Compare commits
9 Commits
f6e00530be
...
PythonLink
Author | SHA1 | Date | |
---|---|---|---|
e8d2c9fc0b
|
|||
d3cb580387
|
|||
f088df14fd
|
|||
e2249eace7
|
|||
408db2aad5
|
|||
f617886133
|
|||
69ad660040
|
|||
431b3a3aa5
|
|||
6a23e2cc26
|
28
.vscode/launch.json
vendored
28
.vscode/launch.json
vendored
@@ -5,7 +5,7 @@
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "sample",
|
||||
"program": "${workspaceFolder}/build/sample/BayesNetSample",
|
||||
"program": "${workspaceFolder}/build_debug/sample/BayesNetSample",
|
||||
"args": [
|
||||
"-d",
|
||||
"iris",
|
||||
@@ -14,7 +14,7 @@
|
||||
"-s",
|
||||
"271",
|
||||
"-p",
|
||||
"/Users/rmontanana/Code/discretizbench/datasets/",
|
||||
"/home/rmontanana/Code/discretizbench/datasets/",
|
||||
],
|
||||
//"cwd": "${workspaceFolder}/build/sample/",
|
||||
},
|
||||
@@ -22,24 +22,24 @@
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "experiment",
|
||||
"program": "${workspaceFolder}/build/src/Platform/b_main",
|
||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_main",
|
||||
"args": [
|
||||
"-m",
|
||||
"TAN",
|
||||
"STree",
|
||||
"--stratified",
|
||||
"-d",
|
||||
"zoo",
|
||||
"--discretize"
|
||||
"iris",
|
||||
//"--discretize"
|
||||
// "--hyperparameters",
|
||||
// "{\"repeatSparent\": true, \"maxModels\": 12}"
|
||||
],
|
||||
"cwd": "/Users/rmontanana/Code/odtebench",
|
||||
"cwd": "/home/rmontanana/Code/discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "best",
|
||||
"program": "${workspaceFolder}/build/src/Platform/b_best",
|
||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_best",
|
||||
"args": [
|
||||
"-m",
|
||||
"BoostAODE",
|
||||
@@ -47,24 +47,24 @@
|
||||
"accuracy",
|
||||
"--build",
|
||||
],
|
||||
"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
"cwd": "/home/rmontanana/Code/discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "manage",
|
||||
"program": "${workspaceFolder}/build/src/Platform/b_manage",
|
||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_manage",
|
||||
"args": [
|
||||
"-n",
|
||||
"20"
|
||||
],
|
||||
"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
"cwd": "/home/rmontanana/Code/discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "list",
|
||||
"program": "${workspaceFolder}/build/src/Platform/b_list",
|
||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_list",
|
||||
"args": [],
|
||||
//"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
"cwd": "/home/rmontanana/Code/covbench",
|
||||
@@ -73,7 +73,7 @@
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "test",
|
||||
"program": "${workspaceFolder}/build/tests/unit_tests",
|
||||
"program": "${workspaceFolder}/build_debug/tests/unit_tests",
|
||||
"args": [
|
||||
"-c=\"Metrics Test\"",
|
||||
// "-s",
|
||||
@@ -84,7 +84,7 @@
|
||||
"name": "Build & debug active file",
|
||||
"type": "cppdbg",
|
||||
"request": "launch",
|
||||
"program": "${workspaceFolder}/build/bayesnet",
|
||||
"program": "${workspaceFolder}/build_debug/bayesnet",
|
||||
"args": [],
|
||||
"stopAtEntry": false,
|
||||
"cwd": "${workspaceFolder}",
|
||||
|
@@ -36,12 +36,16 @@ option(CODE_COVERAGE "Collect coverage from test library" OFF)
|
||||
set(Boost_USE_STATIC_LIBS OFF)
|
||||
set(Boost_USE_MULTITHREADED ON)
|
||||
set(Boost_USE_STATIC_RUNTIME OFF)
|
||||
find_package(Boost 1.66.0 REQUIRED)
|
||||
find_package(Boost 1.66.0 REQUIRED COMPONENTS python3 numpy3)
|
||||
if(Boost_FOUND)
|
||||
message("Boost_INCLUDE_DIRS=${Boost_INCLUDE_DIRS}")
|
||||
include_directories(${Boost_INCLUDE_DIRS})
|
||||
endif()
|
||||
|
||||
# Python
|
||||
find_package(Python3 3.11...3.11.9 COMPONENTS Interpreter Development REQUIRED)
|
||||
message("Python3_LIBRARIES=${Python3_LIBRARIES}")
|
||||
|
||||
# CMakes modules
|
||||
# --------------
|
||||
set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH})
|
||||
@@ -77,6 +81,7 @@ add_subdirectory(config)
|
||||
add_subdirectory(lib/Files)
|
||||
add_subdirectory(src/BayesNet)
|
||||
add_subdirectory(src/Platform)
|
||||
add_subdirectory(src/PyClassifiers)
|
||||
add_subdirectory(sample)
|
||||
|
||||
file(GLOB BayesNet_HEADERS CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.h ${BayesNet_SOURCE_DIR}/BayesNet/*.h)
|
||||
|
@@ -1,5 +1,4 @@
|
||||
#include "AODELd.h"
|
||||
#include "Models.h"
|
||||
|
||||
namespace bayesnet {
|
||||
AODELd::AODELd() : Ensemble(), Proposal(dataset, features, className) {}
|
||||
|
@@ -26,7 +26,7 @@ namespace bayesnet {
|
||||
int virtual getNumberOfStates() const = 0;
|
||||
std::vector<std::string> virtual show() const = 0;
|
||||
std::vector<std::string> virtual graph(const std::string& title = "") const = 0;
|
||||
const std::string inline getVersion() const { return "0.2.0"; };
|
||||
virtual std::string getVersion() = 0;
|
||||
std::vector<std::string> virtual topological_order() = 0;
|
||||
void virtual dump_cpt()const = 0;
|
||||
virtual void setHyperparameters(nlohmann::json& hyperparameters) = 0;
|
||||
|
@@ -108,8 +108,10 @@ namespace bayesnet {
|
||||
void BoostAODE::trainModel(const torch::Tensor& weights)
|
||||
{
|
||||
std::unordered_set<int> featuresUsed;
|
||||
int tolerance = 5; // number of times the accuracy can be lower than the threshold
|
||||
if (selectFeatures) {
|
||||
featuresUsed = initializeModels();
|
||||
tolerance = 0; // Remove tolerance if features are selected
|
||||
}
|
||||
if (maxModels == 0)
|
||||
maxModels = .1 * n > 10 ? .1 * n : n;
|
||||
@@ -119,7 +121,6 @@ namespace bayesnet {
|
||||
double priorAccuracy = 0.0;
|
||||
double delta = 1.0;
|
||||
double threshold = 1e-4;
|
||||
int tolerance = 5; // number of times the accuracy can be lower than the threshold
|
||||
int count = 0; // number of times the accuracy is lower than the threshold
|
||||
fitted = true; // to enable predict
|
||||
// Step 0: Set the finish condition
|
||||
|
@@ -3,6 +3,9 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/PyClassifiers)
|
||||
include_directories(${Python3_INCLUDE_DIRS})
|
||||
|
||||
add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc
|
||||
KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc BoostAODE.cc
|
||||
Mst.cc Proposal.cc CFS.cc FCBF.cc IWSS.cc FeatureSelect.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
|
||||
|
@@ -37,6 +37,7 @@ namespace bayesnet {
|
||||
int getNumberOfStates() const override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
status_t getStatus() const override { return status; }
|
||||
std::string getVersion() override { return "0.2.0"; };
|
||||
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
|
||||
float score(torch::Tensor& X, torch::Tensor& y) override;
|
||||
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
|
||||
|
@@ -1,17 +1,19 @@
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/PyClassifiers)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/libxlsxwriter/include)
|
||||
include_directories(${Python3_INCLUDE_DIRS})
|
||||
|
||||
add_executable(b_main b_main.cc Folding.cc Experiment.cc Datasets.cc Dataset.cc Models.cc ReportConsole.cc ReportBase.cc)
|
||||
add_executable(b_manage b_manage.cc Results.cc ManageResults.cc CommandParser.cc Result.cc ReportConsole.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
|
||||
add_executable(b_list b_list.cc Datasets.cc Dataset.cc)
|
||||
add_executable(b_best b_best.cc BestResults.cc Result.cc Statistics.cc BestResultsExcel.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
|
||||
|
||||
target_link_libraries(b_main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
|
||||
target_link_libraries(b_main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}" PyWrap)
|
||||
target_link_libraries(b_manage "${TORCH_LIBRARIES}" "${XLSXWRITER_LIB}" ArffFiles mdlp)
|
||||
target_link_libraries(b_best Boost::boost "${XLSXWRITER_LIB}" "${TORCH_LIBRARIES}" ArffFiles mdlp)
|
||||
target_link_libraries(b_list ArffFiles mdlp "${TORCH_LIBRARIES}")
|
@@ -211,7 +211,6 @@ namespace platform {
|
||||
result.addTimeTrain(train_time[item].item<double>());
|
||||
result.addTimeTest(test_time[item].item<double>());
|
||||
item++;
|
||||
clf.reset();
|
||||
}
|
||||
if (!quiet)
|
||||
std::cout << "end. " << flush;
|
||||
|
@@ -11,6 +11,10 @@
|
||||
#include "SPODELd.h"
|
||||
#include "AODELd.h"
|
||||
#include "BoostAODE.h"
|
||||
#include "STree.h"
|
||||
#include "ODTE.h"
|
||||
#include "SVC.h"
|
||||
#include "RandomForest.h"
|
||||
namespace platform {
|
||||
class Models {
|
||||
private:
|
||||
|
@@ -18,4 +18,12 @@ static platform::Registrar registrarALD("AODELd",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODELd();});
|
||||
static platform::Registrar registrarBA("BoostAODE",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::BoostAODE();});
|
||||
static platform::Registrar registrarSt("STree",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new pywrap::STree();});
|
||||
static platform::Registrar registrarOdte("Odte",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new pywrap::ODTE();});
|
||||
static platform::Registrar registrarSvc("SVC",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new pywrap::SVC();});
|
||||
static platform::Registrar registrarRaF("RandomForest",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new pywrap::RandomForest();});
|
||||
#endif
|
@@ -1,5 +1,6 @@
|
||||
include_directories(${PyWrap_SOURCE_DIR}/lib/Files)
|
||||
include_directories(${PyWrap_SOURCE_DIR}/lib/json/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
|
||||
include_directories(${Python3_INCLUDE_DIRS})
|
||||
include_directories(${TORCH_INCLUDE_DIRS})
|
||||
|
||||
|
@@ -1,25 +0,0 @@
|
||||
#ifndef CLASSIFIER_H
|
||||
#define CLASSIFIER_H
|
||||
#include <torch/torch.h>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
namespace pywrap {
|
||||
class Classifier {
|
||||
public:
|
||||
Classifier() = default;
|
||||
virtual ~Classifier() = default;
|
||||
virtual Classifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
|
||||
virtual Classifier& fit(torch::Tensor& X, torch::Tensor& y) = 0;
|
||||
virtual torch::Tensor predict(torch::Tensor& X) = 0;
|
||||
virtual double score(torch::Tensor& X, torch::Tensor& y) = 0;
|
||||
virtual std::string version() = 0;
|
||||
virtual std::string sklearnVersion() = 0;
|
||||
virtual void setHyperparameters(const nlohmann::json& hyperparameters) = 0;
|
||||
protected:
|
||||
virtual void checkHyperparameters(const std::vector<std::string>& validKeys, const nlohmann::json& hyperparameters) = 0;
|
||||
};
|
||||
} /* namespace pywrap */
|
||||
#endif /* CLASSIFIER_H */
|
@@ -5,7 +5,7 @@ namespace pywrap {
|
||||
{
|
||||
return callMethodString("graph");
|
||||
}
|
||||
void ODTE::setHyperparameters(const nlohmann::json& hyperparameters)
|
||||
void ODTE::setHyperparameters(nlohmann::json& hyperparameters)
|
||||
{
|
||||
// Check if hyperparameters are valid
|
||||
const std::vector<std::string> validKeys = { "n_jobs", "n_estimators", "random_state" };
|
||||
|
@@ -9,7 +9,7 @@ namespace pywrap {
|
||||
ODTE() : PyClassifier("odte", "Odte") {};
|
||||
~ODTE() = default;
|
||||
std::string graph();
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
||||
};
|
||||
} /* namespace pywrap */
|
||||
#endif /* ODTE_H */
|
@@ -2,7 +2,7 @@
|
||||
namespace pywrap {
|
||||
namespace bp = boost::python;
|
||||
namespace np = boost::python::numpy;
|
||||
PyClassifier::PyClassifier(const std::string& module, const std::string& className) : module(module), className(className), fitted(false)
|
||||
PyClassifier::PyClassifier(const std::string& module, const std::string& className, bool sklearn) : module(module), className(className), sklearn(sklearn), fitted(false)
|
||||
{
|
||||
// This id allows to have more than one instance of the same module/class
|
||||
id = reinterpret_cast<clfId_t>(this);
|
||||
@@ -29,12 +29,11 @@ namespace pywrap {
|
||||
}
|
||||
std::string PyClassifier::version()
|
||||
{
|
||||
if (sklearn) {
|
||||
return pyWrap->sklearnVersion();
|
||||
}
|
||||
return pyWrap->version(id);
|
||||
}
|
||||
std::string PyClassifier::sklearnVersion()
|
||||
{
|
||||
return pyWrap->sklearnVersion();
|
||||
}
|
||||
std::string PyClassifier::callMethodString(const std::string& method)
|
||||
{
|
||||
return pyWrap->callMethodString(id, method);
|
||||
@@ -74,15 +73,15 @@ namespace pywrap {
|
||||
Py_XDECREF(incoming);
|
||||
return resultTensor;
|
||||
}
|
||||
double PyClassifier::score(torch::Tensor& X, torch::Tensor& y)
|
||||
float PyClassifier::score(torch::Tensor& X, torch::Tensor& y)
|
||||
{
|
||||
auto [Xn, yn] = tensors2numpy(X, y);
|
||||
CPyObject Xp = bp::incref(bp::object(Xn).ptr());
|
||||
CPyObject yp = bp::incref(bp::object(yn).ptr());
|
||||
auto result = pyWrap->score(id, Xp, yp);
|
||||
float result = pyWrap->score(id, Xp, yp);
|
||||
return result;
|
||||
}
|
||||
void PyClassifier::setHyperparameters(const nlohmann::json& hyperparameters)
|
||||
void PyClassifier::setHyperparameters(nlohmann::json& hyperparameters)
|
||||
{
|
||||
// Check if hyperparameters are valid, default is no hyperparameters
|
||||
const std::vector<std::string> validKeys = { };
|
||||
|
@@ -13,25 +13,41 @@
|
||||
#include "TypeId.h"
|
||||
|
||||
namespace pywrap {
|
||||
class PyClassifier : public Classifier {
|
||||
class PyClassifier : public bayesnet::BaseClassifier {
|
||||
public:
|
||||
PyClassifier(const std::string& module, const std::string& className);
|
||||
PyClassifier(const std::string& module, const std::string& className, const bool sklearn = false);
|
||||
virtual ~PyClassifier();
|
||||
PyClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override { return *this; };
|
||||
// X is nxm tensor, y is nx1 tensor
|
||||
PyClassifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
|
||||
PyClassifier& fit(torch::Tensor& X, torch::Tensor& y) override;
|
||||
PyClassifier& fit(torch::Tensor& X, torch::Tensor& y);
|
||||
PyClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override { return *this; };
|
||||
PyClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights) override { return *this; };
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
double score(torch::Tensor& X, torch::Tensor& y) override;
|
||||
std::string version() override;
|
||||
std::string sklearnVersion() override;
|
||||
std::vector<int> predict(std::vector<std::vector<int >>& X) override { return std::vector<int>(); };
|
||||
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override { return 0.0; };
|
||||
float score(torch::Tensor& X, torch::Tensor& y) override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
||||
std::string version();
|
||||
std::string callMethodString(const std::string& method);
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||
std::string getVersion() override { return this->version(); };
|
||||
int getNumberOfNodes()const override { return 0; };
|
||||
int getNumberOfEdges()const override { return 0; };
|
||||
int getNumberOfStates() const override { return 0; };
|
||||
std::vector<std::string> show() const override { return std::vector<std::string>(); }
|
||||
std::vector<std::string> graph(const std::string& title = "") const override { return std::vector<std::string>(); }
|
||||
bayesnet::status_t getStatus() const override { return bayesnet::NORMAL; };
|
||||
std::vector<std::string> topological_order() override { return std::vector<std::string>(); }
|
||||
void dump_cpt() const override {};
|
||||
protected:
|
||||
void checkHyperparameters(const std::vector<std::string>& validKeys, const nlohmann::json& hyperparameters) override;
|
||||
void checkHyperparameters(const std::vector<std::string>& validKeys, const nlohmann::json& hyperparameters);
|
||||
nlohmann::json hyperparameters;
|
||||
void trainModel(const torch::Tensor& weights) override {};
|
||||
private:
|
||||
PyWrap* pyWrap;
|
||||
std::string module;
|
||||
std::string className;
|
||||
bool sklearn;
|
||||
clfId_t id;
|
||||
bool fitted;
|
||||
};
|
||||
|
@@ -5,6 +5,7 @@
|
||||
#include <map>
|
||||
#include <sstream>
|
||||
#include <boost/python/numpy.hpp>
|
||||
#include <iostream>
|
||||
|
||||
namespace pywrap {
|
||||
namespace np = boost::python::numpy;
|
||||
@@ -19,6 +20,7 @@ namespace pywrap {
|
||||
if (wrapper == nullptr) {
|
||||
wrapper = new PyWrap();
|
||||
pyInstance = new CPyInstance();
|
||||
PyRun_SimpleString("import warnings;warnings.filterwarnings('ignore')");
|
||||
}
|
||||
return wrapper;
|
||||
}
|
||||
@@ -72,9 +74,11 @@ namespace pywrap {
|
||||
PyErr_Print();
|
||||
errorAbort("Error cleaning module ");
|
||||
}
|
||||
if (moduleClassMap.empty()) {
|
||||
RemoveInstance();
|
||||
}
|
||||
// With boost you can't remove the interpreter
|
||||
// https://www.boost.org/doc/libs/1_83_0/libs/python/doc/html/tutorial/tutorial/embedding.html#tutorial.embedding.getting_started
|
||||
// if (moduleClassMap.empty()) {
|
||||
// RemoveInstance();
|
||||
// }
|
||||
}
|
||||
void PyWrap::errorAbort(const std::string& message)
|
||||
{
|
||||
|
@@ -1,8 +1,11 @@
|
||||
#include "RandomForest.h"
|
||||
|
||||
namespace pywrap {
|
||||
std::string RandomForest::version()
|
||||
void RandomForest::setHyperparameters(nlohmann::json& hyperparameters)
|
||||
{
|
||||
return sklearnVersion();
|
||||
// Check if hyperparameters are valid
|
||||
const std::vector<std::string> validKeys = { "n_estimators", "n_jobs", "random_state" };
|
||||
checkHyperparameters(validKeys, hyperparameters);
|
||||
this->hyperparameters = hyperparameters;
|
||||
}
|
||||
} /* namespace pywrap */
|
@@ -5,9 +5,9 @@
|
||||
namespace pywrap {
|
||||
class RandomForest : public PyClassifier {
|
||||
public:
|
||||
RandomForest() : PyClassifier("sklearn.ensemble", "RandomForestClassifier") {};
|
||||
RandomForest() : PyClassifier("sklearn.ensemble", "RandomForestClassifier", true) {};
|
||||
~RandomForest() = default;
|
||||
std::string version();
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
||||
};
|
||||
} /* namespace pywrap */
|
||||
#endif /* RANDOMFOREST_H */
|
@@ -5,10 +5,10 @@ namespace pywrap {
|
||||
{
|
||||
return callMethodString("graph");
|
||||
}
|
||||
void STree::setHyperparameters(const nlohmann::json& hyperparameters)
|
||||
void STree::setHyperparameters(nlohmann::json& hyperparameters)
|
||||
{
|
||||
// Check if hyperparameters are valid
|
||||
const std::vector<std::string> validKeys = { "C", "n_jobs", "kernel", "max_iter", "max_depth", "random_state", "multiclass_strategy" };
|
||||
const std::vector<std::string> validKeys = { "C", "kernel", "max_iter", "max_depth", "random_state", "multiclass_strategy" };
|
||||
checkHyperparameters(validKeys, hyperparameters);
|
||||
this->hyperparameters = hyperparameters;
|
||||
}
|
||||
|
@@ -9,7 +9,7 @@ namespace pywrap {
|
||||
STree() : PyClassifier("stree", "Stree") {};
|
||||
~STree() = default;
|
||||
std::string graph();
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
||||
};
|
||||
} /* namespace pywrap */
|
||||
#endif /* STREE_H */
|
@@ -1,11 +1,7 @@
|
||||
#include "SVC.h"
|
||||
|
||||
namespace pywrap {
|
||||
std::string SVC::version()
|
||||
{
|
||||
return sklearnVersion();
|
||||
}
|
||||
void SVC::setHyperparameters(const nlohmann::json& hyperparameters)
|
||||
void SVC::setHyperparameters(nlohmann::json& hyperparameters)
|
||||
{
|
||||
// Check if hyperparameters are valid
|
||||
const std::vector<std::string> validKeys = { "C", "gamma", "kernel", "random_state" };
|
||||
|
@@ -5,10 +5,9 @@
|
||||
namespace pywrap {
|
||||
class SVC : public PyClassifier {
|
||||
public:
|
||||
SVC() : PyClassifier("sklearn.svm", "SVC") {};
|
||||
SVC() : PyClassifier("sklearn.svm", "SVC", true) {};
|
||||
~SVC() = default;
|
||||
std::string version();
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
||||
};
|
||||
|
||||
} /* namespace pywrap */
|
||||
|
Reference in New Issue
Block a user