Compare commits

..

219 Commits

Author SHA1 Message Date
fa7fe081ad Fix xlsx library finding 2023-10-15 11:19:58 +02:00
660e783517 Update validation for feature selection 2023-10-14 13:32:09 +02:00
b35532dd9e Implement IWSS and FCBF too for BoostAODE 2023-10-14 13:12:04 +02:00
6ef49385ea Remove unneeded method declaration FeatureSelect 2023-10-14 11:30:32 +02:00
6d5a25cdc8 Refactor CFS class creating abstract base class 2023-10-14 11:27:46 +02:00
d00b08cbe8 Fix Header for Linux 2023-10-13 14:26:47 +02:00
977ff6fddb Update CMakeLists for Linux 2023-10-13 14:01:52 +02:00
54b8939f35 Prepare BoostAODE first try 2023-10-13 13:46:22 +02:00
5022a4dc90 Complete CFS tested with Python mufs 2023-10-13 12:29:25 +02:00
40d1dad5d8 Begin CFS implementation 2023-10-11 21:17:26 +02:00
47e2b138c5 Complete first working cfs 2023-10-11 11:33:29 +02:00
e7ded68267 First cfs working version 2023-10-10 23:00:38 +02:00
ca833a34f5 try openssl sha256 2023-10-10 18:16:43 +02:00
df9b4c48d2 Begin CFS initialization 2023-10-10 13:39:11 +02:00
f288bbd6fa Begin adding cfs to BoostAODE 2023-10-10 11:52:39 +02:00
7d8aca4f59 Add Locale shared config to reports 2023-10-09 19:41:29 +02:00
8fdad78a8c Continue Test Network 2023-10-09 11:25:30 +02:00
e3ae073333 Continue test Network 2023-10-08 15:54:58 +02:00
4b732e76c2 MST change unordered_set to list 2023-10-07 19:08:13 +02:00
fe5fead27e Begin Fix Test MST 2023-10-07 01:43:26 +02:00
8c3864f3c8 Complete Folding Test 2023-10-07 01:23:36 +02:00
1287160c47 Refactor makefile to use variables 2023-10-07 00:16:25 +02:00
2f58807322 Begin refactor CMakeLists debug/release paths 2023-10-06 19:32:29 +02:00
17e079edd5 Begin Test Folding 2023-10-06 17:08:54 +02:00
b9e0028e9d Refactor Makefile 2023-10-06 01:28:27 +02:00
e0d39fe631 Fix BayesMetrics Test 2023-10-06 01:14:55 +02:00
36b0277576 Add Maximum Spanning Tree test 2023-10-05 15:45:36 +02:00
da8d018ec4 Refactor Makefile 2023-10-05 11:45:00 +02:00
5f0676691c Add First BayesMetrics Tests 2023-10-05 01:14:16 +02:00
3448fb1299 Refactor Tests and add BayesMetrics test 2023-10-04 23:19:23 +02:00
5e938d5cca Add ranks sheet to excel best results 2023-10-04 16:26:57 +02:00
55e742438f Add constant references to Statistics 2023-10-04 13:40:45 +02:00
c4ae3fe429 Add Control model rank info to report 2023-10-04 12:42:35 +02:00
93e4ff94db Add significance level as parameter in best 2023-10-02 15:46:40 +02:00
57c27f739c Remove unused code in BestResults 2023-10-02 15:31:02 +02:00
a434d7f1ae Add a Linux config in launch.json 2023-09-30 18:44:21 +02:00
294666c516 Fix a Linux problem in Datasets 2023-09-30 18:43:47 +02:00
fd04e78ad9 Restore sample.cc 2023-09-29 18:50:25 +02:00
66ec1b343b Remove platformUtils and split Datasets & Dataset 2023-09-29 18:20:46 +02:00
bb423da42f Add csv and R_dat files to platform 2023-09-29 13:52:50 +02:00
db17c14042 Change names of executables to b_... 2023-09-29 09:17:50 +02:00
a4401cb78f Linux CMakeLists.txt adjustment 2023-09-29 00:30:47 +02:00
9d3d9cc6c6 Complete Excel output for bestResults with Friedman test 2023-09-28 18:52:37 +02:00
cfcf3c16df Add best results Excel 2023-09-28 17:12:04 +02:00
85202260f3 Separate specific Excel methods to ExcelFile 2023-09-28 13:07:11 +02:00
82acb3cab5 Enhance output of Best results reports 2023-09-28 12:08:56 +02:00
623ceed396 Merge pull request 'Add Friedman Test & post hoc tests to BestResults' (#10) from boost into main
Reviewed-on: #10
2023-09-28 07:44:55 +00:00
926de2bebd Add boost info to README 2023-09-28 09:44:33 +02:00
71704e3547 Enhance output info in Statistics 2023-09-28 01:27:18 +02:00
3b06534327 Remove duplicated code in BestResults 2023-09-28 00:59:34 +02:00
ac89a451e3 Duplicate statistics tests in class 2023-09-28 00:45:15 +02:00
00c6cf663b Fix order of output in posthoc 2023-09-27 19:11:47 +02:00
5043c12be8 Complete posthoc with Holm adjust 2023-09-27 18:34:16 +02:00
11320e2cc7 Complete friedman test as in exreport 2023-09-27 12:36:03 +02:00
ce66483b65 Update boost version requirement for Linux 2023-09-26 14:12:53 +02:00
cab8e14b2d Add friedman hyperparameter 2023-09-26 11:26:59 +02:00
f0d0abe891 Add boost library link to linux build 2023-09-26 01:07:50 +02:00
dcba146e12 Begin adding Friedman test to BestResults 2023-09-26 01:04:59 +02:00
3ea0285119 Fix ranks to match friedman test ranks 2023-09-25 18:38:12 +02:00
e3888e1503 Merge pull request 'bestResults' (#9) from bestResults into main
Reviewed-on: https://gitea.rmontanana.es:3000/rmontanana/BayesNet/pulls/9

Add best results management, build, report, build all & report all
2023-09-25 12:02:17 +00:00
06de13df98 Add date/time to header of report best 2023-09-25 10:04:53 +02:00
de4fa6a04f Add color to totals 2023-09-23 10:30:39 +02:00
3a7bf4e672 Fix ranking order mistake 2023-09-23 01:33:23 +02:00
cd0bc02a74 Add report/build all with totals and ranks 2023-09-23 01:14:02 +02:00
c8597a794e Begin report all models 2023-09-22 18:13:32 +02:00
b30416364d Fix mistake in best results file name 2023-09-22 14:14:39 +02:00
3a16589220 Add best config for debug in vscode 2023-09-22 01:04:36 +02:00
c4f9187e2a Complete best build and report 2023-09-22 01:03:55 +02:00
c4d0a5b4e6 Split Result from Results 2023-09-21 23:30:17 +02:00
7bfafe555f Begin BestResults build 2023-09-21 23:04:11 +02:00
337b6f7e79 Rename BestResult to BestScore 2023-09-21 19:30:07 +02:00
5fa0b957dd Fix mistake in idx range in manage 2023-09-20 19:12:07 +02:00
67252fc41d Fix CMakeLists libxlsxwriter for Linux 2023-09-20 19:02:53 +02:00
94ae9456a0 Fix libxslxwriter linking problem 2023-09-20 18:50:11 +02:00
781993e326 Resolve some warnings 2023-09-20 17:54:15 +02:00
8257a6ae39 Add message of not exist Best Results 2023-09-20 13:50:34 +02:00
fc81730dfc Merge pull request 'Exchange OpenXLSX to libxlsxwriter' (#8) from libxlsxwriter into main
Add multiple sheets to excel file
Add format and color to sheets
Add comparison with ZeroR
Add comparison with Best Results
Separate contextual menu from general in manage
2023-09-20 11:17:16 +00:00
d8734ff082 Separate contextual menu from general 2023-09-20 13:15:33 +02:00
03533461c8 Add compare to best results in manage 2023-09-20 12:51:19 +02:00
68f22a673d Add comparison to report console 2023-09-20 11:40:01 +02:00
b9bc0088f3 Add format to unique dataset results summary 2023-09-20 10:30:45 +02:00
c280e254ca Remove OpenXLSX submodule 2023-09-20 01:09:58 +02:00
3d0f29fda3 Remove .vscode/settings.json from repository 2023-09-20 01:01:40 +02:00
20a6ebab7c Support to add any number of sheets to excel 2023-09-20 00:58:01 +02:00
925f71166c Fix mistake in comparison 2023-09-19 23:46:49 +02:00
f69f415b92 Complete comparison with ZeroR 2023-09-19 17:55:03 +02:00
1bdfbd1620 Complete adding color to format 2023-09-19 14:07:41 +02:00
06fb135526 First approach 2023-09-18 23:26:22 +02:00
501ea0ab4e Fix CMakeList manage build with Linux 2023-09-18 19:27:40 +02:00
847c6761d7 Add Linux specific link library to cmake 2023-09-17 10:42:19 +02:00
6030885fc3 Add partial result filter to manage 2023-09-16 17:27:18 +02:00
89df7f4db0 Add library to manage link 2023-09-14 01:41:49 +02:00
41257ed566 If ! convergence don't predict test 2023-09-10 19:50:36 +02:00
506369e46b Add Convergence hyperparameter 2023-09-07 11:27:35 +02:00
d908f389f5 Begin using validation as finish condition 2023-09-06 10:51:07 +02:00
5a7c8f1818 Add status to classifier and Experiment 2023-09-05 13:39:43 +02:00
64fc7bd9dd Add show dataset detail in report 2023-09-05 09:26:49 +02:00
0b7beda78c Add threads without limit to network fit 2023-09-04 21:24:11 +02:00
05b670dfc0 Add detail to fold progress in main 2023-09-03 16:33:48 +02:00
de62d42b74 Fix make debug command 2023-09-03 14:13:10 +02:00
edb957d22e Add filter complete results to manage 2023-09-03 14:07:11 +02:00
4de5cb4c6c Merge pull request 'Solve Ensemble models exceptions on certain datasets' (#7) from solveexceptions into main
Reviewed-on: #7
2023-09-02 15:29:33 +00:00
c35030f137 Upgrade models version and Add class diagram 2023-09-02 14:39:43 +02:00
182b07ed90 Solve voting vector error 2023-09-02 13:58:12 +02:00
7806f961e2 Remove threads 2023-08-31 20:30:28 +02:00
7c3e315ae7 Add Linux specific options to compile 2023-08-29 18:20:55 +02:00
284ef6dfd1 Add significanceModels to AODELd 2023-08-24 12:58:53 +02:00
1c6af619b5 Exception if hyperparameters not valid 2023-08-24 12:09:35 +02:00
86ffdfd6f3 Add const feature and className to fit models 2023-08-23 23:15:39 +02:00
d82148079d Add KDB hyperparameters K and theta 2023-08-23 00:44:10 +02:00
067430fd1b Add xlsxopen submodule 2023-08-22 23:45:11 +02:00
f5d0d16365 Merge pull request 'Add excel report to manage results' (#6) from xlsx into main
Reviewed-on: https://gitea.rmontanana.es:11000/rmontanana/BayesNet/pulls/6
2023-08-22 21:40:11 +00:00
97ca8ac084 Move check valid hyperparameters to Classifier 2023-08-22 22:12:20 +02:00
1c1385b768 Fix maxModels mistake in BoostAODE if !repeatSp
Throw exception if wrong hyperparmeter is supplied
2023-08-22 21:55:17 +02:00
35432b6294 Fix time std was not saved in experiment 2023-08-22 12:30:27 +02:00
c59dd30e53 Complete Excel Report with data 2023-08-22 11:55:15 +02:00
d2da0ddb88 Create ReportExcel eq to ReportConsole 2023-08-21 17:51:49 +02:00
8066701c3c Refactor Report class into ReportBase & ReportCons 2023-08-21 17:16:29 +02:00
0f66ac73d0 Revert "Refactor Report into ReportBase & ReportConsole"
This reverts commit 4370bf51d7.
2023-08-21 17:15:14 +02:00
4370bf51d7 Refactor Report into ReportBase & ReportConsole 2023-08-21 17:14:23 +02:00
2b7353b9e0 Add default sorting by date in manage 2023-08-21 16:30:10 +02:00
b686b3c9c3 Enhance copy in Makefile 2023-08-21 12:18:23 +02:00
2dd04a6c44 enhance saving results and add Makefile copy 2023-08-21 11:57:45 +02:00
1da83662d0 Always save results 2023-08-21 10:55:20 +02:00
3ac9593c65 Fix mistake in sample 2023-08-20 20:36:46 +02:00
6b317accf1 Add hyperparameters and processing order to Boost 2023-08-20 20:31:23 +02:00
4964aab722 Add hyperparameters management in experiments 2023-08-20 17:57:38 +02:00
7a6ec73d63 Merge pull request 'boostAode' (#5) from boostAode into main
Reviewed-on: https://gitea.rmontanana.es:11000/rmontanana/BayesNet/pulls/5
Implement boostAODE
add list datasets
add manage results
2023-08-20 09:02:07 +00:00
1a534888d6 Fix report format 2023-08-19 23:30:44 +02:00
59ffd179f4 Fix report format 2023-08-19 21:26:48 +02:00
9972738deb Add list datasets and add locale format 2023-08-19 19:05:16 +02:00
bafcb26bb6 Add manage to build target 2023-08-18 13:43:53 +02:00
2d7999d5f2 Add manage to release targets 2023-08-18 13:43:13 +02:00
a6bb22dfb5 Complete first BoostAODE 2023-08-18 11:50:34 +02:00
704dc937be Remove FeatureSel, add SelectKBest to BayesMetrics 2023-08-16 19:05:18 +02:00
a3e665eed6 make weights double 2023-08-16 12:46:09 +02:00
918a7b4180 Remove unneeded output 2023-08-16 12:36:38 +02:00
80b20f35b4 Fix weights mistakes in computation 2023-08-16 12:32:51 +02:00
4d4780c1d5 Add BoostAODE model based on AODE 2023-08-15 16:16:04 +02:00
fa612c531e Complete Adding weights to Models 2023-08-15 15:59:56 +02:00
24b68f9ae2 Add weigths as parameter 2023-08-15 15:04:56 +02:00
a062ebf445 Merge pull request 'reports' (#4) from reports into boostAode
Reviewed-on: https://gitea.rmontanana.es:11000/rmontanana/BayesNet/pulls/4
2023-08-14 16:58:48 +00:00
2a3fc9aa45 Add colors and enhace input control 2023-08-14 17:03:06 +02:00
55d21294d5 Add class Paths and enhance input 2023-08-14 00:40:31 +02:00
3691cb4a61 Add totals and filter by scoreName and model 2023-08-13 18:13:00 +02:00
054567c65a Add sorting capacity 2023-08-13 17:10:18 +02:00
2729b92f06 Summary list 2023-08-13 16:19:17 +02:00
f26ea1f0ac Add weights to BayesMetrics 2023-08-13 12:56:06 +02:00
af0419c9da First approx with const 1 weights 2023-08-13 00:59:02 +02:00
90c92e5c56 Merge pull request 'Add states as result in Proposal methods' (#3) from optimize_memory into main
Reviewed-on: https://gitea.rmontanana.es:11000/rmontanana/BayesNet/pulls/3
2023-08-12 14:16:55 +00:00
182b52a887 Add states as result in Proposal methods 2023-08-12 16:16:17 +02:00
6679b90a82 Merge pull request 'optimize_memory' (#2) from optimize_memory into main
Reviewed-on: https://gitea.rmontanana.es:11000/rmontanana/BayesNet/pulls/2
2023-08-12 14:15:03 +00:00
405887f833 Solved Ld poor results 2023-08-12 11:49:18 +02:00
3a85481a5a Redo pass states to Network Fit needed in crossval
fix mistake in headerline (report)
2023-08-12 11:10:53 +02:00
0ad5505c16 Spodeld working with poor accuracy 2023-08-10 02:06:18 +02:00
323444b74a const functions 2023-08-08 01:53:41 +02:00
ef1bffcac3 Fixed normal classifiers 2023-08-07 13:50:11 +02:00
06db8f51ce Refactor library and models to lighten data stored
Refactro Ensemble to inherit from Classifier insted of BaseClassifier
2023-08-07 12:49:37 +02:00
e74565ba01 update clang-tidy 2023-08-07 00:44:12 +02:00
2da0fb5d8f Merge branch 'main' into TANNew 2023-08-06 11:40:10 +02:00
14ea51648a Complete AODELd 2023-08-06 11:31:44 +02:00
9e94f4e140 Rename suffix of proposal classifier to Ld 2023-08-05 23:23:31 +02:00
1d0fd629c9 Add SPODENew to models 2023-08-05 23:11:36 +02:00
506ef34c6f Add report output to main 2023-08-05 20:29:05 +02:00
7f45495837 Refactor New classifiers to extract predict 2023-08-05 18:39:48 +02:00
1a09ccca4c Add KDBNew fix computeCPT error 2023-08-05 14:40:42 +02:00
a1c6ab18f3 TANNew restructured with poor results 2023-08-04 20:11:22 +02:00
64ac8fb4f2 TANNew as a TAN variant working 2023-08-04 19:42:18 +02:00
c568ba111d Add Proposal class 2023-08-04 13:05:12 +02:00
45c1d052ac Compile TANNew with poor accuracy 2023-08-04 01:35:45 +02:00
eb1cec58a3 Complete nxm 2023-08-03 20:22:33 +02:00
f520b40016 Almost complete proposal in TANNew 2023-08-02 02:21:55 +02:00
cdfb45d2cb Add topological order to Network 2023-08-02 00:56:52 +02:00
f63a9a64f9 Update Makefile to add Release & Debug build 2023-08-01 19:02:37 +02:00
285f0938a6 Update mdlp library 2023-08-01 17:33:01 +02:00
8f8f9773ce Make TANNew same as TAN with local discretization 2023-08-01 13:17:12 +02:00
a9ba21560d Add environment platform to experiment result 2023-08-01 10:55:53 +02:00
a18fbe5594 Begin implementation 2023-07-31 19:53:55 +02:00
adf650d257 Max threading 2023-07-31 18:49:18 +02:00
43bb017d5d Fix problem with tensors way 2023-07-30 19:00:02 +02:00
53697648e7 Merge branch 'aftermath' into main 2023-07-30 01:05:31 +02:00
4ebc9c2013 Complete fixing the linter warnings 2023-07-30 00:16:58 +02:00
b882569169 Fix some more lint warnings 2023-07-30 00:04:18 +02:00
8b2ed26ab7 Fix some lint warnings 2023-07-29 20:37:51 +02:00
5efa3beaee Fix some lint warnings 2023-07-29 20:20:38 +02:00
9a0449c12d Fix some lint warnings 2023-07-29 19:38:42 +02:00
7222119dfb Refactor experiment crossvalidation 2023-07-29 19:00:39 +02:00
cb54f61a69 Refactor Models to be a singleton factory
Add Registrar of models
2023-07-29 18:22:15 +02:00
07d572a98c Add Model factory 2023-07-29 17:27:43 +02:00
c4f3e6f19a Refactor crossvalidation to remove unneeded params 2023-07-29 16:49:06 +02:00
adc0ca238f Refactor cross_validation 2023-07-29 16:44:07 +02:00
b9e76becce Add show experiment 2023-07-29 16:31:36 +02:00
85cb447283 Add Dataset, Models and DotEnv 2023-07-29 16:21:38 +02:00
b03e84044a Fix some mistakes in timer and output format 2023-07-27 18:40:04 +02:00
7f7ddad36a Fix stratified folding mistake in remainders 2023-07-27 16:51:27 +02:00
3d8fea7a37 Complete Experiment 2023-07-27 15:49:58 +02:00
bc214a496c Adding Datasets management 2023-07-27 01:56:06 +02:00
3e954ba841 Complete json output compatible with benchmark 2023-07-26 19:01:39 +02:00
6f7fb290b0 Add json lib and json result generation 2023-07-26 17:49:03 +02:00
49a49a9dcd Fix Experiment 2023-07-26 14:11:49 +02:00
af7a1d2b40 Fix score with tensors and finis sample 2023-07-26 13:29:47 +02:00
4a54bd42a2 Fix some mistakes 2023-07-26 12:53:01 +02:00
099b4bea09 Fix some mistakes in tensors treatment 2023-07-26 01:39:01 +02:00
be06e475f0 Refactor tensor2vector 2023-07-24 13:22:53 +02:00
c10ebca0e0 Add Experiment, Result and Timer classes 2023-07-24 01:15:12 +02:00
0c226371cc Ensemble Experiment, Folding, Classifiers and Network together 2023-07-23 14:10:28 +02:00
644b6c9be0 Begin experiment 2023-07-23 01:47:57 +02:00
9981ad1811 Refactor Library renaming Base classes 2023-07-22 23:07:56 +02:00
41cceece20 Complete Stratified K Fold 2023-07-22 11:23:35 +02:00
f6e154bc6e Begin Stratified KFold 2023-07-21 21:49:02 +02:00
a2622a4fb6 Begin Folding 2023-07-21 16:07:50 +02:00
d8218f9713 refactor sample to use new argparse library 2023-07-21 02:12:47 +02:00
48bfa02e1d Add clang-tidy conf 2023-07-20 23:55:01 +02:00
f519003766 Remove unneeded files 2023-07-20 18:56:10 +02:00
8ddfd58a50 Fix some mistakes to correct tests 2023-07-20 18:55:56 +02:00
5f70449091 Refactor Library 2 include a Platform/ Experiments 2023-07-20 10:40:08 +02:00
2f5bd0ea7e Add getNumberOfNodes & getNumberOfEdges to Models
Add some more tests
2023-07-19 15:05:44 +02:00
1a21015492 Add some tests 2023-07-18 13:44:08 +02:00
57dab6d709 Add some tests 2023-07-18 13:43:26 +02:00
140 changed files with 7499 additions and 1859 deletions

16
.clang-tidy Normal file
View File

@@ -0,0 +1,16 @@
---
Checks: '-*,
clang-*,
bugprone-*,
cppcoreguidelines-*,
modernize-*,
performance-*,
-cppcoreguidelines-pro-type-vararg,
-modernize-use-trailing-return-type,
-bugprone-exception-escape'
HeaderFilterRegex: 'src/*'
AnalyzeTemporaryDtors: false
WarningsAsErrors: ''
FormatStyle: file
...

31
.clang-uml Normal file
View File

@@ -0,0 +1,31 @@
compilation_database_dir: build
output_directory: puml
diagrams:
BayesNet:
type: class
glob:
- src/BayesNet/*.cc
- src/Platform/*.cc
using_namespace: bayesnet
include:
namespaces:
- bayesnet
- platform
plantuml:
after:
- "note left of {{ alias(\"MyProjectMain\") }}: Main class of myproject library."
sequence:
type: sequence
glob:
- src/Platform/main.cc
combine_free_functions_into_file_participants: true
using_namespace:
- std
- bayesnet
- platform
include:
paths:
- src/BayesNet
- src/Platform
start_from:
- function: main(int,const char **)

6
.gitignore vendored
View File

@@ -31,7 +31,11 @@
*.exe
*.out
*.app
build/
build/**
build_debug/**
build_release/**
*.dSYM/**
cmake-build*/**
.idea
puml/**
.vscode/settings.json

15
.gitmodules vendored Normal file
View File

@@ -0,0 +1,15 @@
[submodule "lib/mdlp"]
path = lib/mdlp
url = https://github.com/rmontanana/mdlp
[submodule "lib/catch2"]
path = lib/catch2
url = https://github.com/catchorg/Catch2.git
[submodule "lib/argparse"]
path = lib/argparse
url = https://github.com/p-ranav/argparse
[submodule "lib/json"]
path = lib/json
url = https://github.com/nlohmann/json.git
[submodule "lib/libxlsxwriter"]
path = lib/libxlsxwriter
url = https://github.com/jmcnamara/libxlsxwriter.git

18
.vscode/c_cpp_properties.json vendored Normal file
View File

@@ -0,0 +1,18 @@
{
"configurations": [
{
"name": "Mac",
"includePath": [
"${workspaceFolder}/**"
],
"defines": [],
"macFrameworkPath": [
"/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk/System/Library/Frameworks"
],
"cStandard": "c17",
"cppStandard": "c++17",
"compileCommands": "${workspaceFolder}/cmake-build-release/compile_commands.json"
}
],
"version": 4
}

77
.vscode/launch.json vendored
View File

@@ -4,22 +4,81 @@
{
"type": "lldb",
"request": "launch",
"name": "bayesnet",
"program": "${workspaceFolder}/build/sample/main",
"name": "sample",
"program": "${workspaceFolder}/build/sample/BayesNetSample",
"args": [
"-f",
"iris"
"-d",
"iris",
"-m",
"TANLd",
"-s",
"271",
"-p",
"/Users/rmontanana/Code/discretizbench/datasets/",
],
"cwd": "${workspaceFolder}",
"preLaunchTask": "CMake: build"
//"cwd": "${workspaceFolder}/build/sample/",
},
{
"type": "lldb",
"request": "launch",
"name": "aout",
"program": "${workspaceFolder}/a.out",
"name": "experiment",
"program": "${workspaceFolder}/build/src/Platform/b_main",
"args": [
"-m",
"TAN",
"--stratified",
"-d",
"zoo",
"--discretize"
// "--hyperparameters",
// "{\"repeatSparent\": true, \"maxModels\": 12}"
],
"cwd": "/Users/rmontanana/Code/odtebench",
},
{
"type": "lldb",
"request": "launch",
"name": "best",
"program": "${workspaceFolder}/build/src/Platform/b_best",
"args": [
"-m",
"BoostAODE",
"-s",
"accuracy",
"--build",
],
"cwd": "/Users/rmontanana/Code/discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "manage",
"program": "${workspaceFolder}/build/src/Platform/b_manage",
"args": [
"-n",
"20"
],
"cwd": "/Users/rmontanana/Code/discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "list",
"program": "${workspaceFolder}/build/src/Platform/b_list",
"args": [],
"cwd": "${workspaceFolder}"
//"cwd": "/Users/rmontanana/Code/discretizbench",
"cwd": "/home/rmontanana/Code/covbench",
},
{
"type": "lldb",
"request": "launch",
"name": "test",
"program": "${workspaceFolder}/build/tests/unit_tests",
"args": [
"-c=\"Metrics Test\"",
// "-s",
],
"cwd": "${workspaceFolder}/build/tests",
},
{
"name": "Build & debug active file",

104
.vscode/settings.json vendored
View File

@@ -1,104 +0,0 @@
{
"files.associations": {
"*.rmd": "markdown",
"*.py": "python",
"vector": "cpp",
"__bit_reference": "cpp",
"__bits": "cpp",
"__config": "cpp",
"__debug": "cpp",
"__errc": "cpp",
"__hash_table": "cpp",
"__locale": "cpp",
"__mutex_base": "cpp",
"__node_handle": "cpp",
"__nullptr": "cpp",
"__split_buffer": "cpp",
"__string": "cpp",
"__threading_support": "cpp",
"__tuple": "cpp",
"array": "cpp",
"atomic": "cpp",
"bitset": "cpp",
"cctype": "cpp",
"chrono": "cpp",
"clocale": "cpp",
"cmath": "cpp",
"compare": "cpp",
"complex": "cpp",
"concepts": "cpp",
"cstdarg": "cpp",
"cstddef": "cpp",
"cstdint": "cpp",
"cstdio": "cpp",
"cstdlib": "cpp",
"cstring": "cpp",
"ctime": "cpp",
"cwchar": "cpp",
"cwctype": "cpp",
"exception": "cpp",
"initializer_list": "cpp",
"ios": "cpp",
"iosfwd": "cpp",
"istream": "cpp",
"limits": "cpp",
"locale": "cpp",
"memory": "cpp",
"mutex": "cpp",
"new": "cpp",
"optional": "cpp",
"ostream": "cpp",
"ratio": "cpp",
"sstream": "cpp",
"stdexcept": "cpp",
"streambuf": "cpp",
"string": "cpp",
"string_view": "cpp",
"system_error": "cpp",
"tuple": "cpp",
"type_traits": "cpp",
"typeinfo": "cpp",
"unordered_map": "cpp",
"variant": "cpp",
"algorithm": "cpp",
"iostream": "cpp",
"iomanip": "cpp",
"numeric": "cpp",
"set": "cpp",
"__tree": "cpp",
"deque": "cpp",
"list": "cpp",
"map": "cpp",
"unordered_set": "cpp",
"any": "cpp",
"condition_variable": "cpp",
"forward_list": "cpp",
"fstream": "cpp",
"stack": "cpp",
"thread": "cpp",
"__memory": "cpp",
"filesystem": "cpp",
"*.toml": "toml",
"utility": "cpp",
"__verbose_abort": "cpp",
"bit": "cpp",
"random": "cpp",
"*.tcc": "cpp",
"functional": "cpp",
"iterator": "cpp",
"memory_resource": "cpp",
"format": "cpp",
"valarray": "cpp",
"regex": "cpp",
"span": "cpp",
"cfenv": "cpp",
"cinttypes": "cpp",
"csetjmp": "cpp",
"future": "cpp",
"queue": "cpp",
"typeindex": "cpp",
"shared_mutex": "cpp"
},
"cmake.configureOnOpen": false,
"C_Cpp.default.configurationProvider": "ms-vscode.cmake-tools"
}

23
.vscode/tasks.json vendored
View File

@@ -32,6 +32,29 @@
],
"group": "build",
"detail": "Task generated by Debugger."
},
{
"type": "cppbuild",
"label": "C/C++: g++ build active file",
"command": "/usr/bin/g++",
"args": [
"-fdiagnostics-color=always",
"-g",
"${file}",
"-o",
"${fileDirname}/${fileBasenameNoExtension}"
],
"options": {
"cwd": "${fileDirname}"
},
"problemMatcher": [
"$gcc"
],
"group": {
"kind": "build",
"isDefault": true
},
"detail": "Task generated by Debugger."
}
]
}

View File

@@ -1,16 +1,20 @@
cmake_minimum_required(VERSION 3.20)
project(BayesNet
VERSION 0.1.0
VERSION 0.2.0
DESCRIPTION "Bayesian Network and basic classifiers Library."
HOMEPAGE_URL "https://github.com/rmontanana/bayesnet"
LANGUAGES CXX
)
if (CODE_COVERAGE AND NOT ENABLE_TESTING)
MESSAGE(FATAL_ERROR "Code coverage requires testing enabled")
endif (CODE_COVERAGE AND NOT ENABLE_TESTING)
find_package(Torch REQUIRED)
if (POLICY CMP0135)
cmake_policy(SET CMP0135 NEW)
cmake_policy(SET CMP0135 NEW)
endif ()
# Global CMake variables
@@ -24,36 +28,66 @@ set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
# Options
# -------
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
option(ENABLE_TESTING "Unit testing build" ON)
option(CODE_COVERAGE "Collect coverage from test library" ON)
option(ENABLE_TESTING "Unit testing build" OFF)
option(CODE_COVERAGE "Collect coverage from test library" OFF)
set(CMAKE_BUILD_TYPE "Debug")
# Boost Library
set(Boost_USE_STATIC_LIBS OFF)
set(Boost_USE_MULTITHREADED ON)
set(Boost_USE_STATIC_RUNTIME OFF)
find_package(Boost 1.66.0 REQUIRED)
if(Boost_FOUND)
message("Boost_INCLUDE_DIRS=${Boost_INCLUDE_DIRS}")
include_directories(${Boost_INCLUDE_DIRS})
endif()
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
# CMakes modules
# --------------
set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH})
include(AddGitSubmodule)
if (CODE_COVERAGE)
enable_testing()
include(CodeCoverage)
MESSAGE("Code coverage enabled")
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage -O0 -g")
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
endif (CODE_COVERAGE)
if (ENABLE_CLANG_TIDY)
include(StaticAnalyzers) # clang-tidy
endif (ENABLE_CLANG_TIDY)
# External libraries - dependencies of BayesNet
# ---------------------------------------------
# include(FetchContent)
add_git_submodule("lib/mdlp")
add_git_submodule("lib/argparse")
add_git_submodule("lib/json")
find_library(XLSXWRITER_LIB NAMES libxlsxwriter.dylib libxlsxwriter.so PATHS ${BayesNet_SOURCE_DIR}/lib/libxlsxwriter/lib)
message("XLSXWRITER_LIB=${XLSXWRITER_LIB}")
# Subdirectories
# --------------
add_subdirectory(config)
add_subdirectory(src)
add_subdirectory(lib/Files)
add_subdirectory(src/BayesNet)
add_subdirectory(src/Platform)
add_subdirectory(sample)
file(GLOB BayesNet_HEADERS CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.h ${BayesNet_SOURCE_DIR}/BayesNet/*.h)
file(GLOB BayesNet_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.cc ${BayesNet_SOURCE_DIR}/src/BayesNet/*.cpp)
file(GLOB Platform_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/Platform/*.cc ${BayesNet_SOURCE_DIR}/src/Platform/*.cpp)
# Testing
# -------
if (ENABLE_TESTING)
MESSAGE("Testing enabled")
enable_testing()
if (CODE_COVERAGE)
include(CodeCoverage)
MESSAGE("Code coverage enabled")
set(CMAKE_C_FLAGS " ${CMAKE_C_FLAGS} -fprofile-arcs -ftest-coverage")
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage")
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
endif (CODE_COVERAGE)
find_package(Catch2 3 REQUIRED)
add_git_submodule("lib/catch2")
include(CTest)
include(Catch)
add_subdirectory(tests)
endif (ENABLE_TESTING)
endif (ENABLE_TESTING)

120
Makefile
View File

@@ -1,6 +1,26 @@
SHELL := /bin/bash
.DEFAULT_GOAL := help
.PHONY: coverage setup help build test
.PHONY: coverage setup help build test clean debug release
f_release = build_release
f_debug = build_debug
app_targets = b_best b_list b_main b_manage
test_targets = unit_tests_bayesnet unit_tests_platform
n_procs = -j 16
define ClearTests
@for t in $(test_targets); do \
if [ -f $(f_debug)/tests/$$t ]; then \
echo ">>> Cleaning $$t..." ; \
rm -f $(f_debug)/tests/$$t ; \
fi ; \
done
@nfiles="$(find . -name "*.gcda" -print0)" ; \
if test "${nfiles}" != "" ; then \
find . -name "*.gcda" -print0 | xargs -0 rm 2>/dev/null ;\
fi ;
endef
setup: ## Install dependencies for tests and coverage
@if [ "$(shell uname)" = "Darwin" ]; then \
@@ -11,35 +31,85 @@ setup: ## Install dependencies for tests and coverage
pip install gcovr; \
fi
dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
cd build && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
dest ?= ${HOME}/bin
install: ## Copy binary files to bin folder
@echo "Destination folder: $(dest)"
make buildr
@echo ">>> Copying files to $(dest)"
@cp $(f_release)/src/Platform/b_main $(dest)
@cp $(f_release)/src/Platform/b_list $(dest)
@cp $(f_release)/src/Platform/b_manage $(dest)
@cp $(f_release)/src/Platform/b_best $(dest)
build: ## Build the project
@echo ">>> Building BayesNet ...";
@if [ -d ./build ]; then rm -rf ./build; fi
@mkdir build;
cmake -S . -B build; \
cd build; \
make; \
dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
@echo ">>> Creating dependency graph diagram of the project...";
$(MAKE) debug
cd $(f_debug) && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
buildd: ## Build the debug targets
cmake --build $(f_debug) -t $(app_targets) $(n_procs)
buildr: ## Build the release targets
cmake --build $(f_release) -t $(app_targets) $(n_procs)
clean: ## Clean the tests info
@echo ">>> Cleaning Debug BayesNet tests...";
$(call ClearTests)
@echo ">>> Done";
test: ## Run tests
@echo "* Running tests...";
find . -name "*.gcda" -print0 | xargs -0 rm
@cd build; \
cmake --build . --target unit_tests ;
@cd build/tests; \
./unit_tests;
clang-uml: ## Create uml class and sequence diagrams
clang-uml -p --add-compile-flag -I /usr/lib/gcc/x86_64-redhat-linux/8/include/
debug: ## Build a debug version of the project
@echo ">>> Building Debug BayesNet...";
@if [ -d ./$(f_debug) ]; then rm -rf ./$(f_debug); fi
@mkdir $(f_debug);
@cmake -S . -B $(f_debug) -D CMAKE_BUILD_TYPE=Debug -D ENABLE_TESTING=ON -D CODE_COVERAGE=ON
@echo ">>> Done";
release: ## Build a Release version of the project
@echo ">>> Building Release BayesNet...";
@if [ -d ./$(f_release) ]; then rm -rf ./$(f_release); fi
@mkdir $(f_release);
@cmake -S . -B $(f_release) -D CMAKE_BUILD_TYPE=Release
@echo ">>> Done";
opt = ""
test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
@echo ">>> Running BayesNet & Platform tests...";
@$(MAKE) clean
@cmake --build $(f_debug) -t $(test_targets) $(n_procs)
@for t in $(test_targets); do \
if [ -f $(f_debug)/tests/$$t ]; then \
cd $(f_debug)/tests ; \
./$$t $(opt) ; \
fi ; \
done
@echo ">>> Done";
opt = ""
testp: ## Run platform tests (opt="-s") to verbose output the tests, (opt="-c='Stratified Fold Test'") to run only that section
@echo ">>> Running Platform tests...";
@$(MAKE) clean
@cmake --build $(f_debug) --target unit_tests_platform $(n_procs)
@if [ -f $(f_debug)/tests/unit_tests_platform ]; then cd $(f_debug)/tests ; ./unit_tests_platform $(opt) ; fi ;
@echo ">>> Done";
opt = ""
testb: ## Run BayesNet tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
@echo ">>> Running BayesNet tests...";
@$(MAKE) clean
@cmake --build $(f_debug) --target unit_tests_bayesnet $(n_procs)
@if [ -f $(f_debug)/tests/unit_tests_bayesnet ]; then cd $(f_debug)/tests ; ./unit_tests_bayesnet $(opt) ; fi ;
@echo ">>> Done";
coverage: ## Run tests and generate coverage report (build/index.html)
@echo "*Building tests...";
find . -name "*.gcda" -print0 | xargs -0 rm
@cd build; \
cmake --build . --target unit_tests ;
@cd build/tests; \
./unit_tests;
gcovr ;
@echo ">>> Building tests with coverage...";
@$(MAKE) test
@cd $(f_debug) ; \
gcovr --config ../gcovr.cfg tests ;
@echo ">>> Done";
help: ## Show help message
@IFS=$$'\n' ; \

View File

@@ -2,4 +2,50 @@
Bayesian Network Classifier with libtorch from scratch
## 0. Setup
Before compiling BayesNet.
### boost library
[Getting Started](<https://www.boost.org/doc/libs/1_83_0/more/getting_started/index.html>)
The best option is install the packages that the Linux distribution have in its repository. If this is the case:
```bash
sudo dnf install boost-devel
```
If this is not possible and the compressed packaged is installed, the following environment variable has to be set:
```bash
export BOOST_ROOT=/path/to/library/
```
### libxlswriter
```bash
cd lib/libxlsxwriter
make
make install DESTDIR=/home/rmontanana/Code PREFIX=
```
Environment variable has to be set:
```bash
export LD_LIBRARY_PATH=/usr/local/lib
```
### Release
```bash
make release
```
### Debug & Tests
```bash
make debug
```
## 1. Introduction

View File

@@ -0,0 +1,12 @@
function(add_git_submodule dir)
find_package(Git REQUIRED)
if(NOT EXISTS ${dir}/CMakeLists.txt)
message(STATUS "🚨 Adding git submodule => ${dir}")
execute_process(COMMAND ${GIT_EXECUTABLE}
submodule update --init --recursive -- ${dir}
WORKING_DIRECTORY ${PROJECT_SOURCE_DIR})
endif()
add_subdirectory(${dir})
endfunction(add_git_submodule)

View File

@@ -0,0 +1,22 @@
if(ENABLE_CLANG_TIDY)
find_program(CLANG_TIDY_COMMAND NAMES clang-tidy)
if(NOT CLANG_TIDY_COMMAND)
message(WARNING "🔴 CMake_RUN_CLANG_TIDY is ON but clang-tidy is not found!")
set(CMAKE_CXX_CLANG_TIDY "" CACHE STRING "" FORCE)
else()
message(STATUS "🟢 CMake_RUN_CLANG_TIDY is ON")
set(CLANGTIDY_EXTRA_ARGS
"-extra-arg=-Wno-unknown-warning-option"
)
set(CMAKE_CXX_CLANG_TIDY "${CLANG_TIDY_COMMAND};-p=${CMAKE_BINARY_DIR};${CLANGTIDY_EXTRA_ARGS}" CACHE STRING "" FORCE)
add_custom_target(clang-tidy
COMMAND ${CMAKE_COMMAND} --build ${CMAKE_BINARY_DIR} --target ${CMAKE_PROJECT_NAME}
COMMAND ${CMAKE_COMMAND} --build ${CMAKE_BINARY_DIR} --target clang-tidy
COMMENT "Running clang-tidy..."
)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
endif()
endif(ENABLE_CLANG_TIDY)

BIN
diagrams/BayesNet.pdf Executable file

Binary file not shown.

View File

@@ -1,5 +1,4 @@
filter = src/
exclude = external/
exclude = tests/
exclude-directories = build/lib/
print-summary = yes
sort-percentage = yes

View File

@@ -2,6 +2,7 @@
#include <fstream>
#include <sstream>
#include <map>
#include <iostream>
using namespace std;
@@ -42,7 +43,7 @@ vector<int>& ArffFiles::getY()
return y;
}
void ArffFiles::load(const string& fileName, bool classLast)
void ArffFiles::loadCommon(string fileName)
{
ifstream file(fileName);
if (!file.is_open()) {
@@ -74,24 +75,51 @@ void ArffFiles::load(const string& fileName, bool classLast)
file.close();
if (attributes.empty())
throw invalid_argument("No attributes found");
}
void ArffFiles::load(const string& fileName, bool classLast)
{
int labelIndex;
loadCommon(fileName);
if (classLast) {
className = get<0>(attributes.back());
classType = get<1>(attributes.back());
attributes.pop_back();
labelIndex = static_cast<int>(attributes.size());
} else {
className = get<0>(attributes.front());
classType = get<1>(attributes.front());
attributes.erase(attributes.begin());
labelIndex = 0;
}
generateDataset(classLast);
generateDataset(labelIndex);
}
void ArffFiles::load(const string& fileName, const string& name)
{
int labelIndex;
loadCommon(fileName);
bool found = false;
for (int i = 0; i < attributes.size(); ++i) {
if (attributes[i].first == name) {
className = get<0>(attributes[i]);
classType = get<1>(attributes[i]);
attributes.erase(attributes.begin() + i);
labelIndex = i;
found = true;
break;
}
}
if (!found) {
throw invalid_argument("Class name not found");
}
generateDataset(labelIndex);
}
void ArffFiles::generateDataset(bool classLast)
void ArffFiles::generateDataset(int labelIndex)
{
X = vector<vector<float>>(attributes.size(), vector<float>(lines.size()));
auto yy = vector<string>(lines.size(), "");
int labelIndex = classLast ? static_cast<int>(attributes.size()) : 0;
auto removeLines = vector<int>(); // Lines with missing values
for (size_t i = 0; i < lines.size(); i++) {
stringstream ss(lines[i]);
string value;
@@ -101,10 +129,20 @@ void ArffFiles::generateDataset(bool classLast)
if (pos++ == labelIndex) {
yy[i] = value;
} else {
X[xIndex++][i] = stof(value);
if (value == "?") {
X[xIndex++][i] = -1;
removeLines.push_back(i);
} else
X[xIndex++][i] = stof(value);
}
}
}
for (auto i : removeLines) {
yy.erase(yy.begin() + i);
for (auto& x : X) {
x.erase(x.begin() + i);
}
}
y = factorize(yy);
}

View File

@@ -14,12 +14,12 @@ private:
string classType;
vector<vector<float>> X;
vector<int> y;
void generateDataset(bool);
void generateDataset(int);
void loadCommon(string);
public:
ArffFiles();
void load(const string&, bool = true);
void load(const string&, const string&);
vector<string> getLines() const;
unsigned long int getSize() const;
string getClassName() const;

1
lib/Files/CMakeLists.txt Normal file
View File

@@ -0,0 +1 @@
add_library(ArffFiles ArffFiles.cc)

1
lib/argparse Submodule

Submodule lib/argparse added at b0930ab028

1
lib/catch2 Submodule

Submodule lib/catch2 added at 9c541ca72e

1
lib/json Submodule

Submodule lib/json added at 5d2754306d

1
lib/libxlsxwriter Submodule

Submodule lib/libxlsxwriter added at 29355a0887

1
lib/mdlp Submodule

Submodule lib/mdlp added at 5708dc3de9

33
mac_mst.txt Normal file
View File

@@ -0,0 +1,33 @@
Weights matrix:
0.0000000, 0.0384968, 0.0795434, 0.1546867, -0.0000000, 0.1788104, 0.2214721, 0.0323837, 0.0366549,
0.0384968, 0.0000000, 0.0200662, 0.0200937, -0.0000000, 0.0637224, 0.0183005, 0.0127657, 0.0136054,
0.0795434, 0.0200662, 0.0000000, 0.0605489, -0.0000000, 0.0894469, 0.1689408, 0.0321602, 0.0223184,
0.1546867, 0.0200937, 0.0605489, 0.0000000, -0.0000000, 0.1150757, 0.1332292, 0.0422865, 0.0191138,
-0.0000000, -0.0000000, -0.0000000, -0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000,
0.1788104, 0.0637224, 0.0894469, 0.1150757, 0.0000000, 0.0000000, 0.1407102, 0.0406590, 0.0366986,
0.2214721, 0.0183005, 0.1689408, 0.1332292, 0.0000000, 0.1407102, 0.0000000, 0.0427515, 0.0349965,
0.0323837, 0.0127657, 0.0321602, 0.0422865, 0.0000000, 0.0406590, 0.0427515, 0.0000000, 0.0343376,
0.0366549, 0.0136054, 0.0223184, 0.0191138, 0.0000000, 0.0366986, 0.0349965, 0.0343376, 0.0000000,
Edge : Weight
0 - 6 : 0.2214721
0 - 5 : 0.1788104
2 - 6 : 0.1689408
0 - 3 : 0.1546867
1 - 5 : 0.0637224
6 - 7 : 0.0427515
5 - 8 : 0.0366986
4 - 5 : 0.0000000
-------------------------------------------------------------------------------
Metrics Test
Test Maximum Spanning Tree
-------------------------------------------------------------------------------
/Users/rmontanana/Code/BayesNet/tests/TestBayesMetrics.cc:58
...............................................................................
/Users/rmontanana/Code/BayesNet/tests/TestBayesMetrics.cc:69: PASSED:
REQUIRE( result == resultsMST.at(file_name) )
with expansion:
(0, 6) (0, 5) (0, 3) (5, 1) (5, 8) (5, 4) (6, 2) (6, 7)
==
(0, 6) (0, 5) (0, 3) (5, 1) (5, 8) (5, 4) (6, 2) (6, 7)

View File

@@ -1,4 +1,8 @@
include_directories(${BayesNet_SOURCE_DIR}/src)
link_directories(${MyProject_SOURCE_DIR}/src)
add_executable(main main.cc ArffFiles.cc CPPFImdlp.cpp Metrics.cpp)
target_link_libraries(main BayesNet "${TORCH_LIBRARIES}")
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
add_executable(BayesNetSample sample.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
target_link_libraries(BayesNetSample BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")

View File

@@ -1,221 +0,0 @@
#include <numeric>
#include <algorithm>
#include <set>
#include <cmath>
#include "CPPFImdlp.h"
#include "Metrics.h"
namespace mdlp {
CPPFImdlp::CPPFImdlp(size_t min_length_, int max_depth_, float proposed) : min_length(min_length_),
max_depth(max_depth_),
proposed_cuts(proposed)
{
}
CPPFImdlp::CPPFImdlp() = default;
CPPFImdlp::~CPPFImdlp() = default;
size_t CPPFImdlp::compute_max_num_cut_points() const
{
// Set the actual maximum number of cut points as a number or as a percentage of the number of samples
if (proposed_cuts == 0) {
return numeric_limits<size_t>::max();
}
if (proposed_cuts < 0 || proposed_cuts > static_cast<float>(X.size())) {
throw invalid_argument("wrong proposed num_cuts value");
}
if (proposed_cuts < 1)
return static_cast<size_t>(round(static_cast<float>(X.size()) * proposed_cuts));
return static_cast<size_t>(proposed_cuts);
}
void CPPFImdlp::fit(samples_t& X_, labels_t& y_)
{
X = X_;
y = y_;
num_cut_points = compute_max_num_cut_points();
depth = 0;
discretizedData.clear();
cutPoints.clear();
if (X.size() != y.size()) {
throw invalid_argument("X and y must have the same size");
}
if (X.empty() || y.empty()) {
throw invalid_argument("X and y must have at least one element");
}
if (min_length < 3) {
throw invalid_argument("min_length must be greater than 2");
}
if (max_depth < 1) {
throw invalid_argument("max_depth must be greater than 0");
}
indices = sortIndices(X_, y_);
metrics.setData(y, indices);
computeCutPoints(0, X.size(), 1);
sort(cutPoints.begin(), cutPoints.end());
if (num_cut_points > 0) {
// Select the best (with lower entropy) cut points
while (cutPoints.size() > num_cut_points) {
resizeCutPoints();
}
}
}
pair<precision_t, size_t> CPPFImdlp::valueCutPoint(size_t start, size_t cut, size_t end)
{
size_t n;
size_t m;
size_t idxPrev = cut - 1 >= start ? cut - 1 : cut;
size_t idxNext = cut + 1 < end ? cut + 1 : cut;
bool backWall; // true if duplicates reach beginning of the interval
precision_t previous;
precision_t actual;
precision_t next;
previous = X[indices[idxPrev]];
actual = X[indices[cut]];
next = X[indices[idxNext]];
// definition 2 of the paper => X[t-1] < X[t]
// get the first equal value of X in the interval
while (idxPrev > start && actual == previous) {
previous = X[indices[--idxPrev]];
}
backWall = idxPrev == start && actual == previous;
// get the last equal value of X in the interval
while (idxNext < end - 1 && actual == next) {
next = X[indices[++idxNext]];
}
// # of duplicates before cutpoint
n = cut - 1 - idxPrev;
// # of duplicates after cutpoint
m = idxNext - cut - 1;
// Decide which values to use
cut = cut + (backWall ? m + 1 : -n);
actual = X[indices[cut]];
return { (actual + previous) / 2, cut };
}
void CPPFImdlp::computeCutPoints(size_t start, size_t end, int depth_)
{
size_t cut;
pair<precision_t, size_t> result;
// Check if the interval length and the depth are Ok
if (end - start < min_length || depth_ > max_depth)
return;
depth = depth_ > depth ? depth_ : depth;
cut = getCandidate(start, end);
if (cut == numeric_limits<size_t>::max())
return;
if (mdlp(start, cut, end)) {
result = valueCutPoint(start, cut, end);
cut = result.second;
cutPoints.push_back(result.first);
computeCutPoints(start, cut, depth_ + 1);
computeCutPoints(cut, end, depth_ + 1);
}
}
size_t CPPFImdlp::getCandidate(size_t start, size_t end)
{
/* Definition 1: A binary discretization for A is determined by selecting the cut point TA for which
E(A, TA; S) is minimal amongst all the candidate cut points. */
size_t candidate = numeric_limits<size_t>::max();
size_t elements = end - start;
bool sameValues = true;
precision_t entropy_left;
precision_t entropy_right;
precision_t minEntropy;
// Check if all the values of the variable in the interval are the same
for (size_t idx = start + 1; idx < end; idx++) {
if (X[indices[idx]] != X[indices[start]]) {
sameValues = false;
break;
}
}
if (sameValues)
return candidate;
minEntropy = metrics.entropy(start, end);
for (size_t idx = start + 1; idx < end; idx++) {
// Cutpoints are always on boundaries (definition 2)
if (y[indices[idx]] == y[indices[idx - 1]])
continue;
entropy_left = precision_t(idx - start) / static_cast<precision_t>(elements) * metrics.entropy(start, idx);
entropy_right = precision_t(end - idx) / static_cast<precision_t>(elements) * metrics.entropy(idx, end);
if (entropy_left + entropy_right < minEntropy) {
minEntropy = entropy_left + entropy_right;
candidate = idx;
}
}
return candidate;
}
bool CPPFImdlp::mdlp(size_t start, size_t cut, size_t end)
{
int k;
int k1;
int k2;
precision_t ig;
precision_t delta;
precision_t ent;
precision_t ent1;
precision_t ent2;
auto N = precision_t(end - start);
k = metrics.computeNumClasses(start, end);
k1 = metrics.computeNumClasses(start, cut);
k2 = metrics.computeNumClasses(cut, end);
ent = metrics.entropy(start, end);
ent1 = metrics.entropy(start, cut);
ent2 = metrics.entropy(cut, end);
ig = metrics.informationGain(start, cut, end);
delta = static_cast<precision_t>(log2(pow(3, precision_t(k)) - 2) -
(precision_t(k) * ent - precision_t(k1) * ent1 - precision_t(k2) * ent2));
precision_t term = 1 / N * (log2(N - 1) + delta);
return ig > term;
}
// Argsort from https://stackoverflow.com/questions/1577475/c-sorting-and-keeping-track-of-indexes
indices_t CPPFImdlp::sortIndices(samples_t& X_, labels_t& y_)
{
indices_t idx(X_.size());
iota(idx.begin(), idx.end(), 0);
stable_sort(idx.begin(), idx.end(), [&X_, &y_](size_t i1, size_t i2) {
if (X_[i1] == X_[i2])
return y_[i1] < y_[i2];
else
return X_[i1] < X_[i2];
});
return idx;
}
void CPPFImdlp::resizeCutPoints()
{
//Compute entropy of each of the whole cutpoint set and discards the biggest value
precision_t maxEntropy = 0;
precision_t entropy;
size_t maxEntropyIdx = 0;
size_t begin = 0;
size_t end;
for (size_t idx = 0; idx < cutPoints.size(); idx++) {
end = begin;
while (X[indices[end]] < cutPoints[idx] && end < X.size())
end++;
entropy = metrics.entropy(begin, end);
if (entropy > maxEntropy) {
maxEntropy = entropy;
maxEntropyIdx = idx;
}
begin = end;
}
cutPoints.erase(cutPoints.begin() + static_cast<long>(maxEntropyIdx));
}
labels_t& CPPFImdlp::transform(const samples_t& data)
{
discretizedData.reserve(data.size());
for (const precision_t& item : data) {
auto upper = upper_bound(cutPoints.begin(), cutPoints.end(), item);
discretizedData.push_back(upper - cutPoints.begin());
}
return discretizedData;
}
}

View File

@@ -1,45 +0,0 @@
#ifndef CPPFIMDLP_H
#define CPPFIMDLP_H
#include "typesFImdlp.h"
#include "Metrics.h"
#include <limits>
#include <utility>
#include <string>
namespace mdlp {
class CPPFImdlp {
protected:
size_t min_length = 3;
int depth = 0;
int max_depth = numeric_limits<int>::max();
float proposed_cuts = 0;
indices_t indices = indices_t();
samples_t X = samples_t();
labels_t y = labels_t();
Metrics metrics = Metrics(y, indices);
cutPoints_t cutPoints;
size_t num_cut_points = numeric_limits<size_t>::max();
labels_t discretizedData = labels_t();
static indices_t sortIndices(samples_t&, labels_t&);
void computeCutPoints(size_t, size_t, int);
void resizeCutPoints();
bool mdlp(size_t, size_t, size_t);
size_t getCandidate(size_t, size_t);
size_t compute_max_num_cut_points() const;
pair<precision_t, size_t> valueCutPoint(size_t, size_t, size_t);
public:
CPPFImdlp();
CPPFImdlp(size_t, int, float);
~CPPFImdlp();
void fit(samples_t&, labels_t&);
inline cutPoints_t getCutPoints() const { return cutPoints; };
labels_t& transform(const samples_t&);
inline int get_depth() const { return depth; };
static inline string version() { return "1.1.2"; };
};
}
#endif

View File

@@ -1,78 +0,0 @@
#include "Metrics.h"
#include <set>
#include <cmath>
using namespace std;
namespace mdlp {
Metrics::Metrics(labels_t& y_, indices_t& indices_): y(y_), indices(indices_),
numClasses(computeNumClasses(0, indices.size()))
{
}
int Metrics::computeNumClasses(size_t start, size_t end)
{
set<int> nClasses;
for (auto i = start; i < end; ++i) {
nClasses.insert(y[indices[i]]);
}
return static_cast<int>(nClasses.size());
}
void Metrics::setData(const labels_t& y_, const indices_t& indices_)
{
indices = indices_;
y = y_;
numClasses = computeNumClasses(0, indices.size());
entropyCache.clear();
igCache.clear();
}
precision_t Metrics::entropy(size_t start, size_t end)
{
precision_t p;
precision_t ventropy = 0;
int nElements = 0;
labels_t counts(numClasses + 1, 0);
if (end - start < 2)
return 0;
if (entropyCache.find({ start, end }) != entropyCache.end()) {
return entropyCache[{start, end}];
}
for (auto i = &indices[start]; i != &indices[end]; ++i) {
counts[y[*i]]++;
nElements++;
}
for (auto count : counts) {
if (count > 0) {
p = static_cast<precision_t>(count) / static_cast<precision_t>(nElements);
ventropy -= p * log2(p);
}
}
entropyCache[{start, end}] = ventropy;
return ventropy;
}
precision_t Metrics::informationGain(size_t start, size_t cut, size_t end)
{
precision_t iGain;
precision_t entropyInterval;
precision_t entropyLeft;
precision_t entropyRight;
size_t nElementsLeft = cut - start;
size_t nElementsRight = end - cut;
size_t nElements = end - start;
if (igCache.find(make_tuple(start, cut, end)) != igCache.end()) {
return igCache[make_tuple(start, cut, end)];
}
entropyInterval = entropy(start, end);
entropyLeft = entropy(start, cut);
entropyRight = entropy(cut, end);
iGain = entropyInterval -
(static_cast<precision_t>(nElementsLeft) * entropyLeft +
static_cast<precision_t>(nElementsRight) * entropyRight) /
static_cast<precision_t>(nElements);
igCache[make_tuple(start, cut, end)] = iGain;
return iGain;
}
}

View File

@@ -1,22 +0,0 @@
#ifndef CCMETRICS_H
#define CCMETRICS_H
#include "typesFImdlp.h"
namespace mdlp {
class Metrics {
protected:
labels_t& y;
indices_t& indices;
int numClasses;
cacheEnt_t entropyCache = cacheEnt_t();
cacheIg_t igCache = cacheIg_t();
public:
Metrics(labels_t&, indices_t&);
void setData(const labels_t&, const indices_t&);
int computeNumClasses(size_t, size_t);
precision_t entropy(size_t, size_t);
precision_t informationGain(size_t, size_t, size_t);
};
}
#endif

View File

@@ -1,225 +0,0 @@
#include <iostream>
#include <string>
#include <torch/torch.h>
#include <thread>
#include <getopt.h>
#include "ArffFiles.h"
#include "Network.h"
#include "Metrics.hpp"
#include "CPPFImdlp.h"
#include "KDB.h"
#include "SPODE.h"
#include "AODE.h"
#include "TAN.h"
using namespace std;
const string PATH = "data/";
/* print a description of all supported options */
void usage(const char* path)
{
/* take only the last portion of the path */
const char* basename = strrchr(path, '/');
basename = basename ? basename + 1 : path;
cout << "usage: " << basename << "[OPTION]" << endl;
cout << " -h, --help\t\t Print this help and exit." << endl;
cout
<< " -f, --file[=FILENAME]\t {diabetes, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}."
<< endl;
cout << " -p, --path[=FILENAME]\t folder where the data files are located, default " << PATH << endl;
cout << " -m, --model={AODE, KDB, SPODE, TAN}\t " << endl;
}
tuple<string, string, string> parse_arguments(int argc, char** argv)
{
string file_name;
string model_name;
string path = PATH;
const vector<struct option> long_options = {
{"help", no_argument, nullptr, 'h'},
{"file", required_argument, nullptr, 'f'},
{"path", required_argument, nullptr, 'p'},
{"model", required_argument, nullptr, 'm'},
{nullptr, no_argument, nullptr, 0}
};
while (true) {
const auto c = getopt_long(argc, argv, "hf:p:m:", long_options.data(), nullptr);
if (c == -1)
break;
switch (c) {
case 'h':
usage(argv[0]);
exit(0);
case 'f':
file_name = string(optarg);
break;
case 'm':
model_name = string(optarg);
break;
case 'p':
path = optarg;
if (path.back() != '/')
path += '/';
break;
case '?':
usage(argv[0]);
exit(1);
default:
abort();
}
}
if (file_name.empty()) {
usage(argv[0]);
exit(1);
}
return make_tuple(file_name, path, model_name);
}
inline constexpr auto hash_conv(const std::string_view sv)
{
unsigned long hash{ 5381 };
for (unsigned char c : sv) {
hash = ((hash << 5) + hash) ^ c;
}
return hash;
}
inline constexpr auto operator"" _sh(const char* str, size_t len)
{
return hash_conv(std::string_view{ str, len });
}
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features)
{
vector<mdlp::labels_t>Xd;
map<string, int> maxes;
auto fimdlp = mdlp::CPPFImdlp();
for (int i = 0; i < X.size(); i++) {
fimdlp.fit(X[i], y);
mdlp::labels_t& xd = fimdlp.transform(X[i]);
maxes[features[i]] = *max_element(xd.begin(), xd.end()) + 1;
Xd.push_back(xd);
}
return { Xd, maxes };
}
bool file_exists(const std::string& name)
{
if (FILE* file = fopen(name.c_str(), "r")) {
fclose(file);
return true;
} else {
return false;
}
}
tuple<string, string, string> get_options(int argc, char** argv)
{
map<string, bool> datasets = {
{"diabetes", true},
{"ecoli", true},
{"glass", true},
{"iris", true},
{"kdd_JapaneseVowels", false},
{"letter", true},
{"liver-disorders", true},
{"mfeat-factors", true},
};
vector <string> models = { "AODE", "KDB", "SPODE", "TAN" };
string file_name;
string path;
string model_name;
tie(file_name, path, model_name) = parse_arguments(argc, argv);
if (datasets.find(file_name) == datasets.end()) {
cout << "Invalid file name: " << file_name << endl;
usage(argv[0]);
exit(1);
}
if (!file_exists(path + file_name + ".arff")) {
cout << "Data File " << path + file_name + ".arff" << " does not exist" << endl;
usage(argv[0]);
exit(1);
}
if (find(models.begin(), models.end(), model_name) == models.end()) {
cout << "Invalid model name: " << model_name << endl;
usage(argv[0]);
exit(1);
}
return { file_name, path, model_name };
}
int main(int argc, char** argv)
{
string file_name, path, model_name;
tie(file_name, path, model_name) = get_options(argc, argv);
auto handler = ArffFiles();
handler.load(path + file_name + ".arff");
// Get Dataset X, y
vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();
// Get className & Features
auto className = handler.getClassName();
vector<string> features;
for (auto feature : handler.getAttributes()) {
features.push_back(feature.first);
}
// Discretize Dataset
vector<mdlp::labels_t> Xd;
map<string, int> maxes;
tie(Xd, maxes) = discretize(X, y, features);
maxes[className] = *max_element(y.begin(), y.end()) + 1;
map<string, vector<int>> states;
for (auto feature : features) {
states[feature] = vector<int>(maxes[feature]);
}
states[className] = vector<int>(
maxes[className]);
double score;
vector<string> lines;
vector<string> graph;
auto kdb = bayesnet::KDB(2);
auto aode = bayesnet::AODE();
auto spode = bayesnet::SPODE(2);
auto tan = bayesnet::TAN();
switch (hash_conv(model_name)) {
case "AODE"_sh:
aode.fit(Xd, y, features, className, states);
lines = aode.show();
score = aode.score(Xd, y);
graph = aode.graph();
break;
case "KDB"_sh:
kdb.fit(Xd, y, features, className, states);
lines = kdb.show();
score = kdb.score(Xd, y);
graph = kdb.graph();
break;
case "SPODE"_sh:
spode.fit(Xd, y, features, className, states);
lines = spode.show();
score = spode.score(Xd, y);
graph = spode.graph();
break;
case "TAN"_sh:
tan.fit(Xd, y, features, className, states);
lines = tan.show();
score = tan.score(Xd, y);
graph = tan.graph();
break;
}
for (auto line : lines) {
cout << line << endl;
}
cout << "Score: " << score << endl;
auto dot_file = model_name + "_" + file_name;
ofstream file(dot_file + ".dot");
file << graph;
file.close();
cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
return 0;
}

237
sample/sample.cc Normal file
View File

@@ -0,0 +1,237 @@
#include <iostream>
#include <torch/torch.h>
#include <string>
#include <map>
#include <argparse/argparse.hpp>
#include <nlohmann/json.hpp>
#include "ArffFiles.h"v
#include "BayesMetrics.h"
#include "CPPFImdlp.h"
#include "Folding.h"
#include "Models.h"
#include "modelRegister.h"
#include <fstream>
using namespace std;
const string PATH = "../../data/";
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features)
{
vector<mdlp::labels_t>Xd;
map<string, int> maxes;
auto fimdlp = mdlp::CPPFImdlp();
for (int i = 0; i < X.size(); i++) {
fimdlp.fit(X[i], y);
mdlp::labels_t& xd = fimdlp.transform(X[i]);
maxes[features[i]] = *max_element(xd.begin(), xd.end()) + 1;
Xd.push_back(xd);
}
return { Xd, maxes };
}
bool file_exists(const std::string& name)
{
if (FILE* file = fopen(name.c_str(), "r")) {
fclose(file);
return true;
} else {
return false;
}
}
pair<vector<vector<int>>, vector<int>> extract_indices(vector<int> indices, vector<vector<int>> X, vector<int> y)
{
vector<vector<int>> Xr; // nxm
vector<int> yr;
for (int col = 0; col < X.size(); ++col) {
Xr.push_back(vector<int>());
}
for (auto index : indices) {
for (int col = 0; col < X.size(); ++col) {
Xr[col].push_back(X[col][index]);
}
yr.push_back(y[index]);
}
return { Xr, yr };
}
int main(int argc, char** argv)
{
map<string, bool> datasets = {
{"diabetes", true},
{"ecoli", true},
{"glass", true},
{"iris", true},
{"kdd_JapaneseVowels", false},
{"letter", true},
{"liver-disorders", true},
{"mfeat-factors", true},
};
auto valid_datasets = vector<string>();
transform(datasets.begin(), datasets.end(), back_inserter(valid_datasets),
[](const pair<string, bool>& pair) { return pair.first; });
argparse::ArgumentParser program("BayesNetSample");
program.add_argument("-d", "--dataset")
.help("Dataset file name")
.action([valid_datasets](const std::string& value) {
if (find(valid_datasets.begin(), valid_datasets.end(), value) != valid_datasets.end()) {
return value;
}
throw runtime_error("file must be one of {diabetes, ecoli, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}");
}
);
program.add_argument("-p", "--path")
.help(" folder where the data files are located, default")
.default_value(string{ PATH }
);
program.add_argument("-m", "--model")
.help("Model to use " + platform::Models::instance()->toString())
.action([](const std::string& value) {
static const vector<string> choices = platform::Models::instance()->getNames();
if (find(choices.begin(), choices.end(), value) != choices.end()) {
return value;
}
throw runtime_error("Model must be one of " + platform::Models::instance()->toString());
}
);
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true);
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true);
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const string& value) {
try {
auto k = stoi(value);
if (k < 2) {
throw runtime_error("Number of folds must be greater than 1");
}
return k;
}
catch (const runtime_error& err) {
throw runtime_error(err.what());
}
catch (...) {
throw runtime_error("Number of folds must be an integer");
}});
program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
bool class_last, stratified, tensors, dump_cpt;
string model_name, file_name, path, complete_file_name;
int nFolds, seed;
try {
program.parse_args(argc, argv);
file_name = program.get<string>("dataset");
path = program.get<string>("path");
model_name = program.get<string>("model");
complete_file_name = path + file_name + ".arff";
stratified = program.get<bool>("stratified");
tensors = program.get<bool>("tensors");
nFolds = program.get<int>("folds");
seed = program.get<int>("seed");
dump_cpt = program.get<bool>("dumpcpt");
class_last = datasets[file_name];
if (!file_exists(complete_file_name)) {
throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist");
}
}
catch (const exception& err) {
cerr << err.what() << endl;
cerr << program;
exit(1);
}
/*
* Begin Processing
*/
auto handler = ArffFiles();
handler.load(complete_file_name, class_last);
// Get Dataset X, y
vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();
// Get className & Features
auto className = handler.getClassName();
vector<string> features;
auto attributes = handler.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features),
[](const pair<string, string>& item) { return item.first; });
// Discretize Dataset
auto [Xd, maxes] = discretize(X, y, features);
maxes[className] = *max_element(y.begin(), y.end()) + 1;
map<string, vector<int>> states;
for (auto feature : features) {
states[feature] = vector<int>(maxes[feature]);
}
states[className] = vector<int>(maxes[className]);
auto clf = platform::Models::instance()->create(model_name);
clf->fit(Xd, y, features, className, states);
if (dump_cpt) {
cout << "--- CPT Tables ---" << endl;
clf->dump_cpt();
}
auto lines = clf->show();
for (auto line : lines) {
cout << line << endl;
}
cout << "--- Topological Order ---" << endl;
auto order = clf->topological_order();
for (auto name : order) {
cout << name << ", ";
}
cout << "end." << endl;
auto score = clf->score(Xd, y);
cout << "Score: " << score << endl;
auto graph = clf->graph();
auto dot_file = model_name + "_" + file_name;
ofstream file(dot_file + ".dot");
file << graph;
file.close();
cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
string stratified_string = stratified ? " Stratified" : "";
cout << nFolds << " Folds" << stratified_string << " Cross validation" << endl;
cout << "==========================================" << endl;
torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
torch::Tensor yt = torch::tensor(y, torch::kInt32);
for (int i = 0; i < features.size(); ++i) {
Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
}
float total_score = 0, total_score_train = 0, score_train, score_test;
platform::Fold* fold;
if (stratified)
fold = new platform::StratifiedKFold(nFolds, y, seed);
else
fold = new platform::KFold(nFolds, y.size(), seed);
for (auto i = 0; i < nFolds; ++i) {
auto [train, test] = fold->getFold(i);
cout << "Fold: " << i + 1 << endl;
if (tensors) {
auto ttrain = torch::tensor(train, torch::kInt64);
auto ttest = torch::tensor(test, torch::kInt64);
torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
torch::Tensor ytraint = yt.index({ ttrain });
torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
torch::Tensor ytestt = yt.index({ ttest });
clf->fit(Xtraint, ytraint, features, className, states);
auto temp = clf->predict(Xtraint);
score_train = clf->score(Xtraint, ytraint);
score_test = clf->score(Xtestt, ytestt);
} else {
auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
auto [Xtest, ytest] = extract_indices(test, Xd, y);
clf->fit(Xtrain, ytrain, features, className, states);
score_train = clf->score(Xtrain, ytrain);
score_test = clf->score(Xtest, ytest);
}
if (dump_cpt) {
cout << "--- CPT Tables ---" << endl;
clf->dump_cpt();
}
total_score_train += score_train;
total_score += score_test;
cout << "Score Train: " << score_train << endl;
cout << "Score Test : " << score_test << endl;
cout << "-------------------------------------------------------------------------------" << endl;
}
cout << "**********************************************************************************" << endl;
cout << "Average Score Train: " << total_score_train / nFolds << endl;
cout << "Average Score Test : " << total_score / nFolds << endl;return 0;
}

View File

@@ -1,18 +0,0 @@
#ifndef TYPES_H
#define TYPES_H
#include <vector>
#include <map>
#include <stdexcept>
using namespace std;
namespace mdlp {
typedef float precision_t;
typedef vector<precision_t> samples_t;
typedef vector<int> labels_t;
typedef vector<size_t> indices_t;
typedef vector<precision_t> cutPoints_t;
typedef map<pair<int, int>, precision_t> cacheEnt_t;
typedef map<tuple<int, int, int>, precision_t> cacheIg_t;
}
#endif

View File

@@ -1,119 +0,0 @@
#include "BaseClassifier.h"
#include "utils.h"
namespace bayesnet {
using namespace std;
using namespace torch;
BaseClassifier::BaseClassifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
BaseClassifier& BaseClassifier::build(vector<string>& features, string className, map<string, vector<int>>& states)
{
dataset = torch::cat({ X, y.view({y.size(0), 1}) }, 1);
this->features = features;
this->className = className;
this->states = states;
checkFitParameters();
auto n_classes = states[className].size();
metrics = Metrics(dataset, features, className, n_classes);
train();
model.fit(Xv, yv, features, className);
fitted = true;
return *this;
}
BaseClassifier& BaseClassifier::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
{
this->X = torch::zeros({ static_cast<int64_t>(X[0].size()), static_cast<int64_t>(X.size()) }, kInt64);
Xv = X;
for (int i = 0; i < X.size(); ++i) {
this->X.index_put_({ "...", i }, torch::tensor(X[i], kInt64));
}
this->y = torch::tensor(y, kInt64);
yv = y;
return build(features, className, states);
}
void BaseClassifier::checkFitParameters()
{
auto sizes = X.sizes();
m = sizes[0];
n = sizes[1];
if (m != y.size(0)) {
throw invalid_argument("X and y must have the same number of samples");
}
if (n != features.size()) {
throw invalid_argument("X and features must have the same number of features");
}
if (states.find(className) == states.end()) {
throw invalid_argument("className not found in states");
}
for (auto feature : features) {
if (states.find(feature) == states.end()) {
throw invalid_argument("feature [" + feature + "] not found in states");
}
}
}
Tensor BaseClassifier::predict(Tensor& X)
{
if (!fitted) {
throw logic_error("Classifier has not been fitted");
}
auto m_ = X.size(0);
auto n_ = X.size(1);
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
for (auto i = 0; i < n_; i++) {
auto temp = X.index({ "...", i });
Xd[i] = vector<int>(temp.data_ptr<int>(), temp.data_ptr<int>() + m_);
}
auto yp = model.predict(Xd);
auto ypred = torch::tensor(yp, torch::kInt64);
return ypred;
}
vector<int> BaseClassifier::predict(vector<vector<int>>& X)
{
if (!fitted) {
throw logic_error("Classifier has not been fitted");
}
auto m_ = X[0].size();
auto n_ = X.size();
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
for (auto i = 0; i < n_; i++) {
Xd[i] = vector<int>(X[i].begin(), X[i].end());
}
auto yp = model.predict(Xd);
return yp;
}
float BaseClassifier::score(Tensor& X, Tensor& y)
{
if (!fitted) {
throw logic_error("Classifier has not been fitted");
}
Tensor y_pred = predict(X);
return (y_pred == y).sum().item<float>() / y.size(0);
}
float BaseClassifier::score(vector<vector<int>>& X, vector<int>& y)
{
if (!fitted) {
throw logic_error("Classifier has not been fitted");
}
auto m_ = X[0].size();
auto n_ = X.size();
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
for (auto i = 0; i < n_; i++) {
Xd[i] = vector<int>(X[i].begin(), X[i].end());
}
return model.score(Xd, y);
}
vector<string> BaseClassifier::show()
{
return model.show();
}
void BaseClassifier::addNodes()
{
// Add all nodes to the network
for (auto feature : features) {
model.addNode(feature, states[feature].size());
}
model.addNode(className, states[className].size());
}
}

View File

@@ -1,46 +0,0 @@
#ifndef CLASSIFIERS_H
#define CLASSIFIERS_H
#include <torch/torch.h>
#include "Network.h"
#include "Metrics.hpp"
using namespace std;
using namespace torch;
namespace bayesnet {
class BaseClassifier {
private:
bool fitted;
BaseClassifier& build(vector<string>& features, string className, map<string, vector<int>>& states);
protected:
Network model;
int m, n; // m: number of samples, n: number of features
Tensor X;
vector<vector<int>> Xv;
Tensor y;
vector<int> yv;
Tensor dataset;
Metrics metrics;
vector<string> features;
string className;
map<string, vector<int>> states;
void checkFitParameters();
virtual void train() = 0;
public:
BaseClassifier(Network model);
virtual ~BaseClassifier() = default;
BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states);
void addNodes();
Tensor predict(Tensor& X);
vector<int> predict(vector<vector<int>>& X);
float score(Tensor& X, Tensor& y);
float score(vector<vector<int>>& X, vector<int>& y);
vector<string> show();
virtual vector<string> graph(string title) = 0;
};
}
#endif

View File

@@ -2,14 +2,16 @@
namespace bayesnet {
AODE::AODE() : Ensemble() {}
void AODE::train()
void AODE::buildModel(const torch::Tensor& weights)
{
models.clear();
for (int i = 0; i < features.size(); ++i) {
models.push_back(std::make_unique<SPODE>(i));
}
n_models = models.size();
significanceModels = vector<double>(n_models, 1.0);
}
vector<string> AODE::graph(string title)
vector<string> AODE::graph(const string& title) const
{
return Ensemble::graph(title);
}

View File

@@ -5,10 +5,11 @@
namespace bayesnet {
class AODE : public Ensemble {
protected:
void train() override;
void buildModel(const torch::Tensor& weights) override;
public:
AODE();
vector<string> graph(string title = "AODE");
virtual ~AODE() {};
vector<string> graph(const string& title = "AODE") const override;
};
}
#endif

41
src/BayesNet/AODELd.cc Normal file
View File

@@ -0,0 +1,41 @@
#include "AODELd.h"
#include "Models.h"
namespace bayesnet {
using namespace std;
AODELd::AODELd() : Ensemble(), Proposal(dataset, features, className) {}
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
{
checkInput(X_, y_);
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
Ensemble::fit(dataset, features, className, states);
return *this;
}
void AODELd::buildModel(const torch::Tensor& weights)
{
models.clear();
for (int i = 0; i < features.size(); ++i) {
models.push_back(std::make_unique<SPODELd>(i));
}
n_models = models.size();
significanceModels = vector<double>(n_models, 1.0);
}
void AODELd::trainModel(const torch::Tensor& weights)
{
for (const auto& model : models) {
model->fit(Xf, y, features, className, states);
}
}
vector<string> AODELd::graph(const string& name) const
{
return Ensemble::graph(name);
}
}

21
src/BayesNet/AODELd.h Normal file
View File

@@ -0,0 +1,21 @@
#ifndef AODELD_H
#define AODELD_H
#include "Ensemble.h"
#include "Proposal.h"
#include "SPODELd.h"
namespace bayesnet {
using namespace std;
class AODELd : public Ensemble, public Proposal {
protected:
void trainModel(const torch::Tensor& weights) override;
void buildModel(const torch::Tensor& weights) override;
public:
AODELd();
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_) override;
virtual ~AODELd() = default;
vector<string> graph(const string& name = "AODELd") const override;
static inline string version() { return "0.0.1"; };
};
}
#endif // !AODELD_H

View File

@@ -0,0 +1,36 @@
#ifndef BASE_H
#define BASE_H
#include <torch/torch.h>
#include <nlohmann/json.hpp>
#include <vector>
namespace bayesnet {
using namespace std;
enum status_t { NORMAL, WARNING, ERROR };
class BaseClassifier {
protected:
virtual void trainModel(const torch::Tensor& weights) = 0;
public:
// X is nxm vector, y is nx1 vector
virtual BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) = 0;
// X is nxm tensor, y is nx1 tensor
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) = 0;
virtual BaseClassifier& fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states) = 0;
virtual BaseClassifier& fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights) = 0;
virtual ~BaseClassifier() = default;
torch::Tensor virtual predict(torch::Tensor& X) = 0;
vector<int> virtual predict(vector<vector<int>>& X) = 0;
status_t virtual getStatus() const = 0;
float virtual score(vector<vector<int>>& X, vector<int>& y) = 0;
float virtual score(torch::Tensor& X, torch::Tensor& y) = 0;
int virtual getNumberOfNodes()const = 0;
int virtual getNumberOfEdges()const = 0;
int virtual getNumberOfStates() const = 0;
vector<string> virtual show() const = 0;
vector<string> virtual graph(const string& title = "") const = 0;
const string inline getVersion() const { return "0.2.0"; };
vector<string> virtual topological_order() = 0;
void virtual dump_cpt()const = 0;
virtual void setHyperparameters(nlohmann::json& hyperparameters) = 0;
};
}
#endif

View File

@@ -0,0 +1,163 @@
#include "BayesMetrics.h"
#include "Mst.h"
namespace bayesnet {
//samples is n+1xm tensor used to fit the model
Metrics::Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates)
: samples(samples)
, features(features)
, className(className)
, classNumStates(classNumStates)
{
}
//samples is nxm vector used to fit the model
Metrics::Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates)
: features(features)
, className(className)
, classNumStates(classNumStates)
, samples(torch::zeros({ static_cast<int>(vsamples[0].size()), static_cast<int>(vsamples.size() + 1) }, torch::kInt32))
{
for (int i = 0; i < vsamples.size(); ++i) {
samples.index_put_({ i, "..." }, torch::tensor(vsamples[i], torch::kInt32));
}
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
}
vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, bool ascending, unsigned k)
{
// Return the K Best features
auto n = samples.size(0) - 1;
if (k == 0) {
k = n;
}
// compute scores
scoresKBest.clear();
featuresKBest.clear();
auto label = samples.index({ -1, "..." });
for (int i = 0; i < n; ++i) {
scoresKBest.push_back(mutualInformation(label, samples.index({ i, "..." }), weights));
featuresKBest.push_back(i);
}
// sort & reduce scores and features
if (ascending) {
sort(featuresKBest.begin(), featuresKBest.end(), [&](int i, int j)
{ return scoresKBest[i] < scoresKBest[j]; });
sort(scoresKBest.begin(), scoresKBest.end(), std::less<double>());
if (k < n) {
for (int i = 0; i < n - k; ++i) {
featuresKBest.erase(featuresKBest.begin());
scoresKBest.erase(scoresKBest.begin());
}
}
} else {
sort(featuresKBest.begin(), featuresKBest.end(), [&](int i, int j)
{ return scoresKBest[i] > scoresKBest[j]; });
sort(scoresKBest.begin(), scoresKBest.end(), std::greater<double>());
featuresKBest.resize(k);
scoresKBest.resize(k);
}
return featuresKBest;
}
vector<double> Metrics::getScoresKBest() const
{
return scoresKBest;
}
torch::Tensor Metrics::conditionalEdge(const torch::Tensor& weights)
{
auto result = vector<double>();
auto source = vector<string>(features);
source.push_back(className);
auto combinations = doCombinations(source);
// Compute class prior
auto margin = torch::zeros({ classNumStates }, torch::kFloat);
for (int value = 0; value < classNumStates; ++value) {
auto mask = samples.index({ -1, "..." }) == value;
margin[value] = mask.sum().item<double>() / samples.size(1);
}
for (auto [first, second] : combinations) {
int index_first = find(features.begin(), features.end(), first) - features.begin();
int index_second = find(features.begin(), features.end(), second) - features.begin();
double accumulated = 0;
for (int value = 0; value < classNumStates; ++value) {
auto mask = samples.index({ -1, "..." }) == value;
auto first_dataset = samples.index({ index_first, mask });
auto second_dataset = samples.index({ index_second, mask });
auto weights_dataset = weights.index({ mask });
auto mi = mutualInformation(first_dataset, second_dataset, weights_dataset);
auto pb = margin[value].item<double>();
accumulated += pb * mi;
}
result.push_back(accumulated);
}
long n_vars = source.size();
auto matrix = torch::zeros({ n_vars, n_vars });
auto indices = torch::triu_indices(n_vars, n_vars, 1);
for (auto i = 0; i < result.size(); ++i) {
auto x = indices[0][i];
auto y = indices[1][i];
matrix[x][y] = result[i];
matrix[y][x] = result[i];
}
return matrix;
}
// To use in Python
vector<float> Metrics::conditionalEdgeWeights(vector<float>& weights_)
{
const torch::Tensor weights = torch::tensor(weights_);
auto matrix = conditionalEdge(weights);
std::vector<float> v(matrix.data_ptr<float>(), matrix.data_ptr<float>() + matrix.numel());
return v;
}
double Metrics::entropy(const torch::Tensor& feature, const torch::Tensor& weights)
{
torch::Tensor counts = feature.bincount(weights);
double totalWeight = counts.sum().item<double>();
torch::Tensor probs = counts.to(torch::kFloat) / totalWeight;
torch::Tensor logProbs = torch::log(probs);
torch::Tensor entropy = -probs * logProbs;
return entropy.nansum().item<double>();
}
// H(Y|X) = sum_{x in X} p(x) H(Y|X=x)
double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
{
int numSamples = firstFeature.sizes()[0];
torch::Tensor featureCounts = secondFeature.bincount(weights);
unordered_map<int, unordered_map<int, double>> jointCounts;
double totalWeight = 0;
for (auto i = 0; i < numSamples; i++) {
jointCounts[secondFeature[i].item<int>()][firstFeature[i].item<int>()] += weights[i].item<double>();
totalWeight += weights[i].item<float>();
}
if (totalWeight == 0)
return 0;
double entropyValue = 0;
for (int value = 0; value < featureCounts.sizes()[0]; ++value) {
double p_f = featureCounts[value].item<double>() / totalWeight;
double entropy_f = 0;
for (auto& [label, jointCount] : jointCounts[value]) {
double p_l_f = jointCount / featureCounts[value].item<double>();
if (p_l_f > 0) {
entropy_f -= p_l_f * log(p_l_f);
} else {
entropy_f = 0;
}
}
entropyValue += p_f * entropy_f;
}
return entropyValue;
}
// I(X;Y) = H(Y) - H(Y|X)
double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
{
return entropy(firstFeature, weights) - conditionalEntropy(firstFeature, secondFeature, weights);
}
/*
Compute the maximum spanning tree considering the weights as distances
and the indices of the weights as nodes of this square matrix using
Kruskal algorithm
*/
vector<pair<int, int>> Metrics::maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root)
{
auto mst = MST(features, weights, root);
return mst.maximumSpanningTree();
}
}

View File

@@ -0,0 +1,51 @@
#ifndef BAYESNET_METRICS_H
#define BAYESNET_METRICS_H
#include <torch/torch.h>
#include <vector>
#include <string>
namespace bayesnet {
using namespace std;
using namespace torch;
class Metrics {
private:
int classNumStates = 0;
vector<double> scoresKBest;
vector<int> featuresKBest; // sorted indices of the features
double conditionalEntropy(const Tensor& firstFeature, const Tensor& secondFeature, const Tensor& weights);
protected:
Tensor samples; // n+1xm tensor used to fit the model where samples[-1] is the y vector
string className;
double entropy(const Tensor& feature, const Tensor& weights);
vector<string> features;
template <class T>
vector<pair<T, T>> doCombinations(const vector<T>& source)
{
vector<pair<T, T>> result;
for (int i = 0; i < source.size(); ++i) {
T temp = source[i];
for (int j = i + 1; j < source.size(); ++j) {
result.push_back({ temp, source[j] });
}
}
return result;
}
template <class T>
T pop_first(vector<T>& v)
{
T temp = v[0];
v.erase(v.begin());
return temp;
}
public:
Metrics() = default;
Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates);
Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates);
vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending = false, unsigned k = 0);
vector<double> getScoresKBest() const;
double mutualInformation(const Tensor& firstFeature, const Tensor& secondFeature, const Tensor& weights);
vector<float> conditionalEdgeWeights(vector<float>& weights); // To use in Python
Tensor conditionalEdge(const torch::Tensor& weights);
vector<pair<int, int>> maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root);
};
}
#endif

195
src/BayesNet/BoostAODE.cc Normal file
View File

@@ -0,0 +1,195 @@
#include <set>
#include <functional>
#include <limits.h>
#include "BoostAODE.h"
#include "Colors.h"
#include "Folding.h"
#include "Paths.h"
#include "CFS.h"
#include "FCBF.h"
#include "IWSS.h"
namespace bayesnet {
BoostAODE::BoostAODE() : Ensemble() {}
void BoostAODE::buildModel(const torch::Tensor& weights)
{
// Models shall be built in trainModel
models.clear();
n_models = 0;
// Prepare the validation dataset
auto y_ = dataset.index({ -1, "..." });
if (convergence) {
// Prepare train & validation sets from train data
auto fold = platform::StratifiedKFold(5, y_, 271);
dataset_ = torch::clone(dataset);
// save input dataset
auto [train, test] = fold.getFold(0);
auto train_t = torch::tensor(train);
auto test_t = torch::tensor(test);
// Get train and validation sets
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), train_t });
y_train = dataset.index({ -1, train_t });
X_test = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), test_t });
y_test = dataset.index({ -1, test_t });
dataset = X_train;
m = X_train.size(1);
auto n_classes = states.at(className).size();
metrics = Metrics(dataset, features, className, n_classes);
// Build dataset with train data
buildDataset(y_train);
} else {
// Use all data to train
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
y_train = y_;
}
}
void BoostAODE::setHyperparameters(nlohmann::json& hyperparameters)
{
// Check if hyperparameters are valid
const vector<string> validKeys = { "repeatSparent", "maxModels", "ascending", "convergence", "threshold", "select_features" };
checkHyperparameters(validKeys, hyperparameters);
if (hyperparameters.contains("repeatSparent")) {
repeatSparent = hyperparameters["repeatSparent"];
}
if (hyperparameters.contains("maxModels")) {
maxModels = hyperparameters["maxModels"];
}
if (hyperparameters.contains("ascending")) {
ascending = hyperparameters["ascending"];
}
if (hyperparameters.contains("convergence")) {
convergence = hyperparameters["convergence"];
}
if (hyperparameters.contains("threshold")) {
threshold = hyperparameters["threshold"];
}
if (hyperparameters.contains("select_features")) {
auto selectedAlgorithm = hyperparameters["select_features"];
vector<string> algos = { "IWSS", "FCBF", "CFS" };
selectFeatures = true;
algorithm = selectedAlgorithm;
if (find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
throw invalid_argument("Invalid selectFeatures value [IWSS, FCBF, CFS]");
}
}
}
unordered_set<int> BoostAODE::initializeModels()
{
unordered_set<int> featuresUsed;
Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
int maxFeatures = 0;
if (algorithm == "CFS") {
featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_);
} else if (algorithm == "IWSS") {
if (threshold < 0 || threshold >0.5) {
throw invalid_argument("Invalid threshold value for IWSS [0, 0.5]");
}
featureSelector = new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
} else if (algorithm == "FCBF") {
if (threshold < 1e-7 || threshold > 1) {
throw invalid_argument("Invalid threshold value [1e-7, 1]");
}
featureSelector = new FCBF(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
}
featureSelector->fit();
auto cfsFeatures = featureSelector->getFeatures();
for (const int& feature : cfsFeatures) {
// cout << "Feature: [" << feature << "] " << feature << " " << features.at(feature) << endl;
featuresUsed.insert(feature);
unique_ptr<Classifier> model = std::make_unique<SPODE>(feature);
model->fit(dataset, features, className, states, weights_);
models.push_back(std::move(model));
significanceModels.push_back(1.0);
n_models++;
}
delete featureSelector;
return featuresUsed;
}
void BoostAODE::trainModel(const torch::Tensor& weights)
{
unordered_set<int> featuresUsed;
if (selectFeatures) {
featuresUsed = initializeModels();
}
if (maxModels == 0)
maxModels = .1 * n > 10 ? .1 * n : n;
Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
bool exitCondition = false;
// Variables to control the accuracy finish condition
double priorAccuracy = 0.0;
double delta = 1.0;
double threshold = 1e-4;
int tolerance = 5; // number of times the accuracy can be lower than the threshold
int count = 0; // number of times the accuracy is lower than the threshold
fitted = true; // to enable predict
// Step 0: Set the finish condition
// if not repeatSparent a finish condition is run out of features
// n_models == maxModels
// epsiolon sub t > 0.5 => inverse the weights policy
// validation error is not decreasing
while (!exitCondition) {
// Step 1: Build ranking with mutual information
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
unique_ptr<Classifier> model;
auto feature = featureSelection[0];
if (!repeatSparent || featuresUsed.size() < featureSelection.size()) {
bool used = true;
for (const auto& feat : featureSelection) {
if (find(featuresUsed.begin(), featuresUsed.end(), feat) != featuresUsed.end()) {
continue;
}
used = false;
feature = feat;
break;
}
if (used) {
exitCondition = true;
continue;
}
}
featuresUsed.insert(feature);
model = std::make_unique<SPODE>(feature);
model->fit(dataset, features, className, states, weights_);
auto ypred = model->predict(X_train);
// Step 3.1: Compute the classifier amout of say
auto mask_wrong = ypred != y_train;
auto mask_right = ypred == y_train;
auto masked_weights = weights_ * mask_wrong.to(weights_.dtype());
double epsilon_t = masked_weights.sum().item<double>();
double wt = (1 - epsilon_t) / epsilon_t;
double alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
// Step 3.2: Update weights for next classifier
// Step 3.2.1: Update weights of wrong samples
weights_ += mask_wrong.to(weights_.dtype()) * exp(alpha_t) * weights_;
// Step 3.2.2: Update weights of right samples
weights_ += mask_right.to(weights_.dtype()) * exp(-alpha_t) * weights_;
// Step 3.3: Normalise the weights
double totalWeights = torch::sum(weights_).item<double>();
weights_ = weights_ / totalWeights;
// Step 3.4: Store classifier and its accuracy to weigh its future vote
models.push_back(std::move(model));
significanceModels.push_back(alpha_t);
n_models++;
if (convergence) {
auto y_val_predict = predict(X_test);
double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
if (priorAccuracy == 0) {
priorAccuracy = accuracy;
} else {
delta = accuracy - priorAccuracy;
}
if (delta < threshold) {
count++;
}
}
exitCondition = n_models >= maxModels && repeatSparent || epsilon_t > 0.5 || count > tolerance;
}
if (featuresUsed.size() != features.size()) {
status = WARNING;
}
}
vector<string> BoostAODE::graph(const string& title) const
{
return Ensemble::graph(title);
}
}

32
src/BayesNet/BoostAODE.h Normal file
View File

@@ -0,0 +1,32 @@
#ifndef BOOSTAODE_H
#define BOOSTAODE_H
#include "Ensemble.h"
#include <map>
#include "SPODE.h"
#include "FeatureSelect.h"
namespace bayesnet {
class BoostAODE : public Ensemble {
public:
BoostAODE();
virtual ~BoostAODE() {};
vector<string> graph(const string& title = "BoostAODE") const override;
void setHyperparameters(nlohmann::json& hyperparameters) override;
protected:
void buildModel(const torch::Tensor& weights) override;
void trainModel(const torch::Tensor& weights) override;
private:
torch::Tensor dataset_;
torch::Tensor X_train, y_train, X_test, y_test;
unordered_set<int> initializeModels();
// Hyperparameters
bool repeatSparent = false; // if true, a feature can be selected more than once
int maxModels = 0;
bool ascending = false; //Process KBest features ascending or descending order
bool convergence = false; //if true, stop when the model does not improve
bool selectFeatures = false; // if true, use feature selection
string algorithm = ""; // Selected feature selection algorithm
FeatureSelect* featureSelector = nullptr;
double threshold = -1;
};
}
#endif

72
src/BayesNet/CFS.cc Normal file
View File

@@ -0,0 +1,72 @@
#include "CFS.h"
#include <limits>
#include "bayesnetUtils.h"
namespace bayesnet {
void CFS::fit()
{
initialize();
computeSuLabels();
auto featureOrder = argsort(suLabels); // sort descending order
auto continueCondition = true;
auto feature = featureOrder[0];
selectedFeatures.push_back(feature);
selectedScores.push_back(suLabels[feature]);
selectedFeatures.erase(selectedFeatures.begin());
while (continueCondition) {
double merit = numeric_limits<double>::lowest();
int bestFeature = -1;
for (auto feature : featureOrder) {
selectedFeatures.push_back(feature);
// Compute merit with selectedFeatures
auto meritNew = computeMeritCFS();
if (meritNew > merit) {
merit = meritNew;
bestFeature = feature;
}
selectedFeatures.pop_back();
}
if (bestFeature == -1) {
// meritNew has to be nan due to constant features
break;
}
selectedFeatures.push_back(bestFeature);
selectedScores.push_back(merit);
featureOrder.erase(remove(featureOrder.begin(), featureOrder.end(), bestFeature), featureOrder.end());
continueCondition = computeContinueCondition(featureOrder);
}
fitted = true;
}
bool CFS::computeContinueCondition(const vector<int>& featureOrder)
{
if (selectedFeatures.size() == maxFeatures || featureOrder.size() == 0) {
return false;
}
if (selectedScores.size() >= 5) {
/*
"To prevent the best first search from exploring the entire
feature subset search space, a stopping criterion is imposed.
The search will terminate if five consecutive fully expanded
subsets show no improvement over the current best subset."
as stated in Mark A.Hall Thesis
*/
double item_ant = numeric_limits<double>::lowest();
int num = 0;
vector<double> lastFive(selectedScores.end() - 5, selectedScores.end());
for (auto item : lastFive) {
if (item_ant == numeric_limits<double>::lowest()) {
item_ant = item;
}
if (item > item_ant) {
break;
} else {
num++;
item_ant = item;
}
}
if (num == 5) {
return false;
}
}
return true;
}
}

21
src/BayesNet/CFS.h Normal file
View File

@@ -0,0 +1,21 @@
#ifndef CFS_H
#define CFS_H
#include <torch/torch.h>
#include <vector>
#include "FeatureSelect.h"
using namespace std;
namespace bayesnet {
class CFS : public FeatureSelect {
public:
// dataset is a n+1xm tensor of integers where dataset[-1] is the y vector
CFS(const torch::Tensor& samples, const vector<string>& features, const string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights) :
FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights)
{
}
virtual ~CFS() {};
void fit() override;
private:
bool computeContinueCondition(const vector<int>& featureOrder);
};
}
#endif

View File

@@ -0,0 +1,9 @@
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc
KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc BoostAODE.cc
Mst.cc Proposal.cc CFS.cc FCBF.cc IWSS.cc FeatureSelect.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
target_link_libraries(BayesNet mdlp "${TORCH_LIBRARIES}")

172
src/BayesNet/Classifier.cc Normal file
View File

@@ -0,0 +1,172 @@
#include "Classifier.h"
#include "bayesnetUtils.h"
namespace bayesnet {
using namespace torch;
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
Classifier& Classifier::build(const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights)
{
this->features = features;
this->className = className;
this->states = states;
m = dataset.size(1);
n = dataset.size(0) - 1;
checkFitParameters();
auto n_classes = states.at(className).size();
metrics = Metrics(dataset, features, className, n_classes);
model.initialize();
buildModel(weights);
trainModel(weights);
fitted = true;
return *this;
}
void Classifier::buildDataset(Tensor& ytmp)
{
try {
auto yresized = torch::transpose(ytmp.view({ ytmp.size(0), 1 }), 0, 1);
dataset = torch::cat({ dataset, yresized }, 0);
}
catch (const std::exception& e) {
std::cerr << e.what() << '\n';
cout << "X dimensions: " << dataset.sizes() << "\n";
cout << "y dimensions: " << ytmp.sizes() << "\n";
exit(1);
}
}
void Classifier::trainModel(const torch::Tensor& weights)
{
model.fit(dataset, weights, features, className, states);
}
// X is nxm where n is the number of features and m the number of samples
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states)
{
dataset = X;
buildDataset(y);
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
return build(features, className, states, weights);
}
// X is nxm where n is the number of features and m the number of samples
Classifier& Classifier::fit(vector<vector<int>>& X, vector<int>& y, const vector<string>& features, const string& className, map<string, vector<int>>& states)
{
dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, kInt32);
for (int i = 0; i < X.size(); ++i) {
dataset.index_put_({ i, "..." }, torch::tensor(X[i], kInt32));
}
auto ytmp = torch::tensor(y, kInt32);
buildDataset(ytmp);
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
return build(features, className, states, weights);
}
Classifier& Classifier::fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states)
{
this->dataset = dataset;
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
return build(features, className, states, weights);
}
Classifier& Classifier::fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights)
{
this->dataset = dataset;
return build(features, className, states, weights);
}
void Classifier::checkFitParameters()
{
if (torch::is_floating_point(dataset)) {
throw invalid_argument("dataset (X, y) must be of type Integer");
}
if (n != features.size()) {
throw invalid_argument("Classifier: X " + to_string(n) + " and features " + to_string(features.size()) + " must have the same number of features");
}
if (states.find(className) == states.end()) {
throw invalid_argument("className not found in states");
}
for (auto feature : features) {
if (states.find(feature) == states.end()) {
throw invalid_argument("feature [" + feature + "] not found in states");
}
}
}
Tensor Classifier::predict(Tensor& X)
{
if (!fitted) {
throw logic_error("Classifier has not been fitted");
}
return model.predict(X);
}
vector<int> Classifier::predict(vector<vector<int>>& X)
{
if (!fitted) {
throw logic_error("Classifier has not been fitted");
}
auto m_ = X[0].size();
auto n_ = X.size();
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
for (auto i = 0; i < n_; i++) {
Xd[i] = vector<int>(X[i].begin(), X[i].end());
}
auto yp = model.predict(Xd);
return yp;
}
float Classifier::score(Tensor& X, Tensor& y)
{
if (!fitted) {
throw logic_error("Classifier has not been fitted");
}
Tensor y_pred = predict(X);
return (y_pred == y).sum().item<float>() / y.size(0);
}
float Classifier::score(vector<vector<int>>& X, vector<int>& y)
{
if (!fitted) {
throw logic_error("Classifier has not been fitted");
}
return model.score(X, y);
}
vector<string> Classifier::show() const
{
return model.show();
}
void Classifier::addNodes()
{
// Add all nodes to the network
for (const auto& feature : features) {
model.addNode(feature);
}
model.addNode(className);
}
int Classifier::getNumberOfNodes() const
{
// Features does not include class
return fitted ? model.getFeatures().size() + 1 : 0;
}
int Classifier::getNumberOfEdges() const
{
return fitted ? model.getNumEdges() : 0;
}
int Classifier::getNumberOfStates() const
{
return fitted ? model.getStates() : 0;
}
vector<string> Classifier::topological_order()
{
return model.topological_sort();
}
void Classifier::dump_cpt() const
{
model.dump_cpt();
}
void Classifier::checkHyperparameters(const vector<string>& validKeys, nlohmann::json& hyperparameters)
{
for (const auto& item : hyperparameters.items()) {
if (find(validKeys.begin(), validKeys.end(), item.key()) == validKeys.end()) {
throw invalid_argument("Hyperparameter " + item.key() + " is not valid");
}
}
}
void Classifier::setHyperparameters(nlohmann::json& hyperparameters)
{
// Check if hyperparameters are valid, default is no hyperparameters
const vector<string> validKeys = { };
checkHyperparameters(validKeys, hyperparameters);
}
}

56
src/BayesNet/Classifier.h Normal file
View File

@@ -0,0 +1,56 @@
#ifndef CLASSIFIER_H
#define CLASSIFIER_H
#include <torch/torch.h>
#include "BaseClassifier.h"
#include "Network.h"
#include "BayesMetrics.h"
using namespace std;
using namespace torch;
namespace bayesnet {
class Classifier : public BaseClassifier {
private:
Classifier& build(const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights);
protected:
bool fitted;
int m, n; // m: number of samples, n: number of features
Network model;
Metrics metrics;
vector<string> features;
string className;
map<string, vector<int>> states;
Tensor dataset; // (n+1)xm tensor
status_t status = NORMAL;
void checkFitParameters();
virtual void buildModel(const torch::Tensor& weights) = 0;
void trainModel(const torch::Tensor& weights) override;
void checkHyperparameters(const vector<string>& validKeys, nlohmann::json& hyperparameters);
void buildDataset(torch::Tensor& y);
public:
Classifier(Network model);
virtual ~Classifier() = default;
Classifier& fit(vector<vector<int>>& X, vector<int>& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
Classifier& fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
Classifier& fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
Classifier& fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights) override;
void addNodes();
int getNumberOfNodes() const override;
int getNumberOfEdges() const override;
int getNumberOfStates() const override;
Tensor predict(Tensor& X) override;
status_t getStatus() const override { return status; }
vector<int> predict(vector<vector<int>>& X) override;
float score(Tensor& X, Tensor& y) override;
float score(vector<vector<int>>& X, vector<int>& y) override;
vector<string> show() const override;
vector<string> topological_order() override;
void dump_cpt() const override;
void setHyperparameters(nlohmann::json& hyperparameters) override;
};
}
#endif

142
src/BayesNet/Ensemble.cc Normal file
View File

@@ -0,0 +1,142 @@
#include "Ensemble.h"
namespace bayesnet {
using namespace torch;
Ensemble::Ensemble() : Classifier(Network()), n_models(0) {}
void Ensemble::trainModel(const torch::Tensor& weights)
{
n_models = models.size();
for (auto i = 0; i < n_models; ++i) {
// fit with vectors
models[i]->fit(dataset, features, className, states);
}
}
vector<int> Ensemble::voting(Tensor& y_pred)
{
auto y_pred_ = y_pred.accessor<int, 2>();
vector<int> y_pred_final;
int numClasses = states.at(className).size();
// y_pred is m x n_models with the prediction of every model for each sample
for (int i = 0; i < y_pred.size(0); ++i) {
// votes store in each index (value of class) the significance added by each model
// i.e. votes[0] contains how much value has the value 0 of class. That value is generated by the models predictions
vector<double> votes(numClasses, 0.0);
for (int j = 0; j < n_models; ++j) {
votes[y_pred_[i][j]] += significanceModels.at(j);
}
// argsort in descending order
auto indices = argsort(votes);
y_pred_final.push_back(indices[0]);
}
return y_pred_final;
}
Tensor Ensemble::predict(Tensor& X)
{
if (!fitted) {
throw logic_error("Ensemble has not been fitted");
}
Tensor y_pred = torch::zeros({ X.size(1), n_models }, kInt32);
auto threads{ vector<thread>() };
mutex mtx;
for (auto i = 0; i < n_models; ++i) {
threads.push_back(thread([&, i]() {
auto ypredict = models[i]->predict(X);
lock_guard<mutex> lock(mtx);
y_pred.index_put_({ "...", i }, ypredict);
}));
}
for (auto& thread : threads) {
thread.join();
}
return torch::tensor(voting(y_pred));
}
vector<int> Ensemble::predict(vector<vector<int>>& X)
{
if (!fitted) {
throw logic_error("Ensemble has not been fitted");
}
long m_ = X[0].size();
long n_ = X.size();
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
for (auto i = 0; i < n_; i++) {
Xd[i] = vector<int>(X[i].begin(), X[i].end());
}
Tensor y_pred = torch::zeros({ m_, n_models }, kInt32);
for (auto i = 0; i < n_models; ++i) {
y_pred.index_put_({ "...", i }, torch::tensor(models[i]->predict(Xd), kInt32));
}
return voting(y_pred);
}
float Ensemble::score(Tensor& X, Tensor& y)
{
if (!fitted) {
throw logic_error("Ensemble has not been fitted");
}
auto y_pred = predict(X);
int correct = 0;
for (int i = 0; i < y_pred.size(0); ++i) {
if (y_pred[i].item<int>() == y[i].item<int>()) {
correct++;
}
}
return (double)correct / y_pred.size(0);
}
float Ensemble::score(vector<vector<int>>& X, vector<int>& y)
{
if (!fitted) {
throw logic_error("Ensemble has not been fitted");
}
auto y_pred = predict(X);
int correct = 0;
for (int i = 0; i < y_pred.size(); ++i) {
if (y_pred[i] == y[i]) {
correct++;
}
}
return (double)correct / y_pred.size();
}
vector<string> Ensemble::show() const
{
auto result = vector<string>();
for (auto i = 0; i < n_models; ++i) {
auto res = models[i]->show();
result.insert(result.end(), res.begin(), res.end());
}
return result;
}
vector<string> Ensemble::graph(const string& title) const
{
auto result = vector<string>();
for (auto i = 0; i < n_models; ++i) {
auto res = models[i]->graph(title + "_" + to_string(i));
result.insert(result.end(), res.begin(), res.end());
}
return result;
}
int Ensemble::getNumberOfNodes() const
{
int nodes = 0;
for (auto i = 0; i < n_models; ++i) {
nodes += models[i]->getNumberOfNodes();
}
return nodes;
}
int Ensemble::getNumberOfEdges() const
{
int edges = 0;
for (auto i = 0; i < n_models; ++i) {
edges += models[i]->getNumberOfEdges();
}
return edges;
}
int Ensemble::getNumberOfStates() const
{
int nstates = 0;
for (auto i = 0; i < n_models; ++i) {
nstates += models[i]->getNumberOfStates();
}
return nstates;
}
}

41
src/BayesNet/Ensemble.h Normal file
View File

@@ -0,0 +1,41 @@
#ifndef ENSEMBLE_H
#define ENSEMBLE_H
#include <torch/torch.h>
#include "Classifier.h"
#include "BayesMetrics.h"
#include "bayesnetUtils.h"
using namespace std;
using namespace torch;
namespace bayesnet {
class Ensemble : public Classifier {
private:
Ensemble& build(vector<string>& features, string className, map<string, vector<int>>& states);
protected:
unsigned n_models;
vector<unique_ptr<Classifier>> models;
vector<double> significanceModels;
void trainModel(const torch::Tensor& weights) override;
vector<int> voting(Tensor& y_pred);
public:
Ensemble();
virtual ~Ensemble() = default;
Tensor predict(Tensor& X) override;
vector<int> predict(vector<vector<int>>& X) override;
float score(Tensor& X, Tensor& y) override;
float score(vector<vector<int>>& X, vector<int>& y) override;
int getNumberOfNodes() const override;
int getNumberOfEdges() const override;
int getNumberOfStates() const override;
vector<string> show() const override;
vector<string> graph(const string& title) const override;
vector<string> topological_order() override
{
return vector<string>();
}
void dump_cpt() const override
{
}
};
}
#endif

44
src/BayesNet/FCBF.cc Normal file
View File

@@ -0,0 +1,44 @@
#include "bayesnetUtils.h"
#include "FCBF.h"
namespace bayesnet {
FCBF::FCBF(const torch::Tensor& samples, const vector<string>& features, const string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold) :
FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights), threshold(threshold)
{
if (threshold < 1e-7) {
throw std::invalid_argument("Threshold cannot be less than 1e-7");
}
}
void FCBF::fit()
{
initialize();
computeSuLabels();
auto featureOrder = argsort(suLabels); // sort descending order
auto featureOrderCopy = featureOrder;
for (const auto& feature : featureOrder) {
// Don't self compare
featureOrderCopy.erase(featureOrderCopy.begin());
if (suLabels.at(feature) == 0.0) {
// The feature has been removed from the list
continue;
}
if (suLabels.at(feature) < threshold) {
break;
}
// Remove redundant features
for (const auto& featureCopy : featureOrderCopy) {
double value = computeSuFeatures(feature, featureCopy);
if (value >= suLabels.at(featureCopy)) {
// Remove feature from list
suLabels[featureCopy] = 0.0;
}
}
selectedFeatures.push_back(feature);
selectedScores.push_back(suLabels[feature]);
if (selectedFeatures.size() == maxFeatures) {
break;
}
}
fitted = true;
}
}

18
src/BayesNet/FCBF.h Normal file
View File

@@ -0,0 +1,18 @@
#ifndef FCBF_H
#define FCBF_H
#include <torch/torch.h>
#include <vector>
#include "FeatureSelect.h"
using namespace std;
namespace bayesnet {
class FCBF : public FeatureSelect {
public:
// dataset is a n+1xm tensor of integers where dataset[-1] is the y vector
FCBF(const torch::Tensor& samples, const vector<string>& features, const string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold);
virtual ~FCBF() {};
void fit() override;
private:
double threshold = -1;
};
}
#endif

View File

@@ -0,0 +1,79 @@
#include "FeatureSelect.h"
#include <limits>
#include "bayesnetUtils.h"
namespace bayesnet {
FeatureSelect::FeatureSelect(const torch::Tensor& samples, const vector<string>& features, const string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights) :
Metrics(samples, features, className, classNumStates), maxFeatures(maxFeatures == 0 ? samples.size(0) - 1 : maxFeatures), weights(weights)
{
}
void FeatureSelect::initialize()
{
selectedFeatures.clear();
selectedScores.clear();
}
double FeatureSelect::symmetricalUncertainty(int a, int b)
{
/*
Compute symmetrical uncertainty. Normalize* information gain (mutual
information) with the entropies of the features in order to compensate
the bias due to high cardinality features. *Range [0, 1]
(https://www.sciencedirect.com/science/article/pii/S0020025519303603)
*/
auto x = samples.index({ a, "..." });
auto y = samples.index({ b, "..." });
auto mu = mutualInformation(x, y, weights);
auto hx = entropy(x, weights);
auto hy = entropy(y, weights);
return 2.0 * mu / (hx + hy);
}
void FeatureSelect::computeSuLabels()
{
// Compute Simmetrical Uncertainty between features and labels
// https://en.wikipedia.org/wiki/Symmetric_uncertainty
for (int i = 0; i < features.size(); ++i) {
suLabels.push_back(symmetricalUncertainty(i, -1));
}
}
double FeatureSelect::computeSuFeatures(const int firstFeature, const int secondFeature)
{
// Compute Simmetrical Uncertainty between features
// https://en.wikipedia.org/wiki/Symmetric_uncertainty
try {
return suFeatures.at({ firstFeature, secondFeature });
}
catch (const out_of_range& e) {
double result = symmetricalUncertainty(firstFeature, secondFeature);
suFeatures[{firstFeature, secondFeature}] = result;
return result;
}
}
double FeatureSelect::computeMeritCFS()
{
double result;
double rcf = 0;
for (auto feature : selectedFeatures) {
rcf += suLabels[feature];
}
double rff = 0;
int n = selectedFeatures.size();
for (const auto& item : doCombinations(selectedFeatures)) {
rff += computeSuFeatures(item.first, item.second);
}
return rcf / sqrt(n + (n * n - n) * rff);
}
vector<int> FeatureSelect::getFeatures() const
{
if (!fitted) {
throw runtime_error("FeatureSelect not fitted");
}
return selectedFeatures;
}
vector<double> FeatureSelect::getScores() const
{
if (!fitted) {
throw runtime_error("FeatureSelect not fitted");
}
return selectedScores;
}
}

View File

@@ -0,0 +1,31 @@
#ifndef FEATURE_SELECT_H
#define FEATURE_SELECT_H
#include <torch/torch.h>
#include <vector>
#include "BayesMetrics.h"
using namespace std;
namespace bayesnet {
class FeatureSelect : public Metrics {
public:
// dataset is a n+1xm tensor of integers where dataset[-1] is the y vector
FeatureSelect(const torch::Tensor& samples, const vector<string>& features, const string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights);
virtual ~FeatureSelect() {};
virtual void fit() = 0;
vector<int> getFeatures() const;
vector<double> getScores() const;
protected:
void initialize();
void computeSuLabels();
double computeSuFeatures(const int a, const int b);
double symmetricalUncertainty(int a, int b);
double computeMeritCFS();
const torch::Tensor& weights;
int maxFeatures;
vector<int> selectedFeatures;
vector<double> selectedScores;
vector<double> suLabels;
map<pair<int, int>, double> suFeatures;
bool fitted = false;
};
}
#endif

47
src/BayesNet/IWSS.cc Normal file
View File

@@ -0,0 +1,47 @@
#include "IWSS.h"
#include <limits>
#include "bayesnetUtils.h"
namespace bayesnet {
IWSS::IWSS(const torch::Tensor& samples, const vector<string>& features, const string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold) :
FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights), threshold(threshold)
{
if (threshold < 0 || threshold > .5) {
throw std::invalid_argument("Threshold has to be in [0, 0.5]");
}
}
void IWSS::fit()
{
initialize();
computeSuLabels();
auto featureOrder = argsort(suLabels); // sort descending order
auto featureOrderCopy = featureOrder;
// Add first and second features to result
// First with its own score
auto first_feature = pop_first(featureOrderCopy);
selectedFeatures.push_back(first_feature);
selectedScores.push_back(suLabels.at(first_feature));
// Second with the score of the candidates
selectedFeatures.push_back(pop_first(featureOrderCopy));
auto merit = computeMeritCFS();
selectedScores.push_back(merit);
for (const auto feature : featureOrderCopy) {
selectedFeatures.push_back(feature);
// Compute merit with selectedFeatures
auto meritNew = computeMeritCFS();
double delta = merit != 0.0 ? abs(merit - meritNew) / merit : 0.0;
if (meritNew > merit || delta < threshold) {
if (meritNew > merit) {
merit = meritNew;
}
selectedScores.push_back(meritNew);
} else {
selectedFeatures.pop_back();
break;
}
if (selectedFeatures.size() == maxFeatures) {
break;
}
}
fitted = true;
}
}

18
src/BayesNet/IWSS.h Normal file
View File

@@ -0,0 +1,18 @@
#ifndef IWSS_H
#define IWSS_H
#include <torch/torch.h>
#include <vector>
#include "FeatureSelect.h"
using namespace std;
namespace bayesnet {
class IWSS : public FeatureSelect {
public:
// dataset is a n+1xm tensor of integers where dataset[-1] is the y vector
IWSS(const torch::Tensor& samples, const vector<string>& features, const string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold);
virtual ~IWSS() {};
void fit() override;
private:
double threshold = -1;
};
}
#endif

View File

@@ -1,11 +1,22 @@
#include "KDB.h"
namespace bayesnet {
using namespace std;
using namespace torch;
KDB::KDB(int k, float theta) : BaseClassifier(Network()), k(k), theta(theta) {}
void KDB::train()
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {}
void KDB::setHyperparameters(nlohmann::json& hyperparameters)
{
// Check if hyperparameters are valid
const vector<string> validKeys = { "k", "theta" };
checkHyperparameters(validKeys, hyperparameters);
if (hyperparameters.contains("k")) {
k = hyperparameters["k"];
}
if (hyperparameters.contains("theta")) {
theta = hyperparameters["theta"];
}
}
void KDB::buildModel(const torch::Tensor& weights)
{
/*
1. For each feature Xi, compute mutual information, I(X;C),
@@ -28,25 +39,25 @@ namespace bayesnet {
*/
// 1. For each feature Xi, compute mutual information, I(X;C),
// where C is the class.
vector <float> mi;
addNodes();
const Tensor& y = dataset.index({ -1, "..." });
vector<double> mi;
for (auto i = 0; i < features.size(); i++) {
Tensor firstFeature = X.index({ "...", i });
mi.push_back(metrics.mutualInformation(firstFeature, y));
Tensor firstFeature = dataset.index({ i, "..." });
mi.push_back(metrics.mutualInformation(firstFeature, y, weights));
}
// 2. Compute class conditional mutual information I(Xi;XjIC), f or each
auto conditionalEdgeWeights = metrics.conditionalEdge();
auto conditionalEdgeWeights = metrics.conditionalEdge(weights);
// 3. Let the used variable list, S, be empty.
vector<int> S;
// 4. Let the DAG network being constructed, BN, begin with a single
// class node, C.
model.addNode(className, states[className].size());
// 5. Repeat until S includes all domain features
// 5.1. Select feature Xmax which is not in S and has the largest value
// I(Xmax;C).
auto order = argsort(mi);
for (auto idx : order) {
// 5.2. Add a node to BN representing Xmax.
model.addNode(features[idx], states[features[idx]].size());
// 5.3. Add an arc from C to Xmax in BN.
model.addEdge(className, features[idx]);
// 5.4. Add m = min(lSl,/c) arcs from m distinct features Xj in S with
@@ -80,11 +91,12 @@ namespace bayesnet {
exit_cond = num == n_edges || candidates.size(0) == 0;
}
}
vector<string> KDB::graph(string title)
vector<string> KDB::graph(const string& title) const
{
string header{ title };
if (title == "KDB") {
title += " (k=" + to_string(k) + ", theta=" + to_string(theta) + ")";
header += " (k=" + to_string(k) + ", theta=" + to_string(theta) + ")";
}
return model.graph(title);
return model.graph(header);
}
}

23
src/BayesNet/KDB.h Normal file
View File

@@ -0,0 +1,23 @@
#ifndef KDB_H
#define KDB_H
#include <torch/torch.h>
#include "Classifier.h"
#include "bayesnetUtils.h"
namespace bayesnet {
using namespace std;
using namespace torch;
class KDB : public Classifier {
private:
int k;
float theta;
void add_m_edges(int idx, vector<int>& S, Tensor& weights);
protected:
void buildModel(const torch::Tensor& weights) override;
public:
explicit KDB(int k, float theta = 0.03);
virtual ~KDB() {};
void setHyperparameters(nlohmann::json& hyperparameters) override;
vector<string> graph(const string& name = "KDB") const override;
};
}
#endif

30
src/BayesNet/KDBLd.cc Normal file
View File

@@ -0,0 +1,30 @@
#include "KDBLd.h"
namespace bayesnet {
using namespace std;
KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {}
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
{
checkInput(X_, y_);
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network
KDB::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
}
Tensor KDBLd::predict(Tensor& X)
{
auto Xt = prepareX(X);
return KDB::predict(Xt);
}
vector<string> KDBLd::graph(const string& name) const
{
return KDB::graph(name);
}
}

19
src/BayesNet/KDBLd.h Normal file
View File

@@ -0,0 +1,19 @@
#ifndef KDBLD_H
#define KDBLD_H
#include "KDB.h"
#include "Proposal.h"
namespace bayesnet {
using namespace std;
class KDBLd : public KDB, public Proposal {
private:
public:
explicit KDBLd(int k);
virtual ~KDBLd() = default;
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "KDB") const override;
Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; };
};
}
#endif // !KDBLD_H

View File

@@ -1,5 +1,6 @@
#include "Mst.h"
#include <vector>
#include <list>
/*
Based on the code from https://www.softwaretestinghelp.com/minimum-spanning-tree-tutorial/
@@ -7,9 +8,8 @@
namespace bayesnet {
using namespace std;
Graph::Graph(int V)
Graph::Graph(int V) : V(V), parent(vector<int>(V))
{
parent = vector<int>(V);
for (int i = 0; i < V; i++)
parent[i] = i;
G.clear();
@@ -34,10 +34,10 @@ namespace bayesnet {
}
void Graph::kruskal_algorithm()
{
int i, uSt, vEd;
// sort the edges ordered on decreasing weight
sort(G.begin(), G.end(), [](auto& left, auto& right) {return left.first > right.first;});
for (i = 0; i < G.size(); i++) {
stable_sort(G.begin(), G.end(), [](const auto& left, const auto& right) {return left.first > right.first;});
for (int i = 0; i < G.size(); i++) {
int uSt, vEd;
uSt = find_set(G[i].second.first);
vEd = find_set(G[i].second.second);
if (uSt != vEd) {
@@ -56,15 +56,24 @@ namespace bayesnet {
}
}
void insertElement(list<int>& variables, int variable)
{
if (find(variables.begin(), variables.end(), variable) == variables.end()) {
variables.push_front(variable);
}
}
vector<pair<int, int>> reorder(vector<pair<float, pair<int, int>>> T, int root_original)
{
// Create the edges of a DAG from the MST
// replacing unordered_set with list because unordered_set cannot guarantee the order of the elements inserted
auto result = vector<pair<int, int>>();
auto visited = vector<int>();
auto nextVariables = unordered_set<int>();
nextVariables.emplace(root_original);
auto nextVariables = list<int>();
nextVariables.push_front(root_original);
while (nextVariables.size() > 0) {
int root = *nextVariables.begin();
nextVariables.erase(nextVariables.begin());
int root = nextVariables.front();
nextVariables.pop_front();
for (int i = 0; i < T.size(); ++i) {
auto [weight, edge] = T[i];
auto [from, to] = edge;
@@ -72,10 +81,10 @@ namespace bayesnet {
visited.insert(visited.begin(), i);
if (from == root) {
result.push_back({ from, to });
nextVariables.emplace(to);
insertElement(nextVariables, to);
} else {
result.push_back({ to, from });
nextVariables.emplace(from);
insertElement(nextVariables, from);
}
}
}
@@ -95,15 +104,14 @@ namespace bayesnet {
return result;
}
MST::MST(vector<string>& features, Tensor& weights, int root) : features(features), weights(weights), root(root) {}
MST::MST(const vector<string>& features, const Tensor& weights, const int root) : features(features), weights(weights), root(root) {}
vector<pair<int, int>> MST::maximumSpanningTree()
{
auto num_features = features.size();
Graph g(num_features);
// Make a complete graph
for (int i = 0; i < num_features - 1; ++i) {
for (int j = i; j < num_features; ++j) {
for (int j = i + 1; j < num_features; ++j) {
g.addEdge(i, j, weights[i][j].item<float>());
}
}

View File

@@ -10,10 +10,10 @@ namespace bayesnet {
private:
Tensor weights;
vector<string> features;
int root;
int root = 0;
public:
MST() = default;
MST(vector<string>& features, Tensor& weights, int root);
MST(const vector<string>& features, const Tensor& weights, const int root);
vector<pair<int, int>> maximumSpanningTree();
};
class Graph {
@@ -23,7 +23,7 @@ namespace bayesnet {
vector <pair<float, pair<int, int>>> T; // vector for mst
vector<int> parent;
public:
Graph(int V);
explicit Graph(int V);
void addEdge(int u, int v, float wt);
int find_set(int i);
void union_set(int u, int v);

413
src/BayesNet/Network.cc Normal file
View File

@@ -0,0 +1,413 @@
#include <thread>
#include <mutex>
#include "Network.h"
#include "bayesnetUtils.h"
namespace bayesnet {
Network::Network() : features(vector<string>()), className(""), classNumStates(0), fitted(false), laplaceSmoothing(0) {}
Network::Network(float maxT) : features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false), laplaceSmoothing(0) {}
Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other.
getmaxThreads()), fitted(other.fitted)
{
for (const auto& pair : other.nodes) {
nodes[pair.first] = std::make_unique<Node>(*pair.second);
}
}
void Network::initialize()
{
features = vector<string>();
className = "";
classNumStates = 0;
fitted = false;
nodes.clear();
samples = torch::Tensor();
}
float Network::getmaxThreads()
{
return maxThreads;
}
torch::Tensor& Network::getSamples()
{
return samples;
}
void Network::addNode(const string& name)
{
if (name == "") {
throw invalid_argument("Node name cannot be empty");
}
if (nodes.find(name) != nodes.end()) {
return;
}
if (find(features.begin(), features.end(), name) == features.end()) {
features.push_back(name);
}
nodes[name] = std::make_unique<Node>(name);
}
vector<string> Network::getFeatures() const
{
return features;
}
int Network::getClassNumStates() const
{
return classNumStates;
}
int Network::getStates() const
{
int result = 0;
for (auto& node : nodes) {
result += node.second->getNumStates();
}
return result;
}
string Network::getClassName() const
{
return className;
}
bool Network::isCyclic(const string& nodeId, unordered_set<string>& visited, unordered_set<string>& recStack)
{
if (visited.find(nodeId) == visited.end()) // if node hasn't been visited yet
{
visited.insert(nodeId);
recStack.insert(nodeId);
for (Node* child : nodes[nodeId]->getChildren()) {
if (visited.find(child->getName()) == visited.end() && isCyclic(child->getName(), visited, recStack))
return true;
else if (recStack.find(child->getName()) != recStack.end())
return true;
}
}
recStack.erase(nodeId); // remove node from recursion stack before function ends
return false;
}
void Network::addEdge(const string& parent, const string& child)
{
if (nodes.find(parent) == nodes.end()) {
throw invalid_argument("Parent node " + parent + " does not exist");
}
if (nodes.find(child) == nodes.end()) {
throw invalid_argument("Child node " + child + " does not exist");
}
// Temporarily add edge to check for cycles
nodes[parent]->addChild(nodes[child].get());
nodes[child]->addParent(nodes[parent].get());
unordered_set<string> visited;
unordered_set<string> recStack;
if (isCyclic(nodes[child]->getName(), visited, recStack)) // if adding this edge forms a cycle
{
// remove problematic edge
nodes[parent]->removeChild(nodes[child].get());
nodes[child]->removeParent(nodes[parent].get());
throw invalid_argument("Adding this edge forms a cycle in the graph.");
}
}
map<string, std::unique_ptr<Node>>& Network::getNodes()
{
return nodes;
}
void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states, const torch::Tensor& weights)
{
if (weights.size(0) != n_samples) {
throw invalid_argument("Weights (" + to_string(weights.size(0)) + ") must have the same number of elements as samples (" + to_string(n_samples) + ") in Network::fit");
}
if (n_samples != n_samples_y) {
throw invalid_argument("X and y must have the same number of samples in Network::fit (" + to_string(n_samples) + " != " + to_string(n_samples_y) + ")");
}
if (n_features != featureNames.size()) {
throw invalid_argument("X and features must have the same number of features in Network::fit (" + to_string(n_features) + " != " + to_string(featureNames.size()) + ")");
}
if (n_features != features.size() - 1) {
throw invalid_argument("X and local features must have the same number of features in Network::fit (" + to_string(n_features) + " != " + to_string(features.size() - 1) + ")");
}
if (find(features.begin(), features.end(), className) == features.end()) {
throw invalid_argument("className not found in Network::features");
}
for (auto& feature : featureNames) {
if (find(features.begin(), features.end(), feature) == features.end()) {
throw invalid_argument("Feature " + feature + " not found in Network::features");
}
if (states.find(feature) == states.end()) {
throw invalid_argument("Feature " + feature + " not found in states");
}
}
}
void Network::setStates(const map<string, vector<int>>& states)
{
// Set states to every Node in the network
for_each(features.begin(), features.end(), [this, &states](const string& feature) {
nodes.at(feature)->setNumStates(states.at(feature).size());
});
classNumStates = nodes.at(className)->getNumStates();
}
// X comes in nxm, where n is the number of features and m the number of samples
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states, weights);
this->className = className;
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
samples = torch::cat({ X , ytmp }, 0);
for (int i = 0; i < featureNames.size(); ++i) {
auto row_feature = X.index({ i, "..." });
}
completeFit(states, weights);
}
void Network::fit(const torch::Tensor& samples, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{
checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states, weights);
this->className = className;
this->samples = samples;
completeFit(states, weights);
}
// input_data comes in nxm, where n is the number of features and m the number of samples
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<double>& weights_, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{
const torch::Tensor weights = torch::tensor(weights_, torch::kFloat64);
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states, weights);
this->className = className;
// Build tensor of samples (nxm) (n+1 because of the class)
samples = torch::zeros({ static_cast<int>(input_data.size() + 1), static_cast<int>(input_data[0].size()) }, torch::kInt32);
for (int i = 0; i < featureNames.size(); ++i) {
samples.index_put_({ i, "..." }, torch::tensor(input_data[i], torch::kInt32));
}
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
completeFit(states, weights);
}
void Network::completeFit(const map<string, vector<int>>& states, const torch::Tensor& weights)
{
setStates(states);
laplaceSmoothing = 1.0 / samples.size(1); // To use in CPT computation
vector<thread> threads;
for (auto& node : nodes) {
threads.emplace_back([this, &node, &weights]() {
node.second->computeCPT(samples, features, laplaceSmoothing, weights);
});
}
for (auto& thread : threads) {
thread.join();
}
fitted = true;
}
torch::Tensor Network::predict_tensor(const torch::Tensor& samples, const bool proba)
{
if (!fitted) {
throw logic_error("You must call fit() before calling predict()");
}
torch::Tensor result;
result = torch::zeros({ samples.size(1), classNumStates }, torch::kFloat64);
for (int i = 0; i < samples.size(1); ++i) {
const Tensor sample = samples.index({ "...", i });
auto psample = predict_sample(sample);
auto temp = torch::tensor(psample, torch::kFloat64);
// result.index_put_({ i, "..." }, torch::tensor(predict_sample(sample), torch::kFloat64));
result.index_put_({ i, "..." }, temp);
}
if (proba)
return result;
return result.argmax(1);
}
// Return mxn tensor of probabilities
Tensor Network::predict_proba(const Tensor& samples)
{
return predict_tensor(samples, true);
}
// Return mxn tensor of probabilities
Tensor Network::predict(const Tensor& samples)
{
return predict_tensor(samples, false);
}
// Return mx1 vector of predictions
// tsamples is nxm vector of samples
vector<int> Network::predict(const vector<vector<int>>& tsamples)
{
if (!fitted) {
throw logic_error("You must call fit() before calling predict()");
}
vector<int> predictions;
vector<int> sample;
for (int row = 0; row < tsamples[0].size(); ++row) {
sample.clear();
for (int col = 0; col < tsamples.size(); ++col) {
sample.push_back(tsamples[col][row]);
}
vector<double> classProbabilities = predict_sample(sample);
// Find the class with the maximum posterior probability
auto maxElem = max_element(classProbabilities.begin(), classProbabilities.end());
int predictedClass = distance(classProbabilities.begin(), maxElem);
predictions.push_back(predictedClass);
}
return predictions;
}
// Return mxn vector of probabilities
vector<vector<double>> Network::predict_proba(const vector<vector<int>>& tsamples)
{
if (!fitted) {
throw logic_error("You must call fit() before calling predict_proba()");
}
vector<vector<double>> predictions;
vector<int> sample;
for (int row = 0; row < tsamples[0].size(); ++row) {
sample.clear();
for (int col = 0; col < tsamples.size(); ++col) {
sample.push_back(tsamples[col][row]);
}
predictions.push_back(predict_sample(sample));
}
return predictions;
}
double Network::score(const vector<vector<int>>& tsamples, const vector<int>& labels)
{
vector<int> y_pred = predict(tsamples);
int correct = 0;
for (int i = 0; i < y_pred.size(); ++i) {
if (y_pred[i] == labels[i]) {
correct++;
}
}
return (double)correct / y_pred.size();
}
// Return 1xn vector of probabilities
vector<double> Network::predict_sample(const vector<int>& sample)
{
// Ensure the sample size is equal to the number of features
if (sample.size() != features.size() - 1) {
throw invalid_argument("Sample size (" + to_string(sample.size()) +
") does not match the number of features (" + to_string(features.size() - 1) + ")");
}
map<string, int> evidence;
for (int i = 0; i < sample.size(); ++i) {
evidence[features[i]] = sample[i];
}
return exactInference(evidence);
}
// Return 1xn vector of probabilities
vector<double> Network::predict_sample(const Tensor& sample)
{
// Ensure the sample size is equal to the number of features
if (sample.size(0) != features.size() - 1) {
throw invalid_argument("Sample size (" + to_string(sample.size(0)) +
") does not match the number of features (" + to_string(features.size() - 1) + ")");
}
map<string, int> evidence;
for (int i = 0; i < sample.size(0); ++i) {
evidence[features[i]] = sample[i].item<int>();
}
return exactInference(evidence);
}
double Network::computeFactor(map<string, int>& completeEvidence)
{
double result = 1.0;
for (auto& node : getNodes()) {
result *= node.second->getFactorValue(completeEvidence);
}
return result;
}
vector<double> Network::exactInference(map<string, int>& evidence)
{
vector<double> result(classNumStates, 0.0);
vector<thread> threads;
mutex mtx;
for (int i = 0; i < classNumStates; ++i) {
threads.emplace_back([this, &result, &evidence, i, &mtx]() {
auto completeEvidence = map<string, int>(evidence);
completeEvidence[getClassName()] = i;
double factor = computeFactor(completeEvidence);
lock_guard<mutex> lock(mtx);
result[i] = factor;
});
}
for (auto& thread : threads) {
thread.join();
}
// Normalize result
double sum = accumulate(result.begin(), result.end(), 0.0);
transform(result.begin(), result.end(), result.begin(), [sum](const double& value) { return value / sum; });
return result;
}
vector<string> Network::show() const
{
vector<string> result;
// Draw the network
for (auto& node : nodes) {
string line = node.first + " -> ";
for (auto child : node.second->getChildren()) {
line += child->getName() + ", ";
}
result.push_back(line);
}
return result;
}
vector<string> Network::graph(const string& title) const
{
auto output = vector<string>();
auto prefix = "digraph BayesNet {\nlabel=<BayesNet ";
auto suffix = ">\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n";
string header = prefix + title + suffix;
output.push_back(header);
for (auto& node : nodes) {
auto result = node.second->graph(className);
output.insert(output.end(), result.begin(), result.end());
}
output.push_back("}\n");
return output;
}
vector<pair<string, string>> Network::getEdges() const
{
auto edges = vector<pair<string, string>>();
for (const auto& node : nodes) {
auto head = node.first;
for (const auto& child : node.second->getChildren()) {
auto tail = child->getName();
edges.push_back({ head, tail });
}
}
return edges;
}
int Network::getNumEdges() const
{
return getEdges().size();
}
vector<string> Network::topological_sort()
{
/* Check if al the fathers of every node are before the node */
auto result = features;
result.erase(remove(result.begin(), result.end(), className), result.end());
bool ending{ false };
while (!ending) {
ending = true;
for (auto feature : features) {
auto fathers = nodes[feature]->getParents();
for (const auto& father : fathers) {
auto fatherName = father->getName();
if (fatherName == className) {
continue;
}
// Check if father is placed before the actual feature
auto it = find(result.begin(), result.end(), fatherName);
if (it != result.end()) {
auto it2 = find(result.begin(), result.end(), feature);
if (it2 != result.end()) {
if (distance(it, it2) < 0) {
// if it is not, insert it before the feature
result.erase(remove(result.begin(), result.end(), fatherName), result.end());
result.insert(it2, fatherName);
ending = false;
}
} else {
throw logic_error("Error in topological sort because of node " + feature + " is not in result");
}
} else {
throw logic_error("Error in topological sort because of node father " + fatherName + " is not in result");
}
}
}
}
return result;
}
void Network::dump_cpt() const
{
for (auto& node : nodes) {
cout << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << endl;
cout << node.second->getCPT() << endl;
}
}
}

62
src/BayesNet/Network.h Normal file
View File

@@ -0,0 +1,62 @@
#ifndef NETWORK_H
#define NETWORK_H
#include "Node.h"
#include <map>
#include <vector>
namespace bayesnet {
class Network {
private:
map<string, unique_ptr<Node>> nodes;
bool fitted;
float maxThreads = 0.95;
int classNumStates;
vector<string> features; // Including classname
string className;
double laplaceSmoothing;
torch::Tensor samples; // nxm tensor used to fit the model
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
vector<double> predict_sample(const vector<int>&);
vector<double> predict_sample(const torch::Tensor&);
vector<double> exactInference(map<string, int>&);
double computeFactor(map<string, int>&);
void completeFit(const map<string, vector<int>>& states, const torch::Tensor& weights);
void checkFitData(int n_features, int n_samples, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states, const torch::Tensor& weights);
void setStates(const map<string, vector<int>>&);
public:
Network();
explicit Network(float);
explicit Network(Network&);
~Network() = default;
torch::Tensor& getSamples();
float getmaxThreads();
void addNode(const string&);
void addEdge(const string&, const string&);
map<string, std::unique_ptr<Node>>& getNodes();
vector<string> getFeatures() const;
int getStates() const;
vector<pair<string, string>> getEdges() const;
int getNumEdges() const;
int getClassNumStates() const;
string getClassName() const;
/*
Notice: Nodes have to be inserted in the same order as they are in the dataset, i.e., first node is first column and so on.
*/
void fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<double>& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
void fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
void fit(const torch::Tensor& samples, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
vector<int> predict(const vector<vector<int>>&); // Return mx1 vector of predictions
torch::Tensor predict(const torch::Tensor&); // Return mx1 tensor of predictions
torch::Tensor predict_tensor(const torch::Tensor& samples, const bool proba);
vector<vector<double>> predict_proba(const vector<vector<int>>&); // Return mxn vector of probabilities
torch::Tensor predict_proba(const torch::Tensor&); // Return mxn tensor of probabilities
double score(const vector<vector<int>>&, const vector<int>&);
vector<string> topological_sort();
vector<string> show() const;
vector<string> graph(const string& title) const; // Returns a vector of strings representing the graph in graphviz format
void initialize();
void dump_cpt() const;
inline string version() { return "0.2.0"; }
};
}
#endif

View File

@@ -2,10 +2,18 @@
namespace bayesnet {
Node::Node(const std::string& name, int numStates)
: name(name), numStates(numStates), cpTable(torch::Tensor()), parents(vector<Node*>()), children(vector<Node*>())
Node::Node(const std::string& name)
: name(name), numStates(0), cpTable(torch::Tensor()), parents(vector<Node*>()), children(vector<Node*>())
{
}
void Node::clear()
{
parents.clear();
children.clear();
cpTable = torch::Tensor();
dimensions.clear();
numStates = 0;
}
string Node::getName() const
{
return name;
@@ -76,47 +84,52 @@ namespace bayesnet {
}
return result;
}
void Node::computeCPT(map<string, vector<int>>& dataset, const int laplaceSmoothing)
void Node::computeCPT(const torch::Tensor& dataset, const vector<string>& features, const double laplaceSmoothing, const torch::Tensor& weights)
{
dimensions.clear();
// Get dimensions of the CPT
dimensions.push_back(numStates);
for (auto father : getParents()) {
dimensions.push_back(father->getNumStates());
}
auto length = dimensions.size();
transform(parents.begin(), parents.end(), back_inserter(dimensions), [](const auto& parent) { return parent->getNumStates(); });
// Create a tensor of zeros with the dimensions of the CPT
cpTable = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing;
// Fill table with counts
for (int n_sample = 0; n_sample < dataset[name].size(); ++n_sample) {
torch::List<c10::optional<torch::Tensor>> coordinates;
coordinates.push_back(torch::tensor(dataset[name][n_sample]));
for (auto father : getParents()) {
coordinates.push_back(torch::tensor(dataset[father->getName()][n_sample]));
auto pos = find(features.begin(), features.end(), name);
if (pos == features.end()) {
throw logic_error("Feature " + name + " not found in dataset");
}
int name_index = pos - features.begin();
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
c10::List<c10::optional<at::Tensor>> coordinates;
coordinates.push_back(dataset.index({ name_index, n_sample }));
for (auto parent : parents) {
pos = find(features.begin(), features.end(), parent->getName());
if (pos == features.end()) {
throw logic_error("Feature parent " + parent->getName() + " not found in dataset");
}
int parent_index = pos - features.begin();
coordinates.push_back(dataset.index({ parent_index, n_sample }));
}
// Increment the count of the corresponding coordinate
cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + 1);
cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + weights.index({ n_sample }).item<double>());
}
// Normalize the counts
cpTable = cpTable / cpTable.sum(0);
}
float Node::getFactorValue(map<string, int>& evidence)
{
torch::List<c10::optional<torch::Tensor>> coordinates;
c10::List<c10::optional<at::Tensor>> coordinates;
// following predetermined order of indices in the cpTable (see Node.h)
coordinates.push_back(torch::tensor(evidence[name]));
for (auto parent : getParents()) {
coordinates.push_back(torch::tensor(evidence[parent->getName()]));
}
coordinates.push_back(at::tensor(evidence[name]));
transform(parents.begin(), parents.end(), back_inserter(coordinates), [&evidence](const auto& parent) { return at::tensor(evidence[parent->getName()]); });
return cpTable.index({ coordinates }).item<float>();
}
vector<string> Node::graph(string className)
vector<string> Node::graph(const string& className)
{
auto output = vector<string>();
auto suffix = name == className ? ", fontcolor=red, fillcolor=lightblue, style=filled " : "";
output.push_back(name + " [shape=circle" + suffix + "] \n");
for (auto& child : children) {
output.push_back(name + " -> " + child->getName());
}
transform(children.begin(), children.end(), back_inserter(output), [this](const auto& child) { return name + " -> " + child->getName(); });
return output;
}
}

View File

@@ -14,9 +14,10 @@ namespace bayesnet {
int numStates; // number of states of the variable
torch::Tensor cpTable; // Order of indices is 0-> node variable, 1-> 1st parent, 2-> 2nd parent, ...
vector<int64_t> dimensions; // dimensions of the cpTable
public:
vector<pair<string, string>> combinations(const vector<string>&);
Node(const std::string&, int);
public:
explicit Node(const string&);
void clear();
void addParent(Node*);
void addChild(Node*);
void removeParent(Node*);
@@ -25,11 +26,11 @@ namespace bayesnet {
vector<Node*>& getParents();
vector<Node*>& getChildren();
torch::Tensor& getCPT();
void computeCPT(map<string, vector<int>>&, const int);
void computeCPT(const torch::Tensor& dataset, const vector<string>& features, const double laplaceSmoothing, const torch::Tensor& weights);
int getNumStates() const;
void setNumStates(int);
unsigned minFill();
vector<string> graph(string clasName); // Returns a vector of strings representing the graph in graphviz format
vector<string> graph(const string& clasName); // Returns a vector of strings representing the graph in graphviz format
float getFactorValue(map<string, int>&);
};
}

110
src/BayesNet/Proposal.cc Normal file
View File

@@ -0,0 +1,110 @@
#include "Proposal.h"
#include "ArffFiles.h"
namespace bayesnet {
Proposal::Proposal(torch::Tensor& dataset_, vector<string>& features_, string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_) {}
Proposal::~Proposal()
{
for (auto& [key, value] : discretizers) {
delete value;
}
}
void Proposal::checkInput(const torch::Tensor& X, const torch::Tensor& y)
{
if (!torch::is_floating_point(X)) {
throw std::invalid_argument("X must be a floating point tensor");
}
if (torch::is_floating_point(y)) {
throw std::invalid_argument("y must be an integer tensor");
}
}
map<string, vector<int>> Proposal::localDiscretizationProposal(const map<string, vector<int>>& oldStates, Network& model)
{
// order of local discretization is important. no good 0, 1, 2...
// although we rediscretize features after the local discretization of every feature
auto order = model.topological_sort();
auto& nodes = model.getNodes();
map<string, vector<int>> states = oldStates;
vector<int> indicesToReDiscretize;
bool upgrade = false; // Flag to check if we need to upgrade the model
for (auto feature : order) {
auto nodeParents = nodes[feature]->getParents();
if (nodeParents.size() < 2) continue; // Only has class as parent
upgrade = true;
int index = find(pFeatures.begin(), pFeatures.end(), feature) - pFeatures.begin();
indicesToReDiscretize.push_back(index); // We need to re-discretize this feature
vector<string> parents;
transform(nodeParents.begin(), nodeParents.end(), back_inserter(parents), [](const auto& p) { return p->getName(); });
// Remove class as parent as it will be added later
parents.erase(remove(parents.begin(), parents.end(), pClassName), parents.end());
// Get the indices of the parents
vector<int> indices;
indices.push_back(-1); // Add class index
transform(parents.begin(), parents.end(), back_inserter(indices), [&](const auto& p) {return find(pFeatures.begin(), pFeatures.end(), p) - pFeatures.begin(); });
// Now we fit the discretizer of the feature, conditioned on its parents and the class i.e. discretizer.fit(X[index], X[indices] + y)
vector<string> yJoinParents(Xf.size(1));
for (auto idx : indices) {
for (int i = 0; i < Xf.size(1); ++i) {
yJoinParents[i] += to_string(pDataset.index({ idx, i }).item<int>());
}
}
auto arff = ArffFiles();
auto yxv = arff.factorize(yJoinParents);
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
auto xvf = vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
discretizers[feature]->fit(xvf, yxv);
}
if (upgrade) {
// Discretize again X (only the affected indices) with the new fitted discretizers
for (auto index : indicesToReDiscretize) {
auto Xt_ptr = Xf.index({ index }).data_ptr<float>();
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
pDataset.index_put_({ index, "..." }, torch::tensor(discretizers[pFeatures[index]]->transform(Xt)));
auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0);
//Update new states of the feature/node
states[pFeatures[index]] = xStates;
}
const torch::Tensor weights = torch::full({ pDataset.size(1) }, 1.0 / pDataset.size(1), torch::kDouble);
model.fit(pDataset, weights, pFeatures, pClassName, states);
}
return states;
}
map<string, vector<int>> Proposal::fit_local_discretization(const torch::Tensor& y)
{
// Discretize the continuous input data and build pDataset (Classifier::dataset)
int m = Xf.size(1);
int n = Xf.size(0);
map<string, vector<int>> states;
pDataset = torch::zeros({ n + 1, m }, kInt32);
auto yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
// discretize input data by feature(row)
for (auto i = 0; i < pFeatures.size(); ++i) {
auto* discretizer = new mdlp::CPPFImdlp();
auto Xt_ptr = Xf.index({ i }).data_ptr<float>();
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
discretizer->fit(Xt, yv);
pDataset.index_put_({ i, "..." }, torch::tensor(discretizer->transform(Xt)));
auto xStates = vector<int>(discretizer->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0);
states[pFeatures[i]] = xStates;
discretizers[pFeatures[i]] = discretizer;
}
int n_classes = torch::max(y).item<int>() + 1;
auto yStates = vector<int>(n_classes);
iota(yStates.begin(), yStates.end(), 0);
states[pClassName] = yStates;
pDataset.index_put_({ n, "..." }, y);
return states;
}
torch::Tensor Proposal::prepareX(torch::Tensor& X)
{
auto Xtd = torch::zeros_like(X, torch::kInt32);
for (int i = 0; i < X.size(0); ++i) {
auto Xt = vector<float>(X[i].data_ptr<float>(), X[i].data_ptr<float>() + X.size(1));
auto Xd = discretizers[pFeatures[i]]->transform(Xt);
Xtd.index_put_({ i }, torch::tensor(Xd, torch::kInt32));
}
return Xtd;
}
}

30
src/BayesNet/Proposal.h Normal file
View File

@@ -0,0 +1,30 @@
#ifndef PROPOSAL_H
#define PROPOSAL_H
#include <string>
#include <map>
#include <torch/torch.h>
#include "Network.h"
#include "CPPFImdlp.h"
#include "Classifier.h"
namespace bayesnet {
class Proposal {
public:
Proposal(torch::Tensor& pDataset, vector<string>& features_, string& className_);
virtual ~Proposal();
protected:
void checkInput(const torch::Tensor& X, const torch::Tensor& y);
torch::Tensor prepareX(torch::Tensor& X);
map<string, vector<int>> localDiscretizationProposal(const map<string, vector<int>>& states, Network& model);
map<string, vector<int>> fit_local_discretization(const torch::Tensor& y);
torch::Tensor Xf; // X continuous nxm tensor
torch::Tensor y; // y discrete nx1 tensor
map<string, mdlp::CPPFImdlp*> discretizers;
private:
torch::Tensor& pDataset; // (n+1)xm tensor
vector<string>& pFeatures;
string& pClassName;
};
}
#endif

View File

@@ -2,9 +2,9 @@
namespace bayesnet {
SPODE::SPODE(int root) : BaseClassifier(Network()), root(root) {}
SPODE::SPODE(int root) : Classifier(Network()), root(root) {}
void SPODE::train()
void SPODE::buildModel(const torch::Tensor& weights)
{
// 0. Add all nodes to the model
addNodes();
@@ -17,7 +17,7 @@ namespace bayesnet {
}
}
}
vector<string> SPODE::graph(string name )
vector<string> SPODE::graph(const string& name) const
{
return model.graph(name);
}

17
src/BayesNet/SPODE.h Normal file
View File

@@ -0,0 +1,17 @@
#ifndef SPODE_H
#define SPODE_H
#include "Classifier.h"
namespace bayesnet {
class SPODE : public Classifier {
private:
int root;
protected:
void buildModel(const torch::Tensor& weights) override;
public:
explicit SPODE(int root);
virtual ~SPODE() {};
vector<string> graph(const string& name = "SPODE") const override;
};
}
#endif

48
src/BayesNet/SPODELd.cc Normal file
View File

@@ -0,0 +1,48 @@
#include "SPODELd.h"
namespace bayesnet {
using namespace std;
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
{
checkInput(X_, y_);
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
SPODE::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
}
SPODELd& SPODELd::fit(torch::Tensor& dataset, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
{
if (!torch::is_floating_point(dataset)) {
throw std::runtime_error("Dataset must be a floating point tensor");
}
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
y = dataset.index({ -1, "..." }).clone();
features = features_;
className = className_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
SPODE::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
}
Tensor SPODELd::predict(Tensor& X)
{
auto Xt = prepareX(X);
return SPODE::predict(Xt);
}
vector<string> SPODELd::graph(const string& name) const
{
return SPODE::graph(name);
}
}

19
src/BayesNet/SPODELd.h Normal file
View File

@@ -0,0 +1,19 @@
#ifndef SPODELD_H
#define SPODELD_H
#include "SPODE.h"
#include "Proposal.h"
namespace bayesnet {
using namespace std;
class SPODELd : public SPODE, public Proposal {
public:
explicit SPODELd(int root);
virtual ~SPODELd() = default;
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
SPODELd& fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "SPODE") const override;
Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; };
};
}
#endif // !SPODELD_H

View File

@@ -1,30 +1,29 @@
#include "TAN.h"
namespace bayesnet {
using namespace std;
using namespace torch;
TAN::TAN() : BaseClassifier(Network()) {}
TAN::TAN() : Classifier(Network()) {}
void TAN::train()
void TAN::buildModel(const torch::Tensor& weights)
{
// 0. Add all nodes to the model
addNodes();
// 1. Compute mutual information between each feature and the class and set the root node
// as the highest mutual information with the class
auto mi = vector <pair<int, float >>();
Tensor class_dataset = dataset.index({ "...", -1 });
Tensor class_dataset = dataset.index({ -1, "..." });
for (int i = 0; i < static_cast<int>(features.size()); ++i) {
Tensor feature_dataset = dataset.index({ "...", i });
auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset);
Tensor feature_dataset = dataset.index({ i, "..." });
auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset, weights);
mi.push_back({ i, mi_value });
}
sort(mi.begin(), mi.end(), [](auto& left, auto& right) {return left.second < right.second;});
sort(mi.begin(), mi.end(), [](const auto& left, const auto& right) {return left.second < right.second;});
auto root = mi[mi.size() - 1].first;
// 2. Compute mutual information between each feature and the class
auto weights = metrics.conditionalEdge();
auto weights_matrix = metrics.conditionalEdge(weights);
// 3. Compute the maximum spanning tree
auto mst = metrics.maximumSpanningTree(features, weights, root);
auto mst = metrics.maximumSpanningTree(features, weights_matrix, root);
// 4. Add edges from the maximum spanning tree to the model
for (auto i = 0; i < mst.size(); ++i) {
auto [from, to] = mst[i];
@@ -35,7 +34,7 @@ namespace bayesnet {
model.addEdge(className, feature);
}
}
vector<string> TAN::graph(string title)
vector<string> TAN::graph(const string& title) const
{
return model.graph(title);
}

16
src/BayesNet/TAN.h Normal file
View File

@@ -0,0 +1,16 @@
#ifndef TAN_H
#define TAN_H
#include "Classifier.h"
namespace bayesnet {
using namespace std;
class TAN : public Classifier {
private:
protected:
void buildModel(const torch::Tensor& weights) override;
public:
TAN();
virtual ~TAN() {};
vector<string> graph(const string& name = "TAN") const override;
};
}
#endif

31
src/BayesNet/TANLd.cc Normal file
View File

@@ -0,0 +1,31 @@
#include "TANLd.h"
namespace bayesnet {
using namespace std;
TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {}
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
{
checkInput(X_, y_);
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
TAN::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
}
Tensor TANLd::predict(Tensor& X)
{
auto Xt = prepareX(X);
return TAN::predict(Xt);
}
vector<string> TANLd::graph(const string& name) const
{
return TAN::graph(name);
}
}

19
src/BayesNet/TANLd.h Normal file
View File

@@ -0,0 +1,19 @@
#ifndef TANLD_H
#define TANLD_H
#include "TAN.h"
#include "Proposal.h"
namespace bayesnet {
using namespace std;
class TANLd : public TAN, public Proposal {
private:
public:
TANLd();
virtual ~TANLd() = default;
TANLd& fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "TAN") const override;
Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; };
};
}
#endif // !TANLD_H

View File

@@ -0,0 +1,27 @@
#include "bayesnetUtils.h"
namespace bayesnet {
using namespace std;
using namespace torch;
// Return the indices in descending order
vector<int> argsort(vector<double>& nums)
{
int n = nums.size();
vector<int> indices(n);
iota(indices.begin(), indices.end(), 0);
sort(indices.begin(), indices.end(), [&nums](int i, int j) {return nums[i] > nums[j];});
return indices;
}
vector<vector<int>> tensorToVector(Tensor& tensor)
{
// convert mxn tensor to nxm vector
vector<vector<int>> result;
// Iterate over cols
for (int i = 0; i < tensor.size(1); ++i) {
auto col_tensor = tensor.index({ "...", i });
auto col = vector<int>(col_tensor.data_ptr<int>(), col_tensor.data_ptr<int>() + tensor.size(0));
result.push_back(col);
}
return result;
}
}

View File

@@ -0,0 +1,11 @@
#ifndef BAYESNET_UTILS_H
#define BAYESNET_UTILS_H
#include <torch/torch.h>
#include <vector>
namespace bayesnet {
using namespace std;
using namespace torch;
vector<int> argsort(vector<double>& nums);
vector<vector<int>> tensorToVector(Tensor& tensor);
}
#endif //BAYESNET_UTILS_H

View File

@@ -1,2 +0,0 @@
add_library(BayesNet utils.cc Network.cc Node.cc Metrics.cc BaseClassifier.cc KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc Mst.cc)
target_link_libraries(BayesNet "${TORCH_LIBRARIES}")

View File

@@ -1,112 +0,0 @@
#include "Ensemble.h"
namespace bayesnet {
using namespace std;
using namespace torch;
Ensemble::Ensemble() : m(0), n(0), n_models(0), metrics(Metrics()), fitted(false) {}
Ensemble& Ensemble::build(vector<string>& features, string className, map<string, vector<int>>& states)
{
dataset = cat({ X, y.view({y.size(0), 1}) }, 1);
this->features = features;
this->className = className;
this->states = states;
auto n_classes = states[className].size();
metrics = Metrics(dataset, features, className, n_classes);
// Build models
train();
// Train models
n_models = models.size();
for (auto i = 0; i < n_models; ++i) {
models[i]->fit(Xv, yv, features, className, states);
}
fitted = true;
return *this;
}
Ensemble& Ensemble::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
{
this->X = torch::zeros({ static_cast<int64_t>(X[0].size()), static_cast<int64_t>(X.size()) }, kInt64);
Xv = X;
for (int i = 0; i < X.size(); ++i) {
this->X.index_put_({ "...", i }, torch::tensor(X[i], kInt64));
}
this->y = torch::tensor(y, kInt64);
yv = y;
return build(features, className, states);
}
Tensor Ensemble::predict(Tensor& X)
{
if (!fitted) {
throw logic_error("Ensemble has not been fitted");
}
Tensor y_pred = torch::zeros({ X.size(0), n_models }, kInt64);
for (auto i = 0; i < n_models; ++i) {
y_pred.index_put_({ "...", i }, models[i]->predict(X));
}
return torch::tensor(voting(y_pred));
}
vector<int> Ensemble::voting(Tensor& y_pred)
{
auto y_pred_ = y_pred.accessor<int64_t, 2>();
vector<int> y_pred_final;
for (int i = 0; i < y_pred.size(0); ++i) {
vector<float> votes(states[className].size(), 0);
for (int j = 0; j < y_pred.size(1); ++j) {
votes[y_pred_[i][j]] += 1;
}
auto indices = argsort(votes);
y_pred_final.push_back(indices[0]);
}
return y_pred_final;
}
vector<int> Ensemble::predict(vector<vector<int>>& X)
{
if (!fitted) {
throw logic_error("Ensemble has not been fitted");
}
long m_ = X[0].size();
long n_ = X.size();
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
for (auto i = 0; i < n_; i++) {
Xd[i] = vector<int>(X[i].begin(), X[i].end());
}
Tensor y_pred = torch::zeros({ m_, n_models }, kInt64);
for (auto i = 0; i < n_models; ++i) {
y_pred.index_put_({ "...", i }, torch::tensor(models[i]->predict(Xd), kInt64));
}
return voting(y_pred);
}
float Ensemble::score(vector<vector<int>>& X, vector<int>& y)
{
if (!fitted) {
throw logic_error("Ensemble has not been fitted");
}
auto y_pred = predict(X);
int correct = 0;
for (int i = 0; i < y_pred.size(); ++i) {
if (y_pred[i] == y[i]) {
correct++;
}
}
return (double)correct / y_pred.size();
}
vector<string> Ensemble::show()
{
auto result = vector<string>();
for (auto i = 0; i < n_models; ++i) {
auto res = models[i]->show();
result.insert(result.end(), res.begin(), res.end());
}
return result;
}
vector<string> Ensemble::graph(string title)
{
auto result = vector<string>();
for (auto i = 0; i < n_models; ++i) {
auto res = models[i]->graph(title + "_" + to_string(i));
result.insert(result.end(), res.begin(), res.end());
}
return result;
}
}

View File

@@ -1,42 +0,0 @@
#ifndef ENSEMBLE_H
#define ENSEMBLE_H
#include <torch/torch.h>
#include "BaseClassifier.h"
#include "Metrics.hpp"
#include "utils.h"
using namespace std;
using namespace torch;
namespace bayesnet {
class Ensemble {
private:
bool fitted;
long n_models;
Ensemble& build(vector<string>& features, string className, map<string, vector<int>>& states);
protected:
vector<unique_ptr<BaseClassifier>> models;
int m, n; // m: number of samples, n: number of features
Tensor X;
vector<vector<int>> Xv;
Tensor y;
vector<int> yv;
Tensor dataset;
Metrics metrics;
vector<string> features;
string className;
map<string, vector<int>> states;
void virtual train() = 0;
vector<int> voting(Tensor& y_pred);
public:
Ensemble();
virtual ~Ensemble() = default;
Ensemble& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states);
Tensor predict(Tensor& X);
vector<int> predict(vector<vector<int>>& X);
float score(Tensor& X, Tensor& y);
float score(vector<vector<int>>& X, vector<int>& y);
vector<string> show();
vector<string> graph(string title);
};
}
#endif

View File

@@ -1,20 +0,0 @@
#ifndef KDB_H
#define KDB_H
#include "BaseClassifier.h"
#include "utils.h"
namespace bayesnet {
using namespace std;
using namespace torch;
class KDB : public BaseClassifier {
private:
int k;
float theta;
void add_m_edges(int idx, vector<int>& S, Tensor& weights);
protected:
void train() override;
public:
KDB(int k, float theta = 0.03);
vector<string> graph(string name = "KDB") override;
};
}
#endif

View File

@@ -1,131 +0,0 @@
#include "Metrics.hpp"
#include "Mst.h"
using namespace std;
namespace bayesnet {
Metrics::Metrics(torch::Tensor& samples, vector<string>& features, string& className, int classNumStates)
: samples(samples)
, features(features)
, className(className)
, classNumStates(classNumStates)
{
}
Metrics::Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates)
: features(features)
, className(className)
, classNumStates(classNumStates)
{
samples = torch::zeros({ static_cast<int64_t>(vsamples[0].size()), static_cast<int64_t>(vsamples.size() + 1) }, torch::kInt64);
for (int i = 0; i < vsamples.size(); ++i) {
samples.index_put_({ "...", i }, torch::tensor(vsamples[i], torch::kInt64));
}
samples.index_put_({ "...", -1 }, torch::tensor(labels, torch::kInt64));
}
vector<pair<string, string>> Metrics::doCombinations(const vector<string>& source)
{
vector<pair<string, string>> result;
for (int i = 0; i < source.size(); ++i) {
string temp = source[i];
for (int j = i + 1; j < source.size(); ++j) {
result.push_back({ temp, source[j] });
}
}
return result;
}
torch::Tensor Metrics::conditionalEdge()
{
auto result = vector<double>();
auto source = vector<string>(features);
source.push_back(className);
auto combinations = doCombinations(source);
// Compute class prior
auto margin = torch::zeros({ classNumStates });
for (int value = 0; value < classNumStates; ++value) {
auto mask = samples.index({ "...", -1 }) == value;
margin[value] = mask.sum().item<float>() / samples.sizes()[0];
}
for (auto [first, second] : combinations) {
int64_t index_first = find(features.begin(), features.end(), first) - features.begin();
int64_t index_second = find(features.begin(), features.end(), second) - features.begin();
double accumulated = 0;
for (int value = 0; value < classNumStates; ++value) {
auto mask = samples.index({ "...", -1 }) == value;
auto first_dataset = samples.index({ mask, index_first });
auto second_dataset = samples.index({ mask, index_second });
auto mi = mutualInformation(first_dataset, second_dataset);
auto pb = margin[value].item<float>();
accumulated += pb * mi;
}
result.push_back(accumulated);
}
long n_vars = source.size();
auto matrix = torch::zeros({ n_vars, n_vars });
auto indices = torch::triu_indices(n_vars, n_vars, 1);
for (auto i = 0; i < result.size(); ++i) {
auto x = indices[0][i];
auto y = indices[1][i];
matrix[x][y] = result[i];
matrix[y][x] = result[i];
}
return matrix;
}
vector<float> Metrics::conditionalEdgeWeights()
{
auto matrix = conditionalEdge();
std::vector<float> v(matrix.data_ptr<float>(), matrix.data_ptr<float>() + matrix.numel());
return v;
}
double Metrics::entropy(torch::Tensor& feature)
{
torch::Tensor counts = feature.bincount();
int totalWeight = counts.sum().item<int>();
torch::Tensor probs = counts.to(torch::kFloat) / totalWeight;
torch::Tensor logProbs = torch::log(probs);
torch::Tensor entropy = -probs * logProbs;
return entropy.nansum().item<double>();
}
// H(Y|X) = sum_{x in X} p(x) H(Y|X=x)
double Metrics::conditionalEntropy(torch::Tensor& firstFeature, torch::Tensor& secondFeature)
{
int numSamples = firstFeature.sizes()[0];
torch::Tensor featureCounts = secondFeature.bincount();
unordered_map<int, unordered_map<int, double>> jointCounts;
double totalWeight = 0;
for (auto i = 0; i < numSamples; i++) {
jointCounts[secondFeature[i].item<int>()][firstFeature[i].item<int>()] += 1;
totalWeight += 1;
}
if (totalWeight == 0)
throw invalid_argument("Total weight should not be zero");
double entropyValue = 0;
for (int value = 0; value < featureCounts.sizes()[0]; ++value) {
double p_f = featureCounts[value].item<double>() / totalWeight;
double entropy_f = 0;
for (auto& [label, jointCount] : jointCounts[value]) {
double p_l_f = jointCount / featureCounts[value].item<double>();
if (p_l_f > 0) {
entropy_f -= p_l_f * log(p_l_f);
} else {
entropy_f = 0;
}
}
entropyValue += p_f * entropy_f;
}
return entropyValue;
}
// I(X;Y) = H(Y) - H(Y|X)
double Metrics::mutualInformation(torch::Tensor& firstFeature, torch::Tensor& secondFeature)
{
return entropy(firstFeature) - conditionalEntropy(firstFeature, secondFeature);
}
/*
Compute the maximum spanning tree considering the weights as distances
and the indices of the weights as nodes of this square matrix using
Kruskal algorithm
*/
vector<pair<int, int>> Metrics::maximumSpanningTree(vector<string> features, Tensor& weights, int root)
{
auto result = vector<pair<int, int>>();
auto mst = MST(features, weights, root);
return mst.maximumSpanningTree();
}
}

View File

@@ -1,28 +0,0 @@
#ifndef BAYESNET_METRICS_H
#define BAYESNET_METRICS_H
#include <torch/torch.h>
#include <vector>
#include <string>
namespace bayesnet {
using namespace std;
using namespace torch;
class Metrics {
private:
Tensor samples;
vector<string> features;
string className;
int classNumStates;
public:
Metrics() = default;
Metrics(Tensor&, vector<string>&, string&, int);
Metrics(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&, const int);
double entropy(Tensor&);
double conditionalEntropy(Tensor&, Tensor&);
double mutualInformation(Tensor&, Tensor&);
vector<float> conditionalEdgeWeights();
Tensor conditionalEdge();
vector<pair<string, string>> doCombinations(const vector<string>&);
vector<pair<int, int>> maximumSpanningTree(vector<string> features, Tensor& weights, int root);
};
}
#endif

View File

@@ -1,276 +0,0 @@
#include <thread>
#include <mutex>
#include "Network.h"
namespace bayesnet {
Network::Network() : laplaceSmoothing(1), features(vector<string>()), className(""), classNumStates(0), maxThreads(0.8), fitted(false) {}
Network::Network(float maxT) : laplaceSmoothing(1), features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {}
Network::Network(float maxT, int smoothing) : laplaceSmoothing(smoothing), features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {}
Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other.getmaxThreads()), fitted(other.fitted)
{
for (auto& pair : other.nodes) {
nodes[pair.first] = make_unique<Node>(*pair.second);
}
}
float Network::getmaxThreads()
{
return maxThreads;
}
torch::Tensor& Network::getSamples()
{
return samples;
}
void Network::addNode(string name, int numStates)
{
if (nodes.find(name) != nodes.end()) {
// if node exists update its number of states
nodes[name]->setNumStates(numStates);
return;
}
nodes[name] = make_unique<Node>(name, numStates);
}
vector<string> Network::getFeatures()
{
return features;
}
int Network::getClassNumStates()
{
return classNumStates;
}
int Network::getStates()
{
int result = 0;
for (auto& node : nodes) {
result += node.second->getNumStates();
}
return result;
}
string Network::getClassName()
{
return className;
}
bool Network::isCyclic(const string& nodeId, unordered_set<string>& visited, unordered_set<string>& recStack)
{
if (visited.find(nodeId) == visited.end()) // if node hasn't been visited yet
{
visited.insert(nodeId);
recStack.insert(nodeId);
for (Node* child : nodes[nodeId]->getChildren()) {
if (visited.find(child->getName()) == visited.end() && isCyclic(child->getName(), visited, recStack))
return true;
else if (recStack.find(child->getName()) != recStack.end())
return true;
}
}
recStack.erase(nodeId); // remove node from recursion stack before function ends
return false;
}
void Network::addEdge(const string parent, const string child)
{
if (nodes.find(parent) == nodes.end()) {
throw invalid_argument("Parent node " + parent + " does not exist");
}
if (nodes.find(child) == nodes.end()) {
throw invalid_argument("Child node " + child + " does not exist");
}
// Temporarily add edge to check for cycles
nodes[parent]->addChild(nodes[child].get());
nodes[child]->addParent(nodes[parent].get());
unordered_set<string> visited;
unordered_set<string> recStack;
if (isCyclic(nodes[child]->getName(), visited, recStack)) // if adding this edge forms a cycle
{
// remove problematic edge
nodes[parent]->removeChild(nodes[child].get());
nodes[child]->removeParent(nodes[parent].get());
throw invalid_argument("Adding this edge forms a cycle in the graph.");
}
}
map<string, std::unique_ptr<Node>>& Network::getNodes()
{
return nodes;
}
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<string>& featureNames, const string& className)
{
features = featureNames;
this->className = className;
dataset.clear();
// Build dataset & tensor of samples
samples = torch::zeros({ static_cast<int64_t>(input_data[0].size()), static_cast<int64_t>(input_data.size() + 1) }, torch::kInt64);
for (int i = 0; i < featureNames.size(); ++i) {
dataset[featureNames[i]] = input_data[i];
samples.index_put_({ "...", i }, torch::tensor(input_data[i], torch::kInt64));
}
dataset[className] = labels;
samples.index_put_({ "...", -1 }, torch::tensor(labels, torch::kInt64));
classNumStates = *max_element(labels.begin(), labels.end()) + 1;
int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads);
if (maxThreadsRunning < 1) {
maxThreadsRunning = 1;
}
vector<thread> threads;
mutex mtx;
condition_variable cv;
int activeThreads = 0;
int nextNodeIndex = 0;
while (nextNodeIndex < nodes.size()) {
unique_lock<mutex> lock(mtx);
cv.wait(lock, [&activeThreads, &maxThreadsRunning]() { return activeThreads < maxThreadsRunning; });
if (nextNodeIndex >= nodes.size()) {
break; // No more work remaining
}
threads.emplace_back([this, &nextNodeIndex, &mtx, &cv, &activeThreads]() {
while (true) {
unique_lock<mutex> lock(mtx);
if (nextNodeIndex >= nodes.size()) {
break; // No more work remaining
}
auto& pair = *std::next(nodes.begin(), nextNodeIndex);
++nextNodeIndex;
lock.unlock();
pair.second->computeCPT(dataset, laplaceSmoothing);
lock.lock();
nodes[pair.first] = std::move(pair.second);
lock.unlock();
}
lock_guard<mutex> lock(mtx);
--activeThreads;
cv.notify_one();
});
++activeThreads;
}
for (auto& thread : threads) {
thread.join();
}
fitted = true;
}
vector<int> Network::predict(const vector<vector<int>>& tsamples)
{
if (!fitted) {
throw logic_error("You must call fit() before calling predict()");
}
vector<int> predictions;
vector<int> sample;
for (int row = 0; row < tsamples[0].size(); ++row) {
sample.clear();
for (int col = 0; col < tsamples.size(); ++col) {
sample.push_back(tsamples[col][row]);
}
vector<double> classProbabilities = predict_sample(sample);
// Find the class with the maximum posterior probability
auto maxElem = max_element(classProbabilities.begin(), classProbabilities.end());
int predictedClass = distance(classProbabilities.begin(), maxElem);
predictions.push_back(predictedClass);
}
return predictions;
}
vector<vector<double>> Network::predict_proba(const vector<vector<int>>& tsamples)
{
if (!fitted) {
throw logic_error("You must call fit() before calling predict_proba()");
}
vector<vector<double>> predictions;
vector<int> sample;
for (int row = 0; row < tsamples[0].size(); ++row) {
sample.clear();
for (int col = 0; col < tsamples.size(); ++col) {
sample.push_back(tsamples[col][row]);
}
predictions.push_back(predict_sample(sample));
}
return predictions;
}
double Network::score(const vector<vector<int>>& tsamples, const vector<int>& labels)
{
vector<int> y_pred = predict(tsamples);
int correct = 0;
for (int i = 0; i < y_pred.size(); ++i) {
if (y_pred[i] == labels[i]) {
correct++;
}
}
return (double)correct / y_pred.size();
}
vector<double> Network::predict_sample(const vector<int>& sample)
{
// Ensure the sample size is equal to the number of features
if (sample.size() != features.size()) {
throw invalid_argument("Sample size (" + to_string(sample.size()) +
") does not match the number of features (" + to_string(features.size()) + ")");
}
map<string, int> evidence;
for (int i = 0; i < sample.size(); ++i) {
evidence[features[i]] = sample[i];
}
return exactInference(evidence);
}
double Network::computeFactor(map<string, int>& completeEvidence)
{
double result = 1.0;
for (auto& node : getNodes()) {
result *= node.second->getFactorValue(completeEvidence);
}
return result;
}
vector<double> Network::exactInference(map<string, int>& evidence)
{
vector<double> result(classNumStates, 0.0);
vector<thread> threads;
mutex mtx;
for (int i = 0; i < classNumStates; ++i) {
threads.emplace_back([this, &result, &evidence, i, &mtx]() {
auto completeEvidence = map<string, int>(evidence);
completeEvidence[getClassName()] = i;
double factor = computeFactor(completeEvidence);
lock_guard<mutex> lock(mtx);
result[i] = factor;
});
}
for (auto& thread : threads) {
thread.join();
}
// Normalize result
double sum = accumulate(result.begin(), result.end(), 0.0);
for (double& value : result) {
value /= sum;
}
return result;
}
vector<string> Network::show()
{
vector<string> result;
// Draw the network
for (auto& node : nodes) {
string line = node.first + " -> ";
for (auto child : node.second->getChildren()) {
line += child->getName() + ", ";
}
result.push_back(line);
}
return result;
}
vector<string> Network::graph(string title)
{
auto output = vector<string>();
auto prefix = "digraph BayesNet {\nlabel=<BayesNet ";
auto suffix = ">\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n";
string header = prefix + title + suffix;
output.push_back(header);
for (auto& node : nodes) {
auto result = node.second->graph(className);
output.insert(output.end(), result.begin(), result.end());
}
output.push_back("}\n");
return output;
}
}

View File

@@ -1,52 +0,0 @@
#ifndef NETWORK_H
#define NETWORK_H
#include "Node.h"
#include <map>
#include <vector>
namespace bayesnet {
class Network {
private:
map<string, std::unique_ptr<Node>> nodes;
map<string, vector<int>> dataset;
bool fitted;
float maxThreads;
int classNumStates;
vector<string> features;
string className;
int laplaceSmoothing;
torch::Tensor samples;
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
vector<double> predict_sample(const vector<int>&);
vector<double> exactInference(map<string, int>&);
double computeFactor(map<string, int>&);
double mutual_info(torch::Tensor&, torch::Tensor&);
double entropy(torch::Tensor&);
double conditionalEntropy(torch::Tensor&, torch::Tensor&);
double mutualInformation(torch::Tensor&, torch::Tensor&);
public:
Network();
Network(float, int);
Network(float);
Network(Network&);
torch::Tensor& getSamples();
float getmaxThreads();
void addNode(string, int);
void addEdge(const string, const string);
map<string, std::unique_ptr<Node>>& getNodes();
vector<string> getFeatures();
int getStates();
int getClassNumStates();
string getClassName();
void fit(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&);
vector<int> predict(const vector<vector<int>>&);
//Computes the conditional edge weight of variable index u and v conditioned on class_node
torch::Tensor conditionalEdgeWeight();
vector<vector<double>> predict_proba(const vector<vector<int>>&);
double score(const vector<vector<int>>&, const vector<int>&);
vector<string> show();
vector<string> graph(string title); // Returns a vector of strings representing the graph in graphviz format
inline string version() { return "0.1.0"; }
};
}
#endif

300
src/Platform/BestResults.cc Normal file
View File

@@ -0,0 +1,300 @@
#include <filesystem>
#include <set>
#include <fstream>
#include <iostream>
#include <sstream>
#include "BestResults.h"
#include "Result.h"
#include "Colors.h"
#include "Statistics.h"
#include "BestResultsExcel.h"
#include "CLocale.h"
namespace fs = std::filesystem;
// function ftime_to_string, Code taken from
// https://stackoverflow.com/a/58237530/1389271
template <typename TP>
std::string ftime_to_string(TP tp)
{
using namespace std::chrono;
auto sctp = time_point_cast<system_clock::duration>(tp - TP::clock::now()
+ system_clock::now());
auto tt = system_clock::to_time_t(sctp);
std::tm* gmt = std::gmtime(&tt);
std::stringstream buffer;
buffer << std::put_time(gmt, "%Y-%m-%d %H:%M");
return buffer.str();
}
namespace platform {
string BestResults::build()
{
auto files = loadResultFiles();
if (files.size() == 0) {
cerr << Colors::MAGENTA() << "No result files were found!" << Colors::RESET() << endl;
exit(1);
}
json bests;
for (const auto& file : files) {
auto result = Result(path, file);
auto data = result.load();
for (auto const& item : data.at("results")) {
bool update = false;
// Check if results file contains only one dataset
auto datasetName = item.at("dataset").get<string>();
if (bests.contains(datasetName)) {
if (item.at("score").get<double>() > bests[datasetName].at(0).get<double>()) {
update = true;
}
} else {
update = true;
}
if (update) {
bests[datasetName] = { item.at("score").get<double>(), item.at("hyperparameters"), file };
}
}
}
string bestFileName = path + bestResultFile();
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
fclose(fileTest);
cout << Colors::MAGENTA() << "File " << bestFileName << " already exists and it shall be overwritten." << Colors::RESET() << endl;
}
ofstream file(bestFileName);
file << bests;
file.close();
return bestFileName;
}
string BestResults::bestResultFile()
{
return "best_results_" + score + "_" + model + ".json";
}
pair<string, string> getModelScore(string name)
{
// results_accuracy_BoostAODE_MacBookpro16_2023-09-06_12:27:00_1.json
int i = 0;
auto pos = name.find("_");
auto pos2 = name.find("_", pos + 1);
string score = name.substr(pos + 1, pos2 - pos - 1);
pos = name.find("_", pos2 + 1);
string model = name.substr(pos2 + 1, pos - pos2 - 1);
return { model, score };
}
vector<string> BestResults::loadResultFiles()
{
vector<string> files;
using std::filesystem::directory_iterator;
string fileModel, fileScore;
for (const auto& file : directory_iterator(path)) {
auto fileName = file.path().filename().string();
if (fileName.find(".json") != string::npos && fileName.find("results_") == 0) {
tie(fileModel, fileScore) = getModelScore(fileName);
if (score == fileScore && (model == fileModel || model == "any")) {
files.push_back(fileName);
}
}
}
return files;
}
json BestResults::loadFile(const string& fileName)
{
ifstream resultData(fileName);
if (resultData.is_open()) {
json data = json::parse(resultData);
return data;
}
throw invalid_argument("Unable to open result file. [" + fileName + "]");
}
vector<string> BestResults::getModels()
{
set<string> models;
vector<string> result;
auto files = loadResultFiles();
if (files.size() == 0) {
cerr << Colors::MAGENTA() << "No result files were found!" << Colors::RESET() << endl;
exit(1);
}
string fileModel, fileScore;
for (const auto& file : files) {
// extract the model from the file name
tie(fileModel, fileScore) = getModelScore(file);
// add the model to the vector of models
models.insert(fileModel);
}
result = vector<string>(models.begin(), models.end());
return result;
}
vector<string> BestResults::getDatasets(json table)
{
vector<string> datasets;
for (const auto& dataset : table.items()) {
datasets.push_back(dataset.key());
}
return datasets;
}
void BestResults::buildAll()
{
auto models = getModels();
for (const auto& model : models) {
cout << "Building best results for model: " << model << endl;
this->model = model;
build();
}
model = "any";
}
void BestResults::reportSingle()
{
string bestFileName = path + bestResultFile();
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
fclose(fileTest);
} else {
cerr << Colors::MAGENTA() << "File " << bestFileName << " doesn't exist." << Colors::RESET() << endl;
exit(1);
}
auto temp = ConfigLocale();
auto date = ftime_to_string(filesystem::last_write_time(bestFileName));
auto data = loadFile(bestFileName);
auto datasets = getDatasets(data);
int maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const string& a, const string& b) { return a.size() < b.size(); })).size();
cout << Colors::GREEN() << "Best results for " << model << " and " << score << " as of " << date << endl;
cout << "--------------------------------------------------------" << endl;
cout << Colors::GREEN() << " # " << setw(maxDatasetName + 1) << left << string("Dataset") << "Score File Hyperparameters" << endl;
cout << "=== " << string(maxDatasetName, '=') << " =========== ================================================================== ================================================= " << endl;
auto i = 0;
bool odd = true;
for (auto const& item : data.items()) {
auto color = odd ? Colors::BLUE() : Colors::CYAN();
cout << color << setw(3) << fixed << right << i++ << " ";
cout << setw(maxDatasetName) << left << item.key() << " ";
cout << setw(11) << setprecision(9) << fixed << item.value().at(0).get<double>() << " ";
cout << setw(66) << item.value().at(2).get<string>() << " ";
cout << item.value().at(1) << " ";
cout << endl;
odd = !odd;
}
}
json BestResults::buildTableResults(vector<string> models)
{
json table;
auto maxDate = filesystem::file_time_type::max();
for (const auto& model : models) {
this->model = model;
string bestFileName = path + bestResultFile();
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
fclose(fileTest);
} else {
cerr << Colors::MAGENTA() << "File " << bestFileName << " doesn't exist." << Colors::RESET() << endl;
exit(1);
}
auto dateWrite = filesystem::last_write_time(bestFileName);
if (dateWrite < maxDate) {
maxDate = dateWrite;
}
auto data = loadFile(bestFileName);
table[model] = data;
}
table["dateTable"] = ftime_to_string(maxDate);
return table;
}
void BestResults::printTableResults(vector<string> models, json table)
{
cout << Colors::GREEN() << "Best results for " << score << " as of " << table.at("dateTable").get<string>() << endl;
cout << "------------------------------------------------" << endl;
cout << Colors::GREEN() << " # " << setw(maxDatasetName + 1) << left << string("Dataset");
for (const auto& model : models) {
cout << setw(maxModelName) << left << model << " ";
}
cout << endl;
cout << "=== " << string(maxDatasetName, '=') << " ";
for (const auto& model : models) {
cout << string(maxModelName, '=') << " ";
}
cout << endl;
auto i = 0;
bool odd = true;
map<string, double> totals;
int nDatasets = table.begin().value().size();
for (const auto& model : models) {
totals[model] = 0.0;
}
auto datasets = getDatasets(table.begin().value());
for (auto const& dataset : datasets) {
auto color = odd ? Colors::BLUE() : Colors::CYAN();
cout << color << setw(3) << fixed << right << i++ << " ";
cout << setw(maxDatasetName) << left << dataset << " ";
double maxValue = 0;
// Find out the max value for this dataset
for (const auto& model : models) {
double value = table[model].at(dataset).at(0).get<double>();
if (value > maxValue) {
maxValue = value;
}
}
// Print the row with red colors on max values
for (const auto& model : models) {
string efectiveColor = color;
double value = table[model].at(dataset).at(0).get<double>();
if (value == maxValue) {
efectiveColor = Colors::RED();
}
totals[model] += value;
cout << efectiveColor << setw(maxModelName) << setprecision(maxModelName - 2) << fixed << value << " ";
}
cout << endl;
odd = !odd;
}
cout << Colors::GREEN() << "=== " << string(maxDatasetName, '=') << " ";
for (const auto& model : models) {
cout << string(maxModelName, '=') << " ";
}
cout << endl;
cout << Colors::GREEN() << setw(5 + maxDatasetName) << " Totals...................";
double max = 0.0;
for (const auto& total : totals) {
if (total.second > max) {
max = total.second;
}
}
for (const auto& model : models) {
string efectiveColor = Colors::GREEN();
if (totals[model] == max) {
efectiveColor = Colors::RED();
}
cout << efectiveColor << right << setw(maxModelName) << setprecision(maxModelName - 4) << fixed << totals[model] << " ";
}
cout << endl;
}
void BestResults::reportAll(bool excel)
{
auto models = getModels();
// Build the table of results
json table = buildTableResults(models);
vector<string> datasets = getDatasets(table.begin().value());
maxModelName = (*max_element(models.begin(), models.end(), [](const string& a, const string& b) { return a.size() < b.size(); })).size();
maxModelName = max(12, maxModelName);
maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const string& a, const string& b) { return a.size() < b.size(); })).size();
maxDatasetName = max(25, maxDatasetName);
// Print the table of results
printTableResults(models, table);
// Compute the Friedman test
map<string, map<string, float>> ranksModels;
if (friedman) {
Statistics stats(models, datasets, table, significance);
auto result = stats.friedmanTest();
stats.postHocHolmTest(result);
ranksModels = stats.getRanks();
}
if (excel) {
BestResultsExcel excel(score, models, datasets, table, ranksModels, friedman, significance);
excel.build();
cout << Colors::YELLOW() << "** Excel file generated: " << excel.getFileName() << Colors::RESET() << endl;
}
}
}

View File

@@ -0,0 +1,32 @@
#ifndef BESTRESULTS_H
#define BESTRESULTS_H
#include <string>
#include <nlohmann/json.hpp>
using namespace std;
using json = nlohmann::json;
namespace platform {
class BestResults {
public:
explicit BestResults(const string& path, const string& score, const string& model, bool friedman, double significance = 0.05) : path(path), score(score), model(model), friedman(friedman), significance(significance) {}
string build();
void reportSingle();
void reportAll(bool excel);
void buildAll();
private:
vector<string> getModels();
vector<string> getDatasets(json table);
vector<string> loadResultFiles();
json buildTableResults(vector<string> models);
void printTableResults(vector<string> models, json table);
string bestResultFile();
json loadFile(const string& fileName);
string path;
string score;
string model;
bool friedman;
double significance;
int maxModelName = 0;
int maxDatasetName = 0;
};
}
#endif //BESTRESULTS_H

View File

@@ -0,0 +1,177 @@
#include <sstream>
#include "BestResultsExcel.h"
#include "Paths.h"
#include "Statistics.h"
namespace platform {
BestResultsExcel::BestResultsExcel(const string& score, const vector<string>& models, const vector<string>& datasets, const json& table, const map<string, map<string, float>>& ranksModels, bool friedman, double significance) :
score(score), models(models), datasets(datasets), table(table), ranksModels(ranksModels), friedman(friedman), significance(significance)
{
workbook = workbook_new((Paths::excel() + fileName).c_str());
worksheet = workbook_add_worksheet(workbook, "Best Results");
setProperties("Best Results");
createFormats();
int maxModelName = (*max_element(models.begin(), models.end(), [](const string& a, const string& b) { return a.size() < b.size(); })).size();
modelNameSize = max(modelNameSize, maxModelName);
int maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const string& a, const string& b) { return a.size() < b.size(); })).size();
datasetNameSize = max(datasetNameSize, maxDatasetName);
formatColumns();
}
BestResultsExcel::~BestResultsExcel()
{
workbook_close(workbook);
}
void BestResultsExcel::formatColumns()
{
worksheet_freeze_panes(worksheet, 4, 2);
vector<int> columns_sizes = { 5, datasetNameSize };
for (int i = 0; i < models.size(); ++i) {
columns_sizes.push_back(modelNameSize);
}
for (int i = 0; i < columns_sizes.size(); ++i) {
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
}
}
void BestResultsExcel::build()
{
// Create Sheet with scores
header(false);
body(false);
footer(false);
if (friedman) {
// Create Sheet with ranks
worksheet = workbook_add_worksheet(workbook, "Ranks");
formatColumns();
header(true);
body(true);
footer(true);
// Create Sheet with Friedman Test
doFriedman();
}
}
string BestResultsExcel::getFileName()
{
return Paths::excel() + fileName;
}
void BestResultsExcel::header(bool ranks)
{
row = 0;
string message = ranks ? "Ranks for score " + score : "Best results for " + score;
worksheet_merge_range(worksheet, 0, 0, 0, 1 + models.size(), message.c_str(), styles["headerFirst"]);
// Body header
row = 3;
int col = 1;
writeString(row, 0, "", "bodyHeader");
writeString(row, 1, "Dataset", "bodyHeader");
for (const auto& model : models) {
writeString(row, ++col, model.c_str(), "bodyHeader");
}
}
void BestResultsExcel::body(bool ranks)
{
row = 4;
int i = 0;
json origin = table.begin().value();
for (auto const& item : origin.items()) {
writeInt(row, 0, i++, "ints");
writeString(row, 1, item.key().c_str(), "text");
int col = 1;
for (const auto& model : models) {
double value = ranks ? ranksModels[item.key()][model] : table[model].at(item.key()).at(0).get<double>();
writeDouble(row, ++col, value, "result");
}
++row;
}
}
void BestResultsExcel::footer(bool ranks)
{
// Set Totals
writeString(row, 1, "Total", "bodyHeader");
int col = 1;
for (const auto& model : models) {
stringstream oss;
oss << "=sum(indirect(address(" << 5 << "," << col + 2 << ")):indirect(address(" << row << "," << col + 2 << ")))";
worksheet_write_formula(worksheet, row, ++col, oss.str().c_str(), styles["bodyHeader_odd"]);
}
if (ranks) {
row++;
writeString(row, 1, "Average ranks", "bodyHeader");
int col = 1;
for (const auto& model : models) {
stringstream oss;
oss << "=sum(indirect(address(" << 5 << "," << col + 2 << ")):indirect(address(" << row - 1 << "," << col + 2 << ")))/" << datasets.size();
worksheet_write_formula(worksheet, row, ++col, oss.str().c_str(), styles["bodyHeader_odd"]);
}
}
}
void BestResultsExcel::doFriedman()
{
worksheet = workbook_add_worksheet(workbook, "Friedman");
vector<int> columns_sizes = { 5, datasetNameSize };
for (int i = 0; i < models.size(); ++i) {
columns_sizes.push_back(modelNameSize);
}
for (int i = 0; i < columns_sizes.size(); ++i) {
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
}
worksheet_merge_range(worksheet, 0, 0, 0, 1 + models.size(), "Friedman Test", styles["headerFirst"]);
row = 2;
Statistics stats(models, datasets, table, significance, false);
auto result = stats.friedmanTest();
stats.postHocHolmTest(result);
auto friedmanResult = stats.getFriedmanResult();
auto holmResult = stats.getHolmResult();
worksheet_merge_range(worksheet, row, 0, row, 1 + models.size(), "Null hypothesis: H0 'There is no significant differences between all the classifiers.'", styles["headerSmall"]);
row += 2;
writeString(row, 1, "Friedman Q", "bodyHeader");
writeDouble(row, 2, friedmanResult.statistic, "bodyHeader");
row++;
writeString(row, 1, "Critical χ2 value", "bodyHeader");
writeDouble(row, 2, friedmanResult.criticalValue, "bodyHeader");
row++;
writeString(row, 1, "p-value", "bodyHeader");
writeDouble(row, 2, friedmanResult.pvalue, "bodyHeader");
writeString(row, 3, friedmanResult.reject ? "<" : ">", "bodyHeader");
writeDouble(row, 4, significance, "bodyHeader");
writeString(row, 5, friedmanResult.reject ? "Reject H0" : "Accept H0", "bodyHeader");
row += 3;
worksheet_merge_range(worksheet, row, 0, row, 1 + models.size(), "Holm Test", styles["headerFirst"]);
row += 2;
worksheet_merge_range(worksheet, row, 0, row, 1 + models.size(), "Null hypothesis: H0 'There is no significant differences between the control model and the other models.'", styles["headerSmall"]);
row += 2;
string controlModel = "Control Model: " + holmResult.model;
worksheet_merge_range(worksheet, row, 1, row, 7, controlModel.c_str(), styles["bodyHeader_odd"]);
row++;
writeString(row, 1, "Model", "bodyHeader");
writeString(row, 2, "p-value", "bodyHeader");
writeString(row, 3, "Rank", "bodyHeader");
writeString(row, 4, "Win", "bodyHeader");
writeString(row, 5, "Tie", "bodyHeader");
writeString(row, 6, "Loss", "bodyHeader");
writeString(row, 7, "Reject H0", "bodyHeader");
row++;
bool first = true;
for (const auto& item : holmResult.holmLines) {
writeString(row, 1, item.model, "text");
if (first) {
// Control model info
first = false;
writeString(row, 2, "", "text");
writeDouble(row, 3, item.rank, "result");
writeString(row, 4, "", "text");
writeString(row, 5, "", "text");
writeString(row, 6, "", "text");
writeString(row, 7, "", "textCentered");
} else {
// Rest of the models info
writeDouble(row, 2, item.pvalue, "result");
writeDouble(row, 3, item.rank, "result");
writeInt(row, 4, item.wtl.win, "ints");
writeInt(row, 5, item.wtl.tie, "ints");
writeInt(row, 6, item.wtl.loss, "ints");
writeString(row, 7, item.reject ? "Yes" : "No", "textCentered");
}
row++;
}
}
}

View File

@@ -0,0 +1,37 @@
#ifndef BESTRESULTS_EXCEL_H
#define BESTRESULTS_EXCEL_H
#include "ExcelFile.h"
#include <vector>
#include <map>
#include <nlohmann/json.hpp>
using namespace std;
using json = nlohmann::json;
namespace platform {
class BestResultsExcel : ExcelFile {
public:
BestResultsExcel(const string& score, const vector<string>& models, const vector<string>& datasets, const json& table, const map<string, map<string, float>>& ranks, bool friedman, double significance);
~BestResultsExcel();
void build();
string getFileName();
private:
void header(bool ranks);
void body(bool ranks);
void footer(bool ranks);
void formatColumns();
void doFriedman();
const string fileName = "BestResults.xlsx";
string score;
vector<string> models;
vector<string> datasets;
json table;
map<string, map<string, float>> ranksModels;
bool friedman;
double significance;
int modelNameSize = 12; // Min size of the column
int datasetNameSize = 25; // Min size of the column
};
}
#endif //BESTRESULTS_EXCEL_H

10
src/Platform/BestScore.h Normal file
View File

@@ -0,0 +1,10 @@
#ifndef BESTSCORE_H
#define BESTSCORE_H
#include <string>
class BestScore {
public:
static std::string title() { return "STree_default (linear-ovo)"; }
static double score() { return 22.109799; }
static std::string scoreName() { return "accuracy"; }
};
#endif

24
src/Platform/CLocale.h Normal file
View File

@@ -0,0 +1,24 @@
#ifndef LOCALE_H
#define LOCALE_H
#include <locale>
#include <iostream>
#include <sstream>
#include <string>
using namespace std;
namespace platform {
struct separation : numpunct<char> {
char do_decimal_point() const { return ','; }
char do_thousands_sep() const { return '.'; }
string do_grouping() const { return "\03"; }
};
class ConfigLocale {
public:
explicit ConfigLocale()
{
locale mylocale(cout.getloc(), new separation);
locale::global(mylocale);
cout.imbue(mylocale);
}
};
}
#endif

View File

@@ -0,0 +1,17 @@
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
include_directories(${BayesNet_SOURCE_DIR}/lib/libxlsxwriter/include)
add_executable(b_main main.cc Folding.cc Experiment.cc Datasets.cc Dataset.cc Models.cc ReportConsole.cc ReportBase.cc)
add_executable(b_manage manage.cc Results.cc Result.cc ReportConsole.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
add_executable(b_list list.cc Datasets.cc Dataset.cc)
add_executable(b_best best.cc BestResults.cc Result.cc Statistics.cc BestResultsExcel.cc ExcelFile.cc)
add_executable(testx testx.cpp Datasets.cc Dataset.cc Folding.cc )
target_link_libraries(b_main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
target_link_libraries(b_manage "${TORCH_LIBRARIES}" "${XLSXWRITER_LIB}" ArffFiles mdlp)
target_link_libraries(b_best Boost::boost "${XLSXWRITER_LIB}")
target_link_libraries(b_list ArffFiles mdlp "${TORCH_LIBRARIES}")
target_link_libraries(testx ArffFiles BayesNet "${TORCH_LIBRARIES}")

14
src/Platform/Colors.h Normal file
View File

@@ -0,0 +1,14 @@
#ifndef COLORS_H
#define COLORS_H
class Colors {
public:
static std::string MAGENTA() { return "\033[1;35m"; }
static std::string BLUE() { return "\033[1;34m"; }
static std::string CYAN() { return "\033[1;36m"; }
static std::string GREEN() { return "\033[1;32m"; }
static std::string YELLOW() { return "\033[1;33m"; }
static std::string RED() { return "\033[1;31m"; }
static std::string WHITE() { return "\033[1;37m"; }
static std::string RESET() { return "\033[0m"; }
};
#endif // COLORS_H

215
src/Platform/Dataset.cc Normal file
View File

@@ -0,0 +1,215 @@
#include "Dataset.h"
#include "ArffFiles.h"
#include <fstream>
namespace platform {
Dataset::Dataset(const Dataset& dataset) : path(dataset.path), name(dataset.name), className(dataset.className), n_samples(dataset.n_samples), n_features(dataset.n_features), features(dataset.features), states(dataset.states), loaded(dataset.loaded), discretize(dataset.discretize), X(dataset.X), y(dataset.y), Xv(dataset.Xv), Xd(dataset.Xd), yv(dataset.yv), fileType(dataset.fileType)
{
}
string Dataset::getName() const
{
return name;
}
string Dataset::getClassName() const
{
return className;
}
vector<string> Dataset::getFeatures() const
{
if (loaded) {
return features;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
int Dataset::getNFeatures() const
{
if (loaded) {
return n_features;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
int Dataset::getNSamples() const
{
if (loaded) {
return n_samples;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
map<string, vector<int>> Dataset::getStates() const
{
if (loaded) {
return states;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
pair<vector<vector<float>>&, vector<int>&> Dataset::getVectors()
{
if (loaded) {
return { Xv, yv };
} else {
throw invalid_argument("Dataset not loaded.");
}
}
pair<vector<vector<int>>&, vector<int>&> Dataset::getVectorsDiscretized()
{
if (loaded) {
return { Xd, yv };
} else {
throw invalid_argument("Dataset not loaded.");
}
}
pair<torch::Tensor&, torch::Tensor&> Dataset::getTensors()
{
if (loaded) {
buildTensors();
return { X, y };
} else {
throw invalid_argument("Dataset not loaded.");
}
}
void Dataset::load_csv()
{
ifstream file(path + "/" + name + ".csv");
if (file.is_open()) {
string line;
getline(file, line);
vector<string> tokens = split(line, ',');
features = vector<string>(tokens.begin(), tokens.end() - 1);
if (className == "-1") {
className = tokens.back();
}
for (auto i = 0; i < features.size(); ++i) {
Xv.push_back(vector<float>());
}
while (getline(file, line)) {
tokens = split(line, ',');
for (auto i = 0; i < features.size(); ++i) {
Xv[i].push_back(stof(tokens[i]));
}
yv.push_back(stoi(tokens.back()));
}
file.close();
} else {
throw invalid_argument("Unable to open dataset file.");
}
}
void Dataset::computeStates()
{
for (int i = 0; i < features.size(); ++i) {
states[features[i]] = vector<int>(*max_element(Xd[i].begin(), Xd[i].end()) + 1);
auto item = states.at(features[i]);
iota(begin(item), end(item), 0);
}
states[className] = vector<int>(*max_element(yv.begin(), yv.end()) + 1);
iota(begin(states.at(className)), end(states.at(className)), 0);
}
void Dataset::load_arff()
{
auto arff = ArffFiles();
arff.load(path + "/" + name + ".arff", className);
// Get Dataset X, y
Xv = arff.getX();
yv = arff.getY();
// Get className & Features
className = arff.getClassName();
auto attributes = arff.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& attribute) { return attribute.first; });
}
vector<string> tokenize(string line)
{
vector<string> tokens;
for (auto i = 0; i < line.size(); ++i) {
if (line[i] == ' ' || line[i] == '\t' || line[i] == '\n') {
string token = line.substr(0, i);
tokens.push_back(token);
line.erase(line.begin(), line.begin() + i + 1);
i = 0;
while (line[i] == ' ' || line[i] == '\t' || line[i] == '\n')
line.erase(line.begin(), line.begin() + i + 1);
}
}
if (line.size() > 0) {
tokens.push_back(line);
}
return tokens;
}
void Dataset::load_rdata()
{
ifstream file(path + "/" + name + "_R.dat");
if (file.is_open()) {
string line;
getline(file, line);
line = ArffFiles::trim(line);
vector<string> tokens = tokenize(line);
transform(tokens.begin(), tokens.end() - 1, back_inserter(features), [](const auto& attribute) { return ArffFiles::trim(attribute); });
if (className == "-1") {
className = ArffFiles::trim(tokens.back());
}
for (auto i = 0; i < features.size(); ++i) {
Xv.push_back(vector<float>());
}
while (getline(file, line)) {
tokens = tokenize(line);
// We have to skip the first token, which is the instance number.
for (auto i = 1; i < features.size() + 1; ++i) {
const float value = stof(tokens[i]);
Xv[i - 1].push_back(value);
}
yv.push_back(stoi(tokens.back()));
}
file.close();
} else {
throw invalid_argument("Unable to open dataset file.");
}
}
void Dataset::load()
{
if (loaded) {
return;
}
if (fileType == CSV) {
load_csv();
} else if (fileType == ARFF) {
load_arff();
} else if (fileType == RDATA) {
load_rdata();
}
if (discretize) {
Xd = discretizeDataset(Xv, yv);
computeStates();
}
n_samples = Xv[0].size();
n_features = Xv.size();
loaded = true;
}
void Dataset::buildTensors()
{
if (discretize) {
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kInt32);
} else {
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kFloat32);
}
for (int i = 0; i < features.size(); ++i) {
if (discretize) {
X.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
} else {
X.index_put_({ i, "..." }, torch::tensor(Xv[i], torch::kFloat32));
}
}
y = torch::tensor(yv, torch::kInt32);
}
vector<mdlp::labels_t> Dataset::discretizeDataset(vector<mdlp::samples_t>& X, mdlp::labels_t& y)
{
vector<mdlp::labels_t> Xd;
auto fimdlp = mdlp::CPPFImdlp();
for (int i = 0; i < X.size(); i++) {
fimdlp.fit(X[i], y);
mdlp::labels_t& xd = fimdlp.transform(X[i]);
Xd.push_back(xd);
}
return Xd;
}
}

80
src/Platform/Dataset.h Normal file
View File

@@ -0,0 +1,80 @@
#ifndef DATASET_H
#define DATASET_H
#include <torch/torch.h>
#include <map>
#include <vector>
#include <string>
#include "CPPFImdlp.h"
#include "Utils.h"
namespace platform {
using namespace std;
enum fileType_t { CSV, ARFF, RDATA };
class SourceData {
public:
SourceData(string source)
{
if (source == "Surcov") {
path = "datasets/";
fileType = CSV;
} else if (source == "Arff") {
path = "datasets/";
fileType = ARFF;
} else if (source == "Tanveer") {
path = "data/";
fileType = RDATA;
} else {
throw invalid_argument("Unknown source.");
}
}
string getPath()
{
return path;
}
fileType_t getFileType()
{
return fileType;
}
private:
string path;
fileType_t fileType;
};
class Dataset {
private:
string path;
string name;
fileType_t fileType;
string className;
int n_samples{ 0 }, n_features{ 0 };
vector<string> features;
map<string, vector<int>> states;
bool loaded;
bool discretize;
torch::Tensor X, y;
vector<vector<float>> Xv;
vector<vector<int>> Xd;
vector<int> yv;
void buildTensors();
void load_csv();
void load_arff();
void load_rdata();
void computeStates();
vector<mdlp::labels_t> discretizeDataset(vector<mdlp::samples_t>& X, mdlp::labels_t& y);
public:
Dataset(const string& path, const string& name, const string& className, bool discretize, fileType_t fileType) : path(path), name(name), className(className), discretize(discretize), loaded(false), fileType(fileType) {};
explicit Dataset(const Dataset&);
string getName() const;
string getClassName() const;
vector<string> getFeatures() const;
map<string, vector<int>> getStates() const;
pair<vector<vector<float>>&, vector<int>&> getVectors();
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized();
pair<torch::Tensor&, torch::Tensor&> getTensors();
int getNFeatures() const;
int getNSamples() const;
void load();
const bool inline isLoaded() const { return loaded; };
};
};
#endif

129
src/Platform/Datasets.cc Normal file
View File

@@ -0,0 +1,129 @@
#include "Datasets.h"
#include <fstream>
namespace platform {
void Datasets::load()
{
auto sd = SourceData(sfileType);
fileType = sd.getFileType();
path = sd.getPath();
ifstream catalog(path + "all.txt");
if (catalog.is_open()) {
string line;
while (getline(catalog, line)) {
if (line.empty() || line[0] == '#') {
continue;
}
vector<string> tokens = split(line, ',');
string name = tokens[0];
string className;
if (tokens.size() == 1) {
className = "-1";
} else {
className = tokens[1];
}
datasets[name] = make_unique<Dataset>(path, name, className, discretize, fileType);
}
catalog.close();
} else {
throw invalid_argument("Unable to open catalog file. [" + path + "all.txt" + "]");
}
}
vector<string> Datasets::getNames()
{
vector<string> result;
transform(datasets.begin(), datasets.end(), back_inserter(result), [](const auto& d) { return d.first; });
return result;
}
vector<string> Datasets::getFeatures(const string& name) const
{
if (datasets.at(name)->isLoaded()) {
return datasets.at(name)->getFeatures();
} else {
throw invalid_argument("Dataset not loaded.");
}
}
map<string, vector<int>> Datasets::getStates(const string& name) const
{
if (datasets.at(name)->isLoaded()) {
return datasets.at(name)->getStates();
} else {
throw invalid_argument("Dataset not loaded.");
}
}
void Datasets::loadDataset(const string& name) const
{
if (datasets.at(name)->isLoaded()) {
return;
} else {
datasets.at(name)->load();
}
}
string Datasets::getClassName(const string& name) const
{
if (datasets.at(name)->isLoaded()) {
return datasets.at(name)->getClassName();
} else {
throw invalid_argument("Dataset not loaded.");
}
}
int Datasets::getNSamples(const string& name) const
{
if (datasets.at(name)->isLoaded()) {
return datasets.at(name)->getNSamples();
} else {
throw invalid_argument("Dataset not loaded.");
}
}
int Datasets::getNClasses(const string& name)
{
if (datasets.at(name)->isLoaded()) {
auto className = datasets.at(name)->getClassName();
if (discretize) {
auto states = getStates(name);
return states.at(className).size();
}
auto [Xv, yv] = getVectors(name);
return *max_element(yv.begin(), yv.end()) + 1;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
vector<int> Datasets::getClassesCounts(const string& name) const
{
if (datasets.at(name)->isLoaded()) {
auto [Xv, yv] = datasets.at(name)->getVectors();
vector<int> counts(*max_element(yv.begin(), yv.end()) + 1);
for (auto y : yv) {
counts[y]++;
}
return counts;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
pair<vector<vector<float>>&, vector<int>&> Datasets::getVectors(const string& name)
{
if (!datasets[name]->isLoaded()) {
datasets[name]->load();
}
return datasets[name]->getVectors();
}
pair<vector<vector<int>>&, vector<int>&> Datasets::getVectorsDiscretized(const string& name)
{
if (!datasets[name]->isLoaded()) {
datasets[name]->load();
}
return datasets[name]->getVectorsDiscretized();
}
pair<torch::Tensor&, torch::Tensor&> Datasets::getTensors(const string& name)
{
if (!datasets[name]->isLoaded()) {
datasets[name]->load();
}
return datasets[name]->getTensors();
}
bool Datasets::isDataset(const string& name) const
{
return datasets.find(name) != datasets.end();
}
}

31
src/Platform/Datasets.h Normal file
View File

@@ -0,0 +1,31 @@
#ifndef DATASETS_H
#define DATASETS_H
#include "Dataset.h"
namespace platform {
using namespace std;
class Datasets {
private:
string path;
fileType_t fileType;
string sfileType;
map<string, unique_ptr<Dataset>> datasets;
bool discretize;
void load(); // Loads the list of datasets
public:
explicit Datasets(bool discretize, string sfileType) : discretize(discretize), sfileType(sfileType) { load(); };
vector<string> getNames();
vector<string> getFeatures(const string& name) const;
int getNSamples(const string& name) const;
string getClassName(const string& name) const;
int getNClasses(const string& name);
vector<int> getClassesCounts(const string& name) const;
map<string, vector<int>> getStates(const string& name) const;
pair<vector<vector<float>>&, vector<int>&> getVectors(const string& name);
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized(const string& name);
pair<torch::Tensor&, torch::Tensor&> getTensors(const string& name);
bool isDataset(const string& name) const;
void loadDataset(const string& name) const;
};
};
#endif

66
src/Platform/DotEnv.h Normal file
View File

@@ -0,0 +1,66 @@
#ifndef DOTENV_H
#define DOTENV_H
#include <string>
#include <map>
#include <fstream>
#include <sstream>
#include <algorithm>
#include <iostream>
#include "Utils.h"
//#include "Dataset.h"
namespace platform {
class DotEnv {
private:
std::map<std::string, std::string> env;
std::string trim(const std::string& str)
{
std::string result = str;
result.erase(result.begin(), std::find_if(result.begin(), result.end(), [](int ch) {
return !std::isspace(ch);
}));
result.erase(std::find_if(result.rbegin(), result.rend(), [](int ch) {
return !std::isspace(ch);
}).base(), result.end());
return result;
}
public:
DotEnv()
{
std::ifstream file(".env");
if (!file.is_open()) {
std::cerr << "File .env not found" << std::endl;
exit(1);
}
std::string line;
while (std::getline(file, line)) {
line = trim(line);
if (line.empty() || line[0] == '#') {
continue;
}
std::istringstream iss(line);
std::string key, value;
if (std::getline(iss, key, '=') && std::getline(iss, value)) {
env[key] = value;
}
}
}
std::string get(const std::string& key)
{
return env.at(key);
}
std::vector<int> getSeeds()
{
auto seeds = std::vector<int>();
auto seeds_str = env["seeds"];
seeds_str = trim(seeds_str);
seeds_str = seeds_str.substr(1, seeds_str.size() - 2);
auto seeds_str_split = split(seeds_str, ',');
transform(seeds_str_split.begin(), seeds_str_split.end(), back_inserter(seeds), [](const std::string& str) {
return stoi(str);
});
return seeds;
}
};
}
#endif

164
src/Platform/ExcelFile.cc Normal file
View File

@@ -0,0 +1,164 @@
#include "ExcelFile.h"
namespace platform {
ExcelFile::ExcelFile()
{
setDefault();
}
ExcelFile::ExcelFile(lxw_workbook* workbook) : workbook(workbook)
{
setDefault();
}
void ExcelFile::setDefault()
{
normalSize = 14; //font size for report body
row = 0;
colorTitle = 0xB1A0C7;
colorOdd = 0xDCE6F1;
colorEven = 0xFDE9D9;
}
lxw_workbook* ExcelFile::getWorkbook()
{
return workbook;
}
void ExcelFile::setProperties(string title)
{
char line[title.size() + 1];
strcpy(line, title.c_str());
lxw_doc_properties properties = {
.title = line,
.subject = (char*)"Machine learning results",
.author = (char*)"Ricardo Montañana Gómez",
.manager = (char*)"Dr. J. A. Gámez, Dr. J. M. Puerta",
.company = (char*)"UCLM",
.comments = (char*)"Created with libxlsxwriter and c++",
};
workbook_set_properties(workbook, &properties);
}
lxw_format* ExcelFile::efectiveStyle(const string& style)
{
lxw_format* efectiveStyle = NULL;
if (style != "") {
string suffix = row % 2 ? "_odd" : "_even";
try {
efectiveStyle = styles.at(style + suffix);
}
catch (const out_of_range& oor) {
try {
efectiveStyle = styles.at(style);
}
catch (const out_of_range& oor) {
throw invalid_argument("Style " + style + " not found");
}
}
}
return efectiveStyle;
}
void ExcelFile::writeString(int row, int col, const string& text, const string& style)
{
worksheet_write_string(worksheet, row, col, text.c_str(), efectiveStyle(style));
}
void ExcelFile::writeInt(int row, int col, const int number, const string& style)
{
worksheet_write_number(worksheet, row, col, number, efectiveStyle(style));
}
void ExcelFile::writeDouble(int row, int col, const double number, const string& style)
{
worksheet_write_number(worksheet, row, col, number, efectiveStyle(style));
}
void ExcelFile::addColor(lxw_format* style, bool odd)
{
uint32_t efectiveColor = odd ? colorEven : colorOdd;
format_set_bg_color(style, lxw_color_t(efectiveColor));
}
void ExcelFile::createStyle(const string& name, lxw_format* style, bool odd)
{
addColor(style, odd);
if (name == "textCentered") {
format_set_align(style, LXW_ALIGN_CENTER);
format_set_font_size(style, normalSize);
format_set_border(style, LXW_BORDER_THIN);
} else if (name == "text") {
format_set_font_size(style, normalSize);
format_set_border(style, LXW_BORDER_THIN);
} else if (name == "bodyHeader") {
format_set_bold(style);
format_set_font_size(style, normalSize);
format_set_align(style, LXW_ALIGN_CENTER);
format_set_align(style, LXW_ALIGN_VERTICAL_CENTER);
format_set_border(style, LXW_BORDER_THIN);
format_set_bg_color(style, lxw_color_t(colorTitle));
} else if (name == "result") {
format_set_font_size(style, normalSize);
format_set_border(style, LXW_BORDER_THIN);
format_set_num_format(style, "0.0000000");
} else if (name == "time") {
format_set_font_size(style, normalSize);
format_set_border(style, LXW_BORDER_THIN);
format_set_num_format(style, "#,##0.000000");
} else if (name == "ints") {
format_set_font_size(style, normalSize);
format_set_num_format(style, "###,##0");
format_set_border(style, LXW_BORDER_THIN);
} else if (name == "floats") {
format_set_border(style, LXW_BORDER_THIN);
format_set_font_size(style, normalSize);
format_set_num_format(style, "#,##0.00");
}
}
void ExcelFile::createFormats()
{
auto styleNames = { "text", "textCentered", "bodyHeader", "result", "time", "ints", "floats" };
lxw_format* style;
for (string name : styleNames) {
lxw_format* style = workbook_add_format(workbook);
style = workbook_add_format(workbook);
createStyle(name, style, true);
styles[name + "_odd"] = style;
style = workbook_add_format(workbook);
createStyle(name, style, false);
styles[name + "_even"] = style;
}
// Header 1st line
lxw_format* headerFirst = workbook_add_format(workbook);
format_set_bold(headerFirst);
format_set_font_size(headerFirst, 18);
format_set_align(headerFirst, LXW_ALIGN_CENTER);
format_set_align(headerFirst, LXW_ALIGN_VERTICAL_CENTER);
format_set_border(headerFirst, LXW_BORDER_THIN);
format_set_bg_color(headerFirst, lxw_color_t(colorTitle));
// Header rest
lxw_format* headerRest = workbook_add_format(workbook);
format_set_bold(headerRest);
format_set_align(headerRest, LXW_ALIGN_CENTER);
format_set_font_size(headerRest, 16);
format_set_align(headerRest, LXW_ALIGN_VERTICAL_CENTER);
format_set_border(headerRest, LXW_BORDER_THIN);
format_set_bg_color(headerRest, lxw_color_t(colorOdd));
// Header small
lxw_format* headerSmall = workbook_add_format(workbook);
format_set_bold(headerSmall);
format_set_align(headerSmall, LXW_ALIGN_LEFT);
format_set_font_size(headerSmall, 12);
format_set_border(headerSmall, LXW_BORDER_THIN);
format_set_align(headerSmall, LXW_ALIGN_VERTICAL_CENTER);
format_set_bg_color(headerSmall, lxw_color_t(colorOdd));
// Summary style
lxw_format* summaryStyle = workbook_add_format(workbook);
format_set_bold(summaryStyle);
format_set_font_size(summaryStyle, 16);
format_set_border(summaryStyle, LXW_BORDER_THIN);
format_set_align(summaryStyle, LXW_ALIGN_VERTICAL_CENTER);
styles["headerFirst"] = headerFirst;
styles["headerRest"] = headerRest;
styles["headerSmall"] = headerSmall;
styles["summaryStyle"] = summaryStyle;
}
}

Some files were not shown because too many files have changed in this diff Show More