser program(program_name);
|
auto& group = program.add_mutually_exclusive_group(true);
|
||||||
program.add_argument("-m", "--model")
|
program.add_argument("-m", "--model")
|
||||||
.help("Model to use " + platform::Models::instance()->tostring())
|
.help("Model to use " + platform::Models::instance()->tostring())
|
||||||
.action([](const std::string& value) {
|
.action([](const std::string& value) {
|
||||||
@@ -22,9 +28,17 @@ argparse::ArgumentParser manageArguments(std::string program_name)
|
|||||||
throw std::runtime_error("Model must be one of " + platform::Models::instance()->tostring());
|
throw std::runtime_error("Model must be one of " + platform::Models::instance()->tostring());
|
||||||
}
|
}
|
||||||
);
|
);
|
||||||
|
group.add_argument("--dump").help("Show the grid combinations").default_value(false).implicit_value(true);
|
||||||
|
group.add_argument("--report").help("Report the computed hyperparameters").default_value(false).implicit_value(true);
|
||||||
|
group.add_argument("--compute").help("Perform computation of the grid output hyperparameters").default_value(false).implicit_value(true);
|
||||||
program.add_argument("--discretize").help("Discretize input datasets").default_value((bool)stoi(env.get("discretize"))).implicit_value(true);
|
program.add_argument("--discretize").help("Discretize input datasets").default_value((bool)stoi(env.get("discretize"))).implicit_value(true);
|
||||||
program.add_argument("--quiet").help("Don't display detailed progress").default_value(false).implicit_value(true);
|
program.add_argument("--mpi").help("Use MPI computing grid").default_value(false).implicit_value(true);
|
||||||
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value((bool)stoi(env.get("stratified"))).implicit_value(true);
|
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value((bool)stoi(env.get("stratified"))).implicit_value(true);
|
||||||
|
program.add_argument("--quiet").help("Don't display detailed progress").default_value(false).implicit_value(true);
|
||||||
|
program.add_argument("--continue").help("Continue computing from that dataset").default_value(platform::GridSearch::NO_CONTINUE());
|
||||||
|
program.add_argument("--only").help("Used with continue to compute that dataset only").default_value(false).implicit_value(true);
|
||||||
|
program.add_argument("--exclude").default_value("[]").help("Datasets to exclude in json format, e.g. [\"dataset1\", \"dataset2\"]");
|
||||||
|
program.add_argument("--nested").help("Do a double/nested cross validation with n folds").default_value(0).scan<'i', int>();
|
||||||
program.add_argument("--score").help("Score used in gridsearch").default_value("accuracy");
|
program.add_argument("--score").help("Score used in gridsearch").default_value("accuracy");
|
||||||
program.add_argument("-f", "--folds").help("Number of folds").default_value(stoi(env.get("n_folds"))).scan<'i', int>().action([](const std::string& value) {
|
program.add_argument("-f", "--folds").help("Number of folds").default_value(stoi(env.get("n_folds"))).scan<'i', int>().action([](const std::string& value) {
|
||||||
try {
|
try {
|
||||||
@@ -42,13 +56,99 @@ argparse::ArgumentParser manageArguments(std::string program_name)
|
|||||||
}});
|
}});
|
||||||
auto seed_values = env.getSeeds();
|
auto seed_values = env.getSeeds();
|
||||||
program.add_argument("-s", "--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
|
program.add_argument("-s", "--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
|
||||||
return program;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void list_dump(std::string& model)
|
||||||
|
{
|
||||||
|
auto data = platform::GridData(platform::Paths::grid_input(model));
|
||||||
|
std::cout << Colors::MAGENTA() << "Listing configuration input file (Grid)" << std::endl << std::endl;
|
||||||
|
int index = 0;
|
||||||
|
int max_hyper = 15;
|
||||||
|
int max_dataset = 7;
|
||||||
|
auto combinations = data.getGridFile();
|
||||||
|
for (auto const& item : combinations) {
|
||||||
|
if (item.first.size() > max_dataset) {
|
||||||
|
max_dataset = item.first.size();
|
||||||
|
}
|
||||||
|
if (item.second.dump().size() > max_hyper) {
|
||||||
|
max_hyper = item.second.dump().size();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
std::cout << Colors::GREEN() << left << " # " << left << setw(max_dataset) << "Dataset" << " #Com. "
|
||||||
|
<< setw(max_hyper) << "Hyperparameters" << std::endl;
|
||||||
|
std::cout << "=== " << string(max_dataset, '=') << " ===== " << string(max_hyper, '=') << std::endl;
|
||||||
|
bool odd = true;
|
||||||
|
for (auto const& item : combinations) {
|
||||||
|
auto color = odd ? Colors::CYAN() : Colors::BLUE();
|
||||||
|
std::cout << color;
|
||||||
|
auto num_combinations = data.getNumCombinations(item.first);
|
||||||
|
std::cout << setw(3) << fixed << right << ++index << left << " " << setw(max_dataset) << item.first
|
||||||
|
<< " " << setw(5) << right << num_combinations << " " << setw(max_hyper) << item.second.dump() << std::endl;
|
||||||
|
odd = !odd;
|
||||||
|
}
|
||||||
|
std::cout << Colors::RESET() << std::endl;
|
||||||
|
}
|
||||||
|
std::string headerLine(const std::string& text, int utf = 0)
|
||||||
|
{
|
||||||
|
int n = MAXL - text.length() - 3;
|
||||||
|
n = n < 0 ? 0 : n;
|
||||||
|
return "* " + text + std::string(n + utf, ' ') + "*\n";
|
||||||
|
}
|
||||||
|
void list_results(json& results, std::string& model)
|
||||||
|
{
|
||||||
|
std::cout << Colors::MAGENTA() << std::string(MAXL, '*') << std::endl;
|
||||||
|
std::cout << headerLine("Listing computed hyperparameters for model " + model);
|
||||||
|
std::cout << headerLine("Date & time: " + results["date"].get<std::string>() + " Duration: " + results["duration"].get<std::string>());
|
||||||
|
std::cout << headerLine("Score: " + results["score"].get<std::string>());
|
||||||
|
std::cout << headerLine(
|
||||||
|
"Random seeds: " + results["seeds"].dump()
|
||||||
|
+ " Discretized: " + (results["discretize"].get<bool>() ? "True" : "False")
|
||||||
|
+ " Stratified: " + (results["stratified"].get<bool>() ? "True" : "False")
|
||||||
|
+ " #Folds: " + std::to_string(results["n_folds"].get<int>())
|
||||||
|
+ " Nested: " + (results["nested"].get<int>() == 0 ? "False" : to_string(results["nested"].get<int>()))
|
||||||
|
);
|
||||||
|
std::cout << std::string(MAXL, '*') << std::endl;
|
||||||
|
int spaces = 0;
|
||||||
|
int hyperparameters_spaces = 0;
|
||||||
|
for (const auto& item : results["results"].items()) {
|
||||||
|
auto key = item.key();
|
||||||
|
auto value = item.value();
|
||||||
|
if (key.size() > spaces) {
|
||||||
|
spaces = key.size();
|
||||||
|
}
|
||||||
|
if (value["hyperparameters"].dump().size() > hyperparameters_spaces) {
|
||||||
|
hyperparameters_spaces = value["hyperparameters"].dump().size();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
std::cout << Colors::GREEN() << " # " << left << setw(spaces) << "Dataset" << " " << setw(19) << "Date" << " "
|
||||||
|
<< "Duration " << setw(8) << "Score" << " " << "Hyperparameters" << std::endl;
|
||||||
|
std::cout << "=== " << string(spaces, '=') << " " << string(19, '=') << " " << string(8, '=') << " "
|
||||||
|
<< string(8, '=') << " " << string(hyperparameters_spaces, '=') << std::endl;
|
||||||
|
bool odd = true;
|
||||||
|
int index = 0;
|
||||||
|
for (const auto& item : results["results"].items()) {
|
||||||
|
auto color = odd ? Colors::CYAN() : Colors::BLUE();
|
||||||
|
auto key = item.key();
|
||||||
|
auto value = item.value();
|
||||||
|
std::cout << color;
|
||||||
|
std::cout << std::setw(3) << std::right << index++ << " ";
|
||||||
|
std::cout << left << setw(spaces) << key << " " << value["date"].get<string>()
|
||||||
|
<< " " << setw(8) << right << value["duration"].get<string>() << " " << setw(8) << setprecision(6)
|
||||||
|
<< fixed << right << value["score"].get<double>() << " " << value["hyperparameters"].dump() << std::endl;
|
||||||
|
odd = !odd;
|
||||||
|
}
|
||||||
|
std::cout << Colors::RESET() << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Main
|
||||||
|
*/
|
||||||
int main(int argc, char** argv)
|
int main(int argc, char** argv)
|
||||||
{
|
{
|
||||||
auto program = manageArguments("b_grid");
|
argparse::ArgumentParser program("b_grid");
|
||||||
|
manageArguments(program);
|
||||||
struct platform::ConfigGrid config;
|
struct platform::ConfigGrid config;
|
||||||
|
bool dump, compute;
|
||||||
try {
|
try {
|
||||||
program.parse_args(argc, argv);
|
program.parse_args(argc, argv);
|
||||||
config.model = program.get<std::string>("model");
|
config.model = program.get<std::string>("model");
|
||||||
@@ -57,7 +157,25 @@ int main(int argc, char** argv)
|
|||||||
config.stratified = program.get<bool>("stratified");
|
config.stratified = program.get<bool>("stratified");
|
||||||
config.n_folds = program.get<int>("folds");
|
config.n_folds = program.get<int>("folds");
|
||||||
config.quiet = program.get<bool>("quiet");
|
config.quiet = program.get<bool>("quiet");
|
||||||
|
config.only = program.get<bool>("only");
|
||||||
config.seeds = program.get<std::vector<int>>("seeds");
|
config.seeds = program.get<std::vector<int>>("seeds");
|
||||||
|
config.nested = program.get<int>("nested");
|
||||||
|
config.continue_from = program.get<std::string>("continue");
|
||||||
|
if (config.continue_from == platform::GridSearch::NO_CONTINUE() && config.only) {
|
||||||
|
throw std::runtime_error("Cannot use --only without --continue");
|
||||||
|
}
|
||||||
|
dump = program.get<bool>("dump");
|
||||||
|
compute = program.get<bool>("compute");
|
||||||
|
if (dump && (config.continue_from != platform::GridSearch::NO_CONTINUE() || config.only)) {
|
||||||
|
throw std::runtime_error("Cannot use --dump with --continue or --only");
|
||||||
|
}
|
||||||
|
auto excluded = program.get<std::string>("exclude");
|
||||||
|
config.excluded = json::parse(excluded);
|
||||||
|
if (program.get<bool>("mpi")) {
|
||||||
|
if (!compute || config.nested == 0) {
|
||||||
|
throw std::runtime_error("Cannot use --mpi without --compute or without --nested");
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
catch (const exception& err) {
|
catch (const exception& err) {
|
||||||
cerr << err.what() << std::endl;
|
cerr << err.what() << std::endl;
|
||||||
@@ -68,14 +186,42 @@ int main(int argc, char** argv)
|
|||||||
* Begin Processing
|
* Begin Processing
|
||||||
*/
|
*/
|
||||||
auto env = platform::DotEnv();
|
auto env = platform::DotEnv();
|
||||||
|
config.platform = env.get("platform");
|
||||||
platform::Paths::createPath(platform::Paths::grid());
|
platform::Paths::createPath(platform::Paths::grid());
|
||||||
config.path = platform::Paths::grid();
|
|
||||||
auto grid_search = platform::GridSearch(config);
|
auto grid_search = platform::GridSearch(config);
|
||||||
platform::Timer timer;
|
platform::Timer timer;
|
||||||
timer.start();
|
timer.start();
|
||||||
grid_search.go();
|
if (dump) {
|
||||||
std::cout << "Process took " << timer.getDurationString() << std::endl;
|
list_dump(config.model);
|
||||||
grid_search.save();
|
} else {
|
||||||
|
if (compute) {
|
||||||
|
if (program.get<bool>("mpi")) {
|
||||||
|
struct platform::ConfigMPI mpi_config;
|
||||||
|
mpi_config.manager = 0; // which process is the manager
|
||||||
|
MPI_Init(&argc, &argv);
|
||||||
|
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_config.rank);
|
||||||
|
MPI_Comm_size(MPI_COMM_WORLD, &mpi_config.n_procs);
|
||||||
|
grid_search.go_mpi(mpi_config);
|
||||||
|
if (mpi_config.rank == mpi_config.manager) {
|
||||||
|
auto results = grid_search.getResults();
|
||||||
|
list_results(results, config.model);
|
||||||
|
std::cout << "Process took " << timer.getDurationString() << std::endl;
|
||||||
|
}
|
||||||
|
MPI_Finalize();
|
||||||
|
} else {
|
||||||
|
grid_search.go();
|
||||||
|
std::cout << "Process took " << timer.getDurationString() << std::endl;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
// List results
|
||||||
|
auto results = grid_search.getResults();
|
||||||
|
if (results.empty()) {
|
||||||
|
std::cout << "** No results found" << std::endl;
|
||||||
|
} else {
|
||||||
|
list_results(results, config.model);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
std::cout << "Done!" << std::endl;
|
std::cout << "Done!" << std::endl;
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
@@ -11,10 +11,9 @@
|
|||||||
|
|
||||||
using json = nlohmann::json;
|
using json = nlohmann::json;
|
||||||
|
|
||||||
argparse::ArgumentParser manageArguments(std::string program_name)
|
void manageArguments(argparse::ArgumentParser& program)
|
||||||
{
|
{
|
||||||
auto env = platform::DotEnv();
|
auto env = platform::DotEnv();
|
||||||
argparse::ArgumentParser program(program_name);
|
|
||||||
program.add_argument("-d", "--dataset").default_value("").help("Dataset file name");
|
program.add_argument("-d", "--dataset").default_value("").help("Dataset file name");
|
||||||
program.add_argument("--hyperparameters").default_value("{}").help("Hyperparameters passed to the model in Experiment");
|
program.add_argument("--hyperparameters").default_value("{}").help("Hyperparameters passed to the model in Experiment");
|
||||||
program.add_argument("--hyper-file").default_value("").help("Hyperparameters file name." \
|
program.add_argument("--hyper-file").default_value("").help("Hyperparameters file name." \
|
||||||
@@ -50,18 +49,18 @@ argparse::ArgumentParser manageArguments(std::string program_name)
|
|||||||
}});
|
}});
|
||||||
auto seed_values = env.getSeeds();
|
auto seed_values = env.getSeeds();
|
||||||
program.add_argument("-s", "--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
|
program.add_argument("-s", "--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
|
||||||
return program;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
int main(int argc, char** argv)
|
int main(int argc, char** argv)
|
||||||
{
|
{
|
||||||
|
argparse::ArgumentParser program("b_main");
|
||||||
|
manageArguments(program);
|
||||||
std::string file_name, model_name, title, hyperparameters_file;
|
std::string file_name, model_name, title, hyperparameters_file;
|
||||||
json hyperparameters_json;
|
json hyperparameters_json;
|
||||||
bool discretize_dataset, stratified, saveResults, quiet;
|
bool discretize_dataset, stratified, saveResults, quiet;
|
||||||
std::vector<int> seeds;
|
std::vector<int> seeds;
|
||||||
std::vector<std::string> filesToTest;
|
std::vector<std::string> filesToTest;
|
||||||
int n_folds;
|
int n_folds;
|
||||||
auto program = manageArguments("b_main");
|
|
||||||
try {
|
try {
|
||||||
program.parse_args(argc, argv);
|
program.parse_args(argc, argv);
|
||||||
file_name = program.get<std::string>("dataset");
|
file_name = program.get<std::string>("dataset");
|
||||||
|
@@ -3,9 +3,8 @@
|
|||||||
#include "ManageResults.h"
|
#include "ManageResults.h"
|
||||||
|
|
||||||
|
|
||||||
argparse::ArgumentParser manageArguments(int argc, char** argv)
|
void manageArguments(argparse::ArgumentParser& program, int argc, char** argv)
|
||||||
{
|
{
|
||||||
argparse::ArgumentParser program("b_manage");
|
|
||||||
program.add_argument("-n", "--number").default_value(0).help("Number of results to show (0 = all)").scan<'i', int>();
|
program.add_argument("-n", "--number").default_value(0).help("Number of results to show (0 = all)").scan<'i', int>();
|
||||||
program.add_argument("-m", "--model").default_value("any").help("Filter results of the selected model)");
|
program.add_argument("-m", "--model").default_value("any").help("Filter results of the selected model)");
|
||||||
program.add_argument("-s", "--score").default_value("any").help("Filter results of the score name supplied");
|
program.add_argument("-s", "--score").default_value("any").help("Filter results of the score name supplied");
|
||||||
@@ -29,12 +28,12 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
|
|||||||
std::cerr << program;
|
std::cerr << program;
|
||||||
exit(1);
|
exit(1);
|
||||||
}
|
}
|
||||||
return program;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
int main(int argc, char** argv)
|
int main(int argc, char** argv)
|
||||||
{
|
{
|
||||||
auto program = manageArguments(argc, argv);
|
auto program = argparse::ArgumentParser("b_manage");
|
||||||
|
manageArguments(program, argc, argv);
|
||||||
int number = program.get<int>("number");
|
int number = program.get<int>("number");
|
||||||
std::string model = program.get<std::string>("model");
|
std::string model = program.get<std::string>("model");
|
||||||
std::string score = program.get<std::string>("score");
|
std::string score = program.get<std::string>("score");
|
||||||
|
@@ -5,6 +5,18 @@ namespace pywrap {
|
|||||||
{
|
{
|
||||||
validHyperparameters = { "n_jobs", "n_estimators", "random_state" };
|
validHyperparameters = { "n_jobs", "n_estimators", "random_state" };
|
||||||
}
|
}
|
||||||
|
int ODTE::getNumberOfNodes() const
|
||||||
|
{
|
||||||
|
return callMethodInt("get_nodes");
|
||||||
|
}
|
||||||
|
int ODTE::getNumberOfEdges() const
|
||||||
|
{
|
||||||
|
return callMethodInt("get_leaves");
|
||||||
|
}
|
||||||
|
int ODTE::getNumberOfStates() const
|
||||||
|
{
|
||||||
|
return callMethodInt("get_depth");
|
||||||
|
}
|
||||||
std::string ODTE::graph()
|
std::string ODTE::graph()
|
||||||
{
|
{
|
||||||
return callMethodString("graph");
|
return callMethodString("graph");
|
||||||
|
@@ -8,6 +8,9 @@ namespace pywrap {
|
|||||||
public:
|
public:
|
||||||
ODTE();
|
ODTE();
|
||||||
~ODTE() = default;
|
~ODTE() = default;
|
||||||
|
int getNumberOfNodes() const override;
|
||||||
|
int getNumberOfEdges() const override;
|
||||||
|
int getNumberOfStates() const override;
|
||||||
std::string graph();
|
std::string graph();
|
||||||
};
|
};
|
||||||
} /* namespace pywrap */
|
} /* namespace pywrap */
|
||||||
|
@@ -38,6 +38,14 @@ namespace pywrap {
|
|||||||
{
|
{
|
||||||
return pyWrap->callMethodString(id, method);
|
return pyWrap->callMethodString(id, method);
|
||||||
}
|
}
|
||||||
|
int PyClassifier::callMethodSumOfItems(const std::string& method) const
|
||||||
|
{
|
||||||
|
return pyWrap->callMethodSumOfItems(id, method);
|
||||||
|
}
|
||||||
|
int PyClassifier::callMethodInt(const std::string& method) const
|
||||||
|
{
|
||||||
|
return pyWrap->callMethodInt(id, method);
|
||||||
|
}
|
||||||
PyClassifier& PyClassifier::fit(torch::Tensor& X, torch::Tensor& y)
|
PyClassifier& PyClassifier::fit(torch::Tensor& X, torch::Tensor& y)
|
||||||
{
|
{
|
||||||
if (!fitted && hyperparameters.size() > 0) {
|
if (!fitted && hyperparameters.size() > 0) {
|
||||||
|
@@ -29,10 +29,11 @@ namespace pywrap {
|
|||||||
float score(torch::Tensor& X, torch::Tensor& y) override;
|
float score(torch::Tensor& X, torch::Tensor& y) override;
|
||||||
std::string version();
|
std::string version();
|
||||||
std::string callMethodString(const std::string& method);
|
std::string callMethodString(const std::string& method);
|
||||||
|
int callMethodSumOfItems(const std::string& method) const;
|
||||||
|
int callMethodInt(const std::string& method) const;
|
||||||
std::string getVersion() override { return this->version(); };
|
std::string getVersion() override { return this->version(); };
|
||||||
// TODO: Implement these 3 methods
|
int getNumberOfNodes() const override { return 0; };
|
||||||
int getNumberOfNodes()const override { return 0; };
|
int getNumberOfEdges() const override { return 0; };
|
||||||
int getNumberOfEdges()const override { return 0; };
|
|
||||||
int getNumberOfStates() const override { return 0; };
|
int getNumberOfStates() const override { return 0; };
|
||||||
std::vector<std::string> show() const override { return std::vector<std::string>(); }
|
std::vector<std::string> show() const override { return std::vector<std::string>(); }
|
||||||
std::vector<std::string> graph(const std::string& title = "") const override { return std::vector<std::string>(); }
|
std::vector<std::string> graph(const std::string& title = "") const override { return std::vector<std::string>(); }
|
||||||
|
@@ -110,17 +110,80 @@ namespace pywrap {
|
|||||||
Py_XDECREF(result);
|
Py_XDECREF(result);
|
||||||
return value;
|
return value;
|
||||||
}
|
}
|
||||||
|
int PyWrap::callMethodInt(const clfId_t id, const std::string& method)
|
||||||
|
{
|
||||||
|
PyObject* instance = getClass(id);
|
||||||
|
PyObject* result;
|
||||||
|
try {
|
||||||
|
if (!(result = PyObject_CallMethod(instance, method.c_str(), NULL)))
|
||||||
|
errorAbort("Couldn't call method " + method);
|
||||||
|
}
|
||||||
|
catch (const std::exception& e) {
|
||||||
|
errorAbort(e.what());
|
||||||
|
}
|
||||||
|
int value = PyLong_AsLong(result);
|
||||||
|
Py_XDECREF(result);
|
||||||
|
return value;
|
||||||
|
}
|
||||||
std::string PyWrap::sklearnVersion()
|
std::string PyWrap::sklearnVersion()
|
||||||
{
|
{
|
||||||
return "1.0";
|
PyObject* sklearnModule = PyImport_ImportModule("sklearn");
|
||||||
// CPyObject data = PyRun_SimpleString("import sklearn;return sklearn.__version__");
|
if (sklearnModule == nullptr) {
|
||||||
// std::string result = PyUnicode_AsUTF8(data);
|
errorAbort("Couldn't import sklearn");
|
||||||
// return result;
|
}
|
||||||
|
PyObject* versionAttr = PyObject_GetAttrString(sklearnModule, "__version__");
|
||||||
|
if (versionAttr == nullptr || !PyUnicode_Check(versionAttr)) {
|
||||||
|
Py_XDECREF(sklearnModule);
|
||||||
|
errorAbort("Couldn't get sklearn version");
|
||||||
|
}
|
||||||
|
std::string result = PyUnicode_AsUTF8(versionAttr);
|
||||||
|
Py_XDECREF(versionAttr);
|
||||||
|
Py_XDECREF(sklearnModule);
|
||||||
|
return result;
|
||||||
}
|
}
|
||||||
std::string PyWrap::version(const clfId_t id)
|
std::string PyWrap::version(const clfId_t id)
|
||||||
{
|
{
|
||||||
return callMethodString(id, "version");
|
return callMethodString(id, "version");
|
||||||
}
|
}
|
||||||
|
int PyWrap::callMethodSumOfItems(const clfId_t id, const std::string& method)
|
||||||
|
{
|
||||||
|
// Call method on each estimator and sum the results (made for RandomForest)
|
||||||
|
PyObject* instance = getClass(id);
|
||||||
|
PyObject* estimators = PyObject_GetAttrString(instance, "estimators_");
|
||||||
|
if (estimators == nullptr) {
|
||||||
|
errorAbort("Failed to get attribute: " + method);
|
||||||
|
}
|
||||||
|
int sumOfItems = 0;
|
||||||
|
Py_ssize_t len = PyList_Size(estimators);
|
||||||
|
for (Py_ssize_t i = 0; i < len; i++) {
|
||||||
|
PyObject* estimator = PyList_GetItem(estimators, i);
|
||||||
|
PyObject* result;
|
||||||
|
if (method == "node_count") {
|
||||||
|
PyObject* owner = PyObject_GetAttrString(estimator, "tree_");
|
||||||
|
if (owner == nullptr) {
|
||||||
|
Py_XDECREF(estimators);
|
||||||
|
errorAbort("Failed to get attribute tree_ for: " + method);
|
||||||
|
}
|
||||||
|
result = PyObject_GetAttrString(owner, method.c_str());
|
||||||
|
if (result == nullptr) {
|
||||||
|
Py_XDECREF(estimators);
|
||||||
|
Py_XDECREF(owner);
|
||||||
|
errorAbort("Failed to get attribute node_count: " + method);
|
||||||
|
}
|
||||||
|
Py_DECREF(owner);
|
||||||
|
} else {
|
||||||
|
result = PyObject_CallMethod(estimator, method.c_str(), nullptr);
|
||||||
|
if (result == nullptr) {
|
||||||
|
Py_XDECREF(estimators);
|
||||||
|
errorAbort("Failed to call method: " + method);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
sumOfItems += PyLong_AsLong(result);
|
||||||
|
Py_DECREF(result);
|
||||||
|
}
|
||||||
|
Py_DECREF(estimators);
|
||||||
|
return sumOfItems;
|
||||||
|
}
|
||||||
void PyWrap::setHyperparameters(const clfId_t id, const json& hyperparameters)
|
void PyWrap::setHyperparameters(const clfId_t id, const json& hyperparameters)
|
||||||
{
|
{
|
||||||
// Set hyperparameters as attributes of the class
|
// Set hyperparameters as attributes of the class
|
||||||
|
@@ -24,8 +24,10 @@ namespace pywrap {
|
|||||||
void operator=(const PyWrap&) = delete;
|
void operator=(const PyWrap&) = delete;
|
||||||
~PyWrap() = default;
|
~PyWrap() = default;
|
||||||
std::string callMethodString(const clfId_t id, const std::string& method);
|
std::string callMethodString(const clfId_t id, const std::string& method);
|
||||||
|
int callMethodInt(const clfId_t id, const std::string& method);
|
||||||
std::string sklearnVersion();
|
std::string sklearnVersion();
|
||||||
std::string version(const clfId_t id);
|
std::string version(const clfId_t id);
|
||||||
|
int callMethodSumOfItems(const clfId_t id, const std::string& method);
|
||||||
void setHyperparameters(const clfId_t id, const json& hyperparameters);
|
void setHyperparameters(const clfId_t id, const json& hyperparameters);
|
||||||
void fit(const clfId_t id, CPyObject& X, CPyObject& y);
|
void fit(const clfId_t id, CPyObject& X, CPyObject& y);
|
||||||
PyObject* predict(const clfId_t id, CPyObject& X);
|
PyObject* predict(const clfId_t id, CPyObject& X);
|
||||||
|
@@ -5,4 +5,16 @@ namespace pywrap {
|
|||||||
{
|
{
|
||||||
validHyperparameters = { "n_estimators", "n_jobs", "random_state" };
|
validHyperparameters = { "n_estimators", "n_jobs", "random_state" };
|
||||||
}
|
}
|
||||||
|
int RandomForest::getNumberOfEdges() const
|
||||||
|
{
|
||||||
|
return callMethodSumOfItems("get_n_leaves");
|
||||||
|
}
|
||||||
|
int RandomForest::getNumberOfStates() const
|
||||||
|
{
|
||||||
|
return callMethodSumOfItems("get_depth");
|
||||||
|
}
|
||||||
|
int RandomForest::getNumberOfNodes() const
|
||||||
|
{
|
||||||
|
return callMethodSumOfItems("node_count");
|
||||||
|
}
|
||||||
} /* namespace pywrap */
|
} /* namespace pywrap */
|
@@ -7,6 +7,9 @@ namespace pywrap {
|
|||||||
public:
|
public:
|
||||||
RandomForest();
|
RandomForest();
|
||||||
~RandomForest() = default;
|
~RandomForest() = default;
|
||||||
|
int getNumberOfEdges() const override;
|
||||||
|
int getNumberOfStates() const override;
|
||||||
|
int getNumberOfNodes() const override;
|
||||||
};
|
};
|
||||||
} /* namespace pywrap */
|
} /* namespace pywrap */
|
||||||
#endif /* RANDOMFOREST_H */
|
#endif /* RANDOMFOREST_H */
|
@@ -5,6 +5,18 @@ namespace pywrap {
|
|||||||
{
|
{
|
||||||
validHyperparameters = { "C", "kernel", "max_iter", "max_depth", "random_state", "multiclass_strategy", "gamma", "max_features", "degree" };
|
validHyperparameters = { "C", "kernel", "max_iter", "max_depth", "random_state", "multiclass_strategy", "gamma", "max_features", "degree" };
|
||||||
};
|
};
|
||||||
|
int STree::getNumberOfNodes() const
|
||||||
|
{
|
||||||
|
return callMethodInt("get_nodes");
|
||||||
|
}
|
||||||
|
int STree::getNumberOfEdges() const
|
||||||
|
{
|
||||||
|
return callMethodInt("get_leaves");
|
||||||
|
}
|
||||||
|
int STree::getNumberOfStates() const
|
||||||
|
{
|
||||||
|
return callMethodInt("get_depth");
|
||||||
|
}
|
||||||
std::string STree::graph()
|
std::string STree::graph()
|
||||||
{
|
{
|
||||||
return callMethodString("graph");
|
return callMethodString("graph");
|
||||||
|
@@ -8,6 +8,9 @@ namespace pywrap {
|
|||||||
public:
|
public:
|
||||||
STree();
|
STree();
|
||||||
~STree() = default;
|
~STree() = default;
|
||||||
|
int getNumberOfNodes() const override;
|
||||||
|
int getNumberOfEdges() const override;
|
||||||
|
int getNumberOfStates() const override;
|
||||||
std::string graph();
|
std::string graph();
|
||||||
};
|
};
|
||||||
} /* namespace pywrap */
|
} /* namespace pywrap */
|
||||||
|
Reference in New Issue
Block a user