Compare commits
40 Commits
boostAode
...
501ea0ab4e
Author | SHA1 | Date | |
---|---|---|---|
501ea0ab4e
|
|||
847c6761d7
|
|||
6030885fc3
|
|||
89df7f4db0
|
|||
41257ed566
|
|||
506369e46b
|
|||
d908f389f5
|
|||
5a7c8f1818
|
|||
64fc7bd9dd
|
|||
0b7beda78c
|
|||
05b670dfc0
|
|||
de62d42b74
|
|||
edb957d22e
|
|||
4de5cb4c6c | |||
c35030f137
|
|||
182b07ed90
|
|||
7806f961e2
|
|||
7c3e315ae7
|
|||
284ef6dfd1
|
|||
1c6af619b5
|
|||
86ffdfd6f3
|
|||
d82148079d
|
|||
067430fd1b
|
|||
f5d0d16365 | |||
97ca8ac084
|
|||
1c1385b768
|
|||
35432b6294
|
|||
c59dd30e53
|
|||
d2da0ddb88
|
|||
8066701c3c
|
|||
0f66ac73d0
|
|||
4370bf51d7
|
|||
2b7353b9e0
|
|||
b686b3c9c3
|
|||
2dd04a6c44
|
|||
1da83662d0
|
|||
3ac9593c65
|
|||
6b317accf1
|
|||
4964aab722
|
|||
7a6ec73d63 |
31
.clang-uml
Normal file
31
.clang-uml
Normal file
@@ -0,0 +1,31 @@
|
||||
compilation_database_dir: build
|
||||
output_directory: puml
|
||||
diagrams:
|
||||
BayesNet:
|
||||
type: class
|
||||
glob:
|
||||
- src/BayesNet/*.cc
|
||||
- src/Platform/*.cc
|
||||
using_namespace: bayesnet
|
||||
include:
|
||||
namespaces:
|
||||
- bayesnet
|
||||
- platform
|
||||
plantuml:
|
||||
after:
|
||||
- "note left of {{ alias(\"MyProjectMain\") }}: Main class of myproject library."
|
||||
sequence:
|
||||
type: sequence
|
||||
glob:
|
||||
- src/Platform/main.cc
|
||||
combine_free_functions_into_file_participants: true
|
||||
using_namespace:
|
||||
- std
|
||||
- bayesnet
|
||||
- platform
|
||||
include:
|
||||
paths:
|
||||
- src/BayesNet
|
||||
- src/Platform
|
||||
start_from:
|
||||
- function: main(int,const char **)
|
1
.gitignore
vendored
1
.gitignore
vendored
@@ -35,3 +35,4 @@ build/
|
||||
*.dSYM/**
|
||||
cmake-build*/**
|
||||
.idea
|
||||
puml/**
|
||||
|
3
.gitmodules
vendored
3
.gitmodules
vendored
@@ -10,3 +10,6 @@
|
||||
[submodule "lib/json"]
|
||||
path = lib/json
|
||||
url = https://github.com/nlohmann/json.git
|
||||
[submodule "lib/openXLSX"]
|
||||
path = lib/openXLSX
|
||||
url = https://github.com/troldal/OpenXLSX.git
|
||||
|
8
.vscode/launch.json
vendored
8
.vscode/launch.json
vendored
@@ -10,7 +10,7 @@
|
||||
"-d",
|
||||
"iris",
|
||||
"-m",
|
||||
"KDB",
|
||||
"TANLd",
|
||||
"-s",
|
||||
"271",
|
||||
"-p",
|
||||
@@ -28,10 +28,12 @@
|
||||
"BoostAODE",
|
||||
"-p",
|
||||
"/Users/rmontanana/Code/discretizbench/datasets",
|
||||
"--discretize",
|
||||
"--stratified",
|
||||
"-d",
|
||||
"iris"
|
||||
"mfeat-morphological",
|
||||
"--discretize"
|
||||
// "--hyperparameters",
|
||||
// "{\"repeatSparent\": true, \"maxModels\": 12}"
|
||||
],
|
||||
"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
},
|
||||
|
@@ -1,7 +1,7 @@
|
||||
cmake_minimum_required(VERSION 3.20)
|
||||
|
||||
project(BayesNet
|
||||
VERSION 0.1.0
|
||||
VERSION 0.2.0
|
||||
DESCRIPTION "Bayesian Network and basic classifiers Library."
|
||||
HOMEPAGE_URL "https://github.com/rmontanana/bayesnet"
|
||||
LANGUAGES CXX
|
||||
@@ -30,7 +30,7 @@ set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
|
||||
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
|
||||
option(ENABLE_TESTING "Unit testing build" OFF)
|
||||
option(CODE_COVERAGE "Collect coverage from test library" OFF)
|
||||
|
||||
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
|
||||
# CMakes modules
|
||||
# --------------
|
||||
set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH})
|
||||
@@ -40,8 +40,7 @@ if (CODE_COVERAGE)
|
||||
enable_testing()
|
||||
include(CodeCoverage)
|
||||
MESSAGE("Code coverage enabled")
|
||||
set(CMAKE_C_FLAGS " ${CMAKE_C_FLAGS} -fprofile-arcs -ftest-coverage")
|
||||
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage")
|
||||
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage -O0 -g")
|
||||
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
|
||||
endif (CODE_COVERAGE)
|
||||
|
||||
@@ -55,6 +54,7 @@ endif (ENABLE_CLANG_TIDY)
|
||||
add_git_submodule("lib/mdlp")
|
||||
add_git_submodule("lib/argparse")
|
||||
add_git_submodule("lib/json")
|
||||
add_git_submodule("lib/openXLSX")
|
||||
|
||||
# Subdirectories
|
||||
# --------------
|
||||
@@ -73,8 +73,7 @@ file(GLOB Platform_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/Platform
|
||||
|
||||
if (ENABLE_TESTING)
|
||||
MESSAGE("Testing enabled")
|
||||
add_git_submodule("lib/catch2")
|
||||
|
||||
add_git_submodule("lib/catch2")
|
||||
include(CTest)
|
||||
add_subdirectory(tests)
|
||||
endif (ENABLE_TESTING)
|
||||
|
15
Makefile
15
Makefile
@@ -11,6 +11,16 @@ setup: ## Install dependencies for tests and coverage
|
||||
pip install gcovr; \
|
||||
fi
|
||||
|
||||
dest ?= ../discretizbench
|
||||
copy: ## Copy binary files to selected folder
|
||||
@echo "Destination folder: $(dest)"
|
||||
make build
|
||||
@echo ">>> Copying files to $(dest)"
|
||||
@cp build/src/Platform/main $(dest)
|
||||
@cp build/src/Platform/list $(dest)
|
||||
@cp build/src/Platform/manage $(dest)
|
||||
@echo ">>> Done"
|
||||
|
||||
dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
|
||||
cd build && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
|
||||
|
||||
@@ -22,12 +32,15 @@ clean: ## Clean the debug info
|
||||
find . -name "*.gcda" -print0 | xargs -0 rm
|
||||
@echo ">>> Done";
|
||||
|
||||
clang-uml: ## Create uml class and sequence diagrams
|
||||
clang-uml -p --add-compile-flag -I /usr/lib/gcc/x86_64-redhat-linux/8/include/
|
||||
|
||||
debug: ## Build a debug version of the project
|
||||
@echo ">>> Building Debug BayesNet ...";
|
||||
@if [ -d ./build ]; then rm -rf ./build; fi
|
||||
@mkdir build;
|
||||
cmake -S . -B build -D CMAKE_BUILD_TYPE=Debug -D ENABLE_TESTING=ON -D CODE_COVERAGE=ON; \
|
||||
cmake --build build -j 32;
|
||||
cmake --build build -t main -t BayesNetSample -t manage -t list unit_tests -j 32;
|
||||
@echo ">>> Done";
|
||||
|
||||
release: ## Build a Release version of the project
|
||||
|
12
TAN_iris.dot
12
TAN_iris.dot
@@ -1,12 +0,0 @@
|
||||
digraph BayesNet {
|
||||
label=<BayesNet >
|
||||
fontsize=30
|
||||
fontcolor=blue
|
||||
labelloc=t
|
||||
layout=circo
|
||||
class [shape=circle, fontcolor=red, fillcolor=lightblue, style=filled ]
|
||||
class -> sepallength class -> sepalwidth class -> petallength class -> petalwidth petallength [shape=circle]
|
||||
petallength -> sepallength petalwidth [shape=circle]
|
||||
sepallength [shape=circle]
|
||||
sepallength -> sepalwidth sepalwidth [shape=circle]
|
||||
sepalwidth -> petalwidth }
|
@@ -1 +0,0 @@
|
||||
null
|
BIN
diagrams/BayesNet.pdf
Executable file
BIN
diagrams/BayesNet.pdf
Executable file
Binary file not shown.
1
lib/openXLSX
Submodule
1
lib/openXLSX
Submodule
Submodule lib/openXLSX added at b80da42d14
@@ -3,5 +3,6 @@ include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
add_executable(BayesNetSample sample.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
|
||||
target_link_libraries(BayesNetSample BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
|
226
sample/sample.cc
226
sample/sample.cc
@@ -3,13 +3,14 @@
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <argparse/argparse.hpp>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "ArffFiles.h"
|
||||
#include "BayesMetrics.h"
|
||||
#include "CPPFImdlp.h"
|
||||
#include "Folding.h"
|
||||
#include "Models.h"
|
||||
#include "modelRegister.h"
|
||||
|
||||
#include <fstream>
|
||||
|
||||
using namespace std;
|
||||
|
||||
@@ -57,105 +58,136 @@ pair<vector<vector<int>>, vector<int>> extract_indices(vector<int> indices, vect
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
map<string, bool> datasets = {
|
||||
{"diabetes", true},
|
||||
{"ecoli", true},
|
||||
{"glass", true},
|
||||
{"iris", true},
|
||||
{"kdd_JapaneseVowels", false},
|
||||
{"letter", true},
|
||||
{"liver-disorders", true},
|
||||
{"mfeat-factors", true},
|
||||
};
|
||||
auto valid_datasets = vector<string>();
|
||||
transform(datasets.begin(), datasets.end(), back_inserter(valid_datasets),
|
||||
[](const pair<string, bool>& pair) { return pair.first; });
|
||||
argparse::ArgumentParser program("BayesNetSample");
|
||||
program.add_argument("-d", "--dataset")
|
||||
.help("Dataset file name")
|
||||
.action([valid_datasets](const std::string& value) {
|
||||
if (find(valid_datasets.begin(), valid_datasets.end(), value) != valid_datasets.end()) {
|
||||
return value;
|
||||
}
|
||||
throw runtime_error("file must be one of {diabetes, ecoli, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}");
|
||||
}
|
||||
);
|
||||
program.add_argument("-p", "--path")
|
||||
.help(" folder where the data files are located, default")
|
||||
.default_value(string{ PATH }
|
||||
);
|
||||
program.add_argument("-m", "--model")
|
||||
.help("Model to use " + platform::Models::instance()->toString())
|
||||
.action([](const std::string& value) {
|
||||
static const vector<string> choices = platform::Models::instance()->getNames();
|
||||
if (find(choices.begin(), choices.end(), value) != choices.end()) {
|
||||
return value;
|
||||
}
|
||||
throw runtime_error("Model must be one of " + platform::Models::instance()->toString());
|
||||
}
|
||||
);
|
||||
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
|
||||
program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true);
|
||||
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
|
||||
program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true);
|
||||
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const string& value) {
|
||||
try {
|
||||
auto k = stoi(value);
|
||||
if (k < 2) {
|
||||
throw runtime_error("Number of folds must be greater than 1");
|
||||
}
|
||||
return k;
|
||||
}
|
||||
catch (const runtime_error& err) {
|
||||
throw runtime_error(err.what());
|
||||
}
|
||||
catch (...) {
|
||||
throw runtime_error("Number of folds must be an integer");
|
||||
}});
|
||||
program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
|
||||
bool class_last, stratified, tensors, dump_cpt;
|
||||
string model_name, file_name, path, complete_file_name;
|
||||
int nFolds, seed;
|
||||
try {
|
||||
program.parse_args(argc, argv);
|
||||
file_name = program.get<string>("dataset");
|
||||
path = program.get<string>("path");
|
||||
model_name = program.get<string>("model");
|
||||
complete_file_name = path + file_name + ".arff";
|
||||
stratified = program.get<bool>("stratified");
|
||||
tensors = program.get<bool>("tensors");
|
||||
nFolds = program.get<int>("folds");
|
||||
seed = program.get<int>("seed");
|
||||
dump_cpt = program.get<bool>("dumpcpt");
|
||||
class_last = datasets[file_name];
|
||||
if (!file_exists(complete_file_name)) {
|
||||
throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist");
|
||||
}
|
||||
torch::Tensor weights_ = torch::full({ 10 }, 1.0 / 10, torch::kFloat64);
|
||||
torch::Tensor y_ = torch::tensor({ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 }, torch::kInt32);
|
||||
torch::Tensor ypred = torch::tensor({ 1, 1, 1, 0, 0, 1, 1, 1, 1, 0 }, torch::kInt32);
|
||||
cout << "Initial weights_: " << endl;
|
||||
for (int i = 0; i < 10; i++) {
|
||||
cout << weights_.index({ i }).item<double>() << ", ";
|
||||
}
|
||||
catch (const exception& err) {
|
||||
cerr << err.what() << endl;
|
||||
cerr << program;
|
||||
exit(1);
|
||||
cout << "end." << endl;
|
||||
cout << "y_: " << endl;
|
||||
for (int i = 0; i < 10; i++) {
|
||||
cout << y_.index({ i }).item<int>() << ", ";
|
||||
}
|
||||
cout << "end." << endl;
|
||||
cout << "ypred: " << endl;
|
||||
for (int i = 0; i < 10; i++) {
|
||||
cout << ypred.index({ i }).item<int>() << ", ";
|
||||
}
|
||||
cout << "end." << endl;
|
||||
auto mask_wrong = ypred != y_;
|
||||
auto mask_right = ypred == y_;
|
||||
auto masked_weights = weights_ * mask_wrong.to(weights_.dtype());
|
||||
double epsilon_t = masked_weights.sum().item<double>();
|
||||
cout << "epsilon_t: " << epsilon_t << endl;
|
||||
double wt = (1 - epsilon_t) / epsilon_t;
|
||||
cout << "wt: " << wt << endl;
|
||||
double alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
|
||||
cout << "alpha_t: " << alpha_t << endl;
|
||||
// Step 3.2: Update weights for next classifier
|
||||
// Step 3.2.1: Update weights of wrong samples
|
||||
cout << "exp(alpha_t): " << exp(alpha_t) << endl;
|
||||
cout << "exp(-alpha_t): " << exp(-alpha_t) << endl;
|
||||
weights_ += mask_wrong.to(weights_.dtype()) * exp(alpha_t) * weights_;
|
||||
// Step 3.2.2: Update weights of right samples
|
||||
weights_ += mask_right.to(weights_.dtype()) * exp(-alpha_t) * weights_;
|
||||
// Step 3.3: Normalise the weights
|
||||
double totalWeights = torch::sum(weights_).item<double>();
|
||||
cout << "totalWeights: " << totalWeights << endl;
|
||||
cout << "Before normalization: " << endl;
|
||||
for (int i = 0; i < 10; i++) {
|
||||
cout << weights_.index({ i }).item<double>() << endl;
|
||||
}
|
||||
weights_ = weights_ / totalWeights;
|
||||
cout << "After normalization: " << endl;
|
||||
for (int i = 0; i < 10; i++) {
|
||||
cout << weights_.index({ i }).item<double>() << endl;
|
||||
}
|
||||
// map<string, bool> datasets = {
|
||||
// {"diabetes", true},
|
||||
// {"ecoli", true},
|
||||
// {"glass", true},
|
||||
// {"iris", true},
|
||||
// {"kdd_JapaneseVowels", false},
|
||||
// {"letter", true},
|
||||
// {"liver-disorders", true},
|
||||
// {"mfeat-factors", true},
|
||||
// };
|
||||
// auto valid_datasets = vector<string>();
|
||||
// transform(datasets.begin(), datasets.end(), back_inserter(valid_datasets),
|
||||
// [](const pair<string, bool>& pair) { return pair.first; });
|
||||
// argparse::ArgumentParser program("BayesNetSample");
|
||||
// program.add_argument("-d", "--dataset")
|
||||
// .help("Dataset file name")
|
||||
// .action([valid_datasets](const std::string& value) {
|
||||
// if (find(valid_datasets.begin(), valid_datasets.end(), value) != valid_datasets.end()) {
|
||||
// return value;
|
||||
// }
|
||||
// throw runtime_error("file must be one of {diabetes, ecoli, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}");
|
||||
// }
|
||||
// );
|
||||
// program.add_argument("-p", "--path")
|
||||
// .help(" folder where the data files are located, default")
|
||||
// .default_value(string{ PATH }
|
||||
// );
|
||||
// program.add_argument("-m", "--model")
|
||||
// .help("Model to use " + platform::Models::instance()->toString())
|
||||
// .action([](const std::string& value) {
|
||||
// static const vector<string> choices = platform::Models::instance()->getNames();
|
||||
// if (find(choices.begin(), choices.end(), value) != choices.end()) {
|
||||
// return value;
|
||||
// }
|
||||
// throw runtime_error("Model must be one of " + platform::Models::instance()->toString());
|
||||
// }
|
||||
// );
|
||||
// program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
|
||||
// program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true);
|
||||
// program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
|
||||
// program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true);
|
||||
// program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const string& value) {
|
||||
// try {
|
||||
// auto k = stoi(value);
|
||||
// if (k < 2) {
|
||||
// throw runtime_error("Number of folds must be greater than 1");
|
||||
// }
|
||||
// return k;
|
||||
// }
|
||||
// catch (const runtime_error& err) {
|
||||
// throw runtime_error(err.what());
|
||||
// }
|
||||
// catch (...) {
|
||||
// throw runtime_error("Number of folds must be an integer");
|
||||
// }});
|
||||
// program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
|
||||
// bool class_last, stratified, tensors, dump_cpt;
|
||||
// string model_name, file_name, path, complete_file_name;
|
||||
// int nFolds, seed;
|
||||
// try {
|
||||
// program.parse_args(argc, argv);
|
||||
// file_name = program.get<string>("dataset");
|
||||
// path = program.get<string>("path");
|
||||
// model_name = program.get<string>("model");
|
||||
// complete_file_name = path + file_name + ".arff";
|
||||
// stratified = program.get<bool>("stratified");
|
||||
// tensors = program.get<bool>("tensors");
|
||||
// nFolds = program.get<int>("folds");
|
||||
// seed = program.get<int>("seed");
|
||||
// dump_cpt = program.get<bool>("dumpcpt");
|
||||
// class_last = datasets[file_name];
|
||||
// if (!file_exists(complete_file_name)) {
|
||||
// throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist");
|
||||
// }
|
||||
// }
|
||||
// catch (const exception& err) {
|
||||
// cerr << err.what() << endl;
|
||||
// cerr << program;
|
||||
// exit(1);
|
||||
// }
|
||||
|
||||
/*
|
||||
* Begin Processing
|
||||
*/
|
||||
auto ypred = torch::tensor({ 1,2,3,2,2,3,4,5,2,1 });
|
||||
auto y = torch::tensor({ 0,0,0,0,2,3,4,0,0,0 });
|
||||
auto weights = torch::ones({ 10 }, kDouble);
|
||||
auto mask = ypred == y;
|
||||
cout << "ypred:" << ypred << endl;
|
||||
cout << "y:" << y << endl;
|
||||
cout << "weights:" << weights << endl;
|
||||
cout << "mask:" << mask << endl;
|
||||
double value_to_add = 0.5;
|
||||
weights += mask.to(torch::kDouble) * value_to_add;
|
||||
cout << "New weights:" << weights << endl;
|
||||
auto masked_weights = weights * mask.to(weights.dtype());
|
||||
double sum_of_weights = masked_weights.sum().item<double>();
|
||||
cout << "Sum of weights: " << sum_of_weights << endl;
|
||||
//weights.index_put_({ mask }, weights + 10);
|
||||
// auto handler = ArffFiles();
|
||||
// handler.load(complete_file_name, class_last);
|
||||
// // Get Dataset X, y
|
||||
@@ -209,11 +241,11 @@ int main(int argc, char** argv)
|
||||
// Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
|
||||
// }
|
||||
// float total_score = 0, total_score_train = 0, score_train, score_test;
|
||||
// Fold* fold;
|
||||
// platform::Fold* fold;
|
||||
// if (stratified)
|
||||
// fold = new StratifiedKFold(nFolds, y, seed);
|
||||
// fold = new platform::StratifiedKFold(nFolds, y, seed);
|
||||
// else
|
||||
// fold = new KFold(nFolds, y.size(), seed);
|
||||
// fold = new platform::KFold(nFolds, y.size(), seed);
|
||||
// for (auto i = 0; i < nFolds; ++i) {
|
||||
// auto [train, test] = fold->getFold(i);
|
||||
// cout << "Fold: " << i + 1 << endl;
|
||||
|
@@ -4,9 +4,9 @@
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
AODELd::AODELd() : Ensemble(), Proposal(dataset, features, className) {}
|
||||
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
|
||||
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
|
||||
{
|
||||
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
|
||||
checkInput(X_, y_);
|
||||
features = features_;
|
||||
className = className_;
|
||||
Xf = X_;
|
||||
@@ -26,6 +26,7 @@ namespace bayesnet {
|
||||
models.push_back(std::make_unique<SPODELd>(i));
|
||||
}
|
||||
n_models = models.size();
|
||||
significanceModels = vector<double>(n_models, 1.0);
|
||||
}
|
||||
void AODELd::trainModel(const torch::Tensor& weights)
|
||||
{
|
||||
|
@@ -12,9 +12,9 @@ namespace bayesnet {
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
AODELd();
|
||||
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_) override;
|
||||
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_) override;
|
||||
virtual ~AODELd() = default;
|
||||
vector<string> graph(const string& name = "AODE") const override;
|
||||
vector<string> graph(const string& name = "AODELd") const override;
|
||||
static inline string version() { return "0.0.1"; };
|
||||
};
|
||||
}
|
||||
|
@@ -1,22 +1,25 @@
|
||||
#ifndef BASE_H
|
||||
#define BASE_H
|
||||
#include <torch/torch.h>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include <vector>
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
enum status_t { NORMAL, WARNING, ERROR };
|
||||
class BaseClassifier {
|
||||
protected:
|
||||
virtual void trainModel(const torch::Tensor& weights) = 0;
|
||||
public:
|
||||
// X is nxm vector, y is nx1 vector
|
||||
virtual BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
|
||||
virtual BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) = 0;
|
||||
// X is nxm tensor, y is nx1 tensor
|
||||
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights) = 0;
|
||||
virtual ~BaseClassifier() = default;
|
||||
torch::Tensor virtual predict(torch::Tensor& X) = 0;
|
||||
vector<int> virtual predict(vector<vector<int>>& X) = 0;
|
||||
status_t virtual getStatus() const = 0;
|
||||
float virtual score(vector<vector<int>>& X, vector<int>& y) = 0;
|
||||
float virtual score(torch::Tensor& X, torch::Tensor& y) = 0;
|
||||
int virtual getNumberOfNodes()const = 0;
|
||||
@@ -24,9 +27,10 @@ namespace bayesnet {
|
||||
int virtual getNumberOfStates() const = 0;
|
||||
vector<string> virtual show() const = 0;
|
||||
vector<string> virtual graph(const string& title = "") const = 0;
|
||||
const string inline getVersion() const { return "0.1.0"; };
|
||||
const string inline getVersion() const { return "0.2.0"; };
|
||||
vector<string> virtual topological_order() = 0;
|
||||
void virtual dump_cpt()const = 0;
|
||||
virtual void setHyperparameters(nlohmann::json& hyperparameters) = 0;
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -21,25 +21,39 @@ namespace bayesnet {
|
||||
}
|
||||
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
|
||||
}
|
||||
vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, unsigned k)
|
||||
vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, bool ascending, unsigned k)
|
||||
{
|
||||
// Return the K Best features
|
||||
auto n = samples.size(0) - 1;
|
||||
if (k == 0) {
|
||||
k = n;
|
||||
}
|
||||
// compute scores
|
||||
scoresKBest.reserve(n);
|
||||
scoresKBest.clear();
|
||||
featuresKBest.clear();
|
||||
auto label = samples.index({ -1, "..." });
|
||||
for (int i = 0; i < n; ++i) {
|
||||
scoresKBest.push_back(mutualInformation(label, samples.index({ i, "..." }), weights));
|
||||
featuresKBest.push_back(i);
|
||||
}
|
||||
// sort & reduce scores and features
|
||||
sort(featuresKBest.begin(), featuresKBest.end(), [&](int i, int j)
|
||||
{ return scoresKBest[i] > scoresKBest[j]; });
|
||||
sort(scoresKBest.begin(), scoresKBest.end(), std::greater<double>());
|
||||
featuresKBest.resize(k);
|
||||
scoresKBest.resize(k);
|
||||
if (ascending) {
|
||||
sort(featuresKBest.begin(), featuresKBest.end(), [&](int i, int j)
|
||||
{ return scoresKBest[i] < scoresKBest[j]; });
|
||||
sort(scoresKBest.begin(), scoresKBest.end(), std::less<double>());
|
||||
if (k < n) {
|
||||
for (int i = 0; i < n - k; ++i) {
|
||||
featuresKBest.erase(featuresKBest.begin());
|
||||
scoresKBest.erase(scoresKBest.begin());
|
||||
}
|
||||
}
|
||||
} else {
|
||||
sort(featuresKBest.begin(), featuresKBest.end(), [&](int i, int j)
|
||||
{ return scoresKBest[i] > scoresKBest[j]; });
|
||||
sort(scoresKBest.begin(), scoresKBest.end(), std::greater<double>());
|
||||
featuresKBest.resize(k);
|
||||
scoresKBest.resize(k);
|
||||
}
|
||||
return featuresKBest;
|
||||
}
|
||||
vector<double> Metrics::getScoresKBest() const
|
||||
@@ -63,7 +77,6 @@ namespace bayesnet {
|
||||
auto source = vector<string>(features);
|
||||
source.push_back(className);
|
||||
auto combinations = doCombinations(source);
|
||||
double totalWeight = weights.sum().item<double>();
|
||||
// Compute class prior
|
||||
auto margin = torch::zeros({ classNumStates }, torch::kFloat);
|
||||
for (int value = 0; value < classNumStates; ++value) {
|
||||
|
@@ -21,7 +21,7 @@ namespace bayesnet {
|
||||
Metrics() = default;
|
||||
Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates);
|
||||
Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates);
|
||||
vector<int> SelectKBestWeighted(const torch::Tensor& weights, unsigned k = 0);
|
||||
vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending=false, unsigned k = 0);
|
||||
vector<double> getScoresKBest() const;
|
||||
double mutualInformation(const Tensor& firstFeature, const Tensor& secondFeature, const Tensor& weights);
|
||||
vector<float> conditionalEdgeWeights(vector<float>& weights); // To use in Python
|
||||
|
@@ -1,5 +1,9 @@
|
||||
#include "BoostAODE.h"
|
||||
#include <set>
|
||||
#include "BayesMetrics.h"
|
||||
#include "Colors.h"
|
||||
#include "Folding.h"
|
||||
#include <limits.h>
|
||||
|
||||
namespace bayesnet {
|
||||
BoostAODE::BoostAODE() : Ensemble() {}
|
||||
@@ -7,40 +11,88 @@ namespace bayesnet {
|
||||
{
|
||||
// Models shall be built in trainModel
|
||||
}
|
||||
void BoostAODE::setHyperparameters(nlohmann::json& hyperparameters)
|
||||
{
|
||||
// Check if hyperparameters are valid
|
||||
const vector<string> validKeys = { "repeatSparent", "maxModels", "ascending", "convergence" };
|
||||
checkHyperparameters(validKeys, hyperparameters);
|
||||
if (hyperparameters.contains("repeatSparent")) {
|
||||
repeatSparent = hyperparameters["repeatSparent"];
|
||||
}
|
||||
if (hyperparameters.contains("maxModels")) {
|
||||
maxModels = hyperparameters["maxModels"];
|
||||
}
|
||||
if (hyperparameters.contains("ascending")) {
|
||||
ascending = hyperparameters["ascending"];
|
||||
}
|
||||
if (hyperparameters.contains("convergence")) {
|
||||
convergence = hyperparameters["convergence"];
|
||||
}
|
||||
}
|
||||
void BoostAODE::validationInit()
|
||||
{
|
||||
auto y_ = dataset.index({ -1, "..." });
|
||||
if (convergence) {
|
||||
// Prepare train & validation sets from train data
|
||||
auto fold = platform::StratifiedKFold(5, y_, 271);
|
||||
dataset_ = torch::clone(dataset);
|
||||
// save input dataset
|
||||
auto [train, test] = fold.getFold(0);
|
||||
auto train_t = torch::tensor(train);
|
||||
auto test_t = torch::tensor(test);
|
||||
// Get train and validation sets
|
||||
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), train_t });
|
||||
y_train = dataset.index({ -1, train_t });
|
||||
X_test = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), test_t });
|
||||
y_test = dataset.index({ -1, test_t });
|
||||
dataset = X_train;
|
||||
m = X_train.size(1);
|
||||
auto n_classes = states.at(className).size();
|
||||
metrics = Metrics(dataset, features, className, n_classes);
|
||||
// Build dataset with train data
|
||||
buildDataset(y_train);
|
||||
} else {
|
||||
// Use all data to train
|
||||
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
|
||||
y_train = y_;
|
||||
}
|
||||
|
||||
}
|
||||
void BoostAODE::trainModel(const torch::Tensor& weights)
|
||||
{
|
||||
models.clear();
|
||||
n_models = 0;
|
||||
int max_models = .1 * n > 10 ? .1 * n : n;
|
||||
if (maxModels == 0)
|
||||
maxModels = .1 * n > 10 ? .1 * n : n;
|
||||
validationInit();
|
||||
Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||
auto X_ = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
|
||||
auto y_ = dataset.index({ -1, "..." });
|
||||
bool exitCondition = false;
|
||||
bool repeatSparent = false;
|
||||
vector<int> featuresUsed;
|
||||
unordered_set<int> featuresUsed;
|
||||
// Variables to control the accuracy finish condition
|
||||
double priorAccuracy = 0.0;
|
||||
double delta = 1.0;
|
||||
double threshold = 1e-4;
|
||||
int tolerance = 5; // number of times the accuracy can be lower than the threshold
|
||||
int count = 0; // number of times the accuracy is lower than the threshold
|
||||
fitted = true; // to enable predict
|
||||
// Step 0: Set the finish condition
|
||||
// if not repeatSparent a finish condition is run out of features
|
||||
// n_models == max_models
|
||||
int numClasses = states[className].size();
|
||||
// n_models == maxModels
|
||||
// epsiolon sub t > 0.5 => inverse the weights policy
|
||||
// validation error is not decreasing
|
||||
while (!exitCondition) {
|
||||
// Step 1: Build ranking with mutual information
|
||||
auto featureSelection = metrics.SelectKBestWeighted(weights_, n); // Get all the features sorted
|
||||
auto feature = featureSelection[0];
|
||||
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
|
||||
unique_ptr<Classifier> model;
|
||||
if (!repeatSparent) {
|
||||
if (n_models == 0) {
|
||||
models.resize(n); // Resize for n==nfeatures SPODEs
|
||||
significanceModels.resize(n);
|
||||
}
|
||||
auto feature = featureSelection[0];
|
||||
if (!repeatSparent || featuresUsed.size() < featureSelection.size()) {
|
||||
bool found = false;
|
||||
for (int i = 0; i < featureSelection.size(); ++i) {
|
||||
if (find(featuresUsed.begin(), featuresUsed.end(), i) != featuresUsed.end()) {
|
||||
for (auto feat : featureSelection) {
|
||||
if (find(featuresUsed.begin(), featuresUsed.end(), feat) != featuresUsed.end()) {
|
||||
continue;
|
||||
}
|
||||
found = true;
|
||||
feature = i;
|
||||
featuresUsed.push_back(feature);
|
||||
n_models++;
|
||||
feature = feat;
|
||||
break;
|
||||
}
|
||||
if (!found) {
|
||||
@@ -48,32 +100,46 @@ namespace bayesnet {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
featuresUsed.insert(feature);
|
||||
model = std::make_unique<SPODE>(feature);
|
||||
model->fit(dataset, features, className, states, weights_);
|
||||
auto ypred = model->predict(X_);
|
||||
auto ypred = model->predict(X_train);
|
||||
// Step 3.1: Compute the classifier amout of say
|
||||
auto mask_wrong = ypred != y_;
|
||||
auto mask_wrong = ypred != y_train;
|
||||
auto mask_right = ypred == y_train;
|
||||
auto masked_weights = weights_ * mask_wrong.to(weights_.dtype());
|
||||
double wrongWeights = masked_weights.sum().item<double>();
|
||||
double significance = wrongWeights == 0 ? 1 : 0.5 * log((1 - wrongWeights) / wrongWeights);
|
||||
double epsilon_t = masked_weights.sum().item<double>();
|
||||
double wt = (1 - epsilon_t) / epsilon_t;
|
||||
double alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
|
||||
// Step 3.2: Update weights for next classifier
|
||||
// Step 3.2.1: Update weights of wrong samples
|
||||
weights_ += mask_wrong.to(weights_.dtype()) * exp(significance) * weights_;
|
||||
weights_ += mask_wrong.to(weights_.dtype()) * exp(alpha_t) * weights_;
|
||||
// Step 3.2.2: Update weights of right samples
|
||||
weights_ += mask_right.to(weights_.dtype()) * exp(-alpha_t) * weights_;
|
||||
// Step 3.3: Normalise the weights
|
||||
double totalWeights = torch::sum(weights_).item<double>();
|
||||
weights_ = weights_ / totalWeights;
|
||||
// Step 3.4: Store classifier and its accuracy to weigh its future vote
|
||||
if (!repeatSparent) {
|
||||
models[feature] = std::move(model);
|
||||
significanceModels[feature] = significance;
|
||||
} else {
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(significance);
|
||||
n_models++;
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(alpha_t);
|
||||
n_models++;
|
||||
if (convergence) {
|
||||
auto y_val_predict = predict(X_test);
|
||||
double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
|
||||
if (priorAccuracy == 0) {
|
||||
priorAccuracy = accuracy;
|
||||
} else {
|
||||
delta = accuracy - priorAccuracy;
|
||||
}
|
||||
if (delta < threshold) {
|
||||
count++;
|
||||
}
|
||||
}
|
||||
exitCondition = n_models == max_models;
|
||||
exitCondition = n_models == maxModels && repeatSparent || epsilon_t > 0.5 || count > tolerance;
|
||||
}
|
||||
if (featuresUsed.size() != features.size()) {
|
||||
status = WARNING;
|
||||
}
|
||||
weights.copy_(weights_);
|
||||
}
|
||||
vector<string> BoostAODE::graph(const string& title) const
|
||||
{
|
||||
|
@@ -4,13 +4,22 @@
|
||||
#include "SPODE.h"
|
||||
namespace bayesnet {
|
||||
class BoostAODE : public Ensemble {
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
BoostAODE();
|
||||
virtual ~BoostAODE() {};
|
||||
vector<string> graph(const string& title = "BoostAODE") const override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
private:
|
||||
torch::Tensor dataset_;
|
||||
torch::Tensor X_train, y_train, X_test, y_test;
|
||||
void validationInit();
|
||||
bool repeatSparent = false;
|
||||
int maxModels = 0;
|
||||
bool ascending = false; //Process KBest features ascending or descending order
|
||||
bool convergence = false; //if true, stop when the model does not improve
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,5 +1,6 @@
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
|
||||
add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc
|
||||
|
@@ -5,7 +5,7 @@ namespace bayesnet {
|
||||
using namespace torch;
|
||||
|
||||
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
|
||||
Classifier& Classifier::build(vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights)
|
||||
Classifier& Classifier::build(const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights)
|
||||
{
|
||||
this->features = features;
|
||||
this->className = className;
|
||||
@@ -13,7 +13,7 @@ namespace bayesnet {
|
||||
m = dataset.size(1);
|
||||
n = dataset.size(0) - 1;
|
||||
checkFitParameters();
|
||||
auto n_classes = states[className].size();
|
||||
auto n_classes = states.at(className).size();
|
||||
metrics = Metrics(dataset, features, className, n_classes);
|
||||
model.initialize();
|
||||
buildModel(weights);
|
||||
@@ -39,7 +39,7 @@ namespace bayesnet {
|
||||
model.fit(dataset, weights, features, className, states);
|
||||
}
|
||||
// X is nxm where n is the number of features and m the number of samples
|
||||
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states)
|
||||
{
|
||||
dataset = X;
|
||||
buildDataset(y);
|
||||
@@ -47,7 +47,7 @@ namespace bayesnet {
|
||||
return build(features, className, states, weights);
|
||||
}
|
||||
// X is nxm where n is the number of features and m the number of samples
|
||||
Classifier& Classifier::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
Classifier& Classifier::fit(vector<vector<int>>& X, vector<int>& y, const vector<string>& features, const string& className, map<string, vector<int>>& states)
|
||||
{
|
||||
dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, kInt32);
|
||||
for (int i = 0; i < X.size(); ++i) {
|
||||
@@ -58,21 +58,24 @@ namespace bayesnet {
|
||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||
return build(features, className, states, weights);
|
||||
}
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states)
|
||||
{
|
||||
this->dataset = dataset;
|
||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||
return build(features, className, states, weights);
|
||||
}
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights)
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights)
|
||||
{
|
||||
this->dataset = dataset;
|
||||
return build(features, className, states, weights);
|
||||
}
|
||||
void Classifier::checkFitParameters()
|
||||
{
|
||||
if (torch::is_floating_point(dataset)) {
|
||||
throw invalid_argument("dataset (X, y) must be of type Integer");
|
||||
}
|
||||
if (n != features.size()) {
|
||||
throw invalid_argument("X " + to_string(n) + " and features " + to_string(features.size()) + " must have the same number of features");
|
||||
throw invalid_argument("Classifier: X " + to_string(n) + " and features " + to_string(features.size()) + " must have the same number of features");
|
||||
}
|
||||
if (states.find(className) == states.end()) {
|
||||
throw invalid_argument("className not found in states");
|
||||
@@ -152,4 +155,18 @@ namespace bayesnet {
|
||||
{
|
||||
model.dump_cpt();
|
||||
}
|
||||
void Classifier::checkHyperparameters(const vector<string>& validKeys, nlohmann::json& hyperparameters)
|
||||
{
|
||||
for (const auto& item : hyperparameters.items()) {
|
||||
if (find(validKeys.begin(), validKeys.end(), item.key()) == validKeys.end()) {
|
||||
throw invalid_argument("Hyperparameter " + item.key() + " is not valid");
|
||||
}
|
||||
}
|
||||
}
|
||||
void Classifier::setHyperparameters(nlohmann::json& hyperparameters)
|
||||
{
|
||||
// Check if hyperparameters are valid, default is no hyperparameters
|
||||
const vector<string> validKeys = { };
|
||||
checkHyperparameters(validKeys, hyperparameters);
|
||||
}
|
||||
}
|
@@ -10,8 +10,7 @@ using namespace torch;
|
||||
namespace bayesnet {
|
||||
class Classifier : public BaseClassifier {
|
||||
private:
|
||||
void buildDataset(torch::Tensor& y);
|
||||
Classifier& build(vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights);
|
||||
Classifier& build(const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights);
|
||||
protected:
|
||||
bool fitted;
|
||||
int m, n; // m: number of samples, n: number of features
|
||||
@@ -21,27 +20,32 @@ namespace bayesnet {
|
||||
string className;
|
||||
map<string, vector<int>> states;
|
||||
Tensor dataset; // (n+1)xm tensor
|
||||
status_t status = NORMAL;
|
||||
void checkFitParameters();
|
||||
virtual void buildModel(const torch::Tensor& weights) = 0;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
void checkHyperparameters(const vector<string>& validKeys, nlohmann::json& hyperparameters);
|
||||
void buildDataset(torch::Tensor& y);
|
||||
public:
|
||||
Classifier(Network model);
|
||||
virtual ~Classifier() = default;
|
||||
Classifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights) override;
|
||||
Classifier& fit(vector<vector<int>>& X, vector<int>& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights) override;
|
||||
void addNodes();
|
||||
int getNumberOfNodes() const override;
|
||||
int getNumberOfEdges() const override;
|
||||
int getNumberOfStates() const override;
|
||||
Tensor predict(Tensor& X) override;
|
||||
status_t getStatus() const override { return status; }
|
||||
vector<int> predict(vector<vector<int>>& X) override;
|
||||
float score(Tensor& X, Tensor& y) override;
|
||||
float score(vector<vector<int>>& X, vector<int>& y) override;
|
||||
vector<string> show() const override;
|
||||
vector<string> topological_order() override;
|
||||
void dump_cpt() const override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
||||
};
|
||||
}
|
||||
#endif
|
||||
|
@@ -3,7 +3,7 @@
|
||||
namespace bayesnet {
|
||||
using namespace torch;
|
||||
|
||||
Ensemble::Ensemble() : Classifier(Network()) {}
|
||||
Ensemble::Ensemble() : Classifier(Network()), n_models(0) {}
|
||||
|
||||
void Ensemble::trainModel(const torch::Tensor& weights)
|
||||
{
|
||||
@@ -17,10 +17,14 @@ namespace bayesnet {
|
||||
{
|
||||
auto y_pred_ = y_pred.accessor<int, 2>();
|
||||
vector<int> y_pred_final;
|
||||
int numClasses = states.at(className).size();
|
||||
// y_pred is m x n_models with the prediction of every model for each sample
|
||||
for (int i = 0; i < y_pred.size(0); ++i) {
|
||||
vector<double> votes(y_pred.size(1), 0);
|
||||
for (int j = 0; j < y_pred.size(1); ++j) {
|
||||
votes[y_pred_[i][j]] += significanceModels[j];
|
||||
// votes store in each index (value of class) the significance added by each model
|
||||
// i.e. votes[0] contains how much value has the value 0 of class. That value is generated by the models predictions
|
||||
vector<double> votes(numClasses, 0.0);
|
||||
for (int j = 0; j < n_models; ++j) {
|
||||
votes[y_pred_[i][j]] += significanceModels.at(j);
|
||||
}
|
||||
// argsort in descending order
|
||||
auto indices = argsort(votes);
|
||||
@@ -34,7 +38,6 @@ namespace bayesnet {
|
||||
throw logic_error("Ensemble has not been fitted");
|
||||
}
|
||||
Tensor y_pred = torch::zeros({ X.size(1), n_models }, kInt32);
|
||||
//Create a threadpool
|
||||
auto threads{ vector<thread>() };
|
||||
mutex mtx;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
|
@@ -4,6 +4,18 @@ namespace bayesnet {
|
||||
using namespace torch;
|
||||
|
||||
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {}
|
||||
void KDB::setHyperparameters(nlohmann::json& hyperparameters)
|
||||
{
|
||||
// Check if hyperparameters are valid
|
||||
const vector<string> validKeys = { "k", "theta" };
|
||||
checkHyperparameters(validKeys, hyperparameters);
|
||||
if (hyperparameters.contains("k")) {
|
||||
k = hyperparameters["k"];
|
||||
}
|
||||
if (hyperparameters.contains("theta")) {
|
||||
theta = hyperparameters["theta"];
|
||||
}
|
||||
}
|
||||
void KDB::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
/*
|
||||
|
@@ -16,6 +16,7 @@ namespace bayesnet {
|
||||
public:
|
||||
explicit KDB(int k, float theta = 0.03);
|
||||
virtual ~KDB() {};
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
||||
vector<string> graph(const string& name = "KDB") const override;
|
||||
};
|
||||
}
|
||||
|
@@ -3,9 +3,9 @@
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {}
|
||||
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
|
||||
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
|
||||
{
|
||||
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
|
||||
checkInput(X_, y_);
|
||||
features = features_;
|
||||
className = className_;
|
||||
Xf = X_;
|
||||
|
@@ -10,7 +10,7 @@ namespace bayesnet {
|
||||
public:
|
||||
explicit KDBLd(int k);
|
||||
virtual ~KDBLd() = default;
|
||||
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
|
||||
vector<string> graph(const string& name = "KDB") const override;
|
||||
Tensor predict(Tensor& X) override;
|
||||
static inline string version() { return "0.0.1"; };
|
||||
|
@@ -3,8 +3,8 @@
|
||||
#include "Network.h"
|
||||
#include "bayesnetUtils.h"
|
||||
namespace bayesnet {
|
||||
Network::Network() : features(vector<string>()), className(""), classNumStates(0), fitted(false) {}
|
||||
Network::Network(float maxT) : features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {}
|
||||
Network::Network() : features(vector<string>()), className(""), classNumStates(0), fitted(false), laplaceSmoothing(0) {}
|
||||
Network::Network(float maxT) : features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false), laplaceSmoothing(0) {}
|
||||
Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other.
|
||||
getmaxThreads()), fitted(other.fitted)
|
||||
{
|
||||
@@ -132,10 +132,10 @@ namespace bayesnet {
|
||||
void Network::setStates(const map<string, vector<int>>& states)
|
||||
{
|
||||
// Set states to every Node in the network
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
nodes[features[i]]->setNumStates(states.at(features[i]).size());
|
||||
}
|
||||
classNumStates = nodes[className]->getNumStates();
|
||||
for_each(features.begin(), features.end(), [this, &states](const string& feature) {
|
||||
nodes.at(feature)->setNumStates(states.at(feature).size());
|
||||
});
|
||||
classNumStates = nodes.at(className)->getNumStates();
|
||||
}
|
||||
// X comes in nxm, where n is the number of features and m the number of samples
|
||||
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
@@ -174,37 +174,11 @@ namespace bayesnet {
|
||||
{
|
||||
setStates(states);
|
||||
laplaceSmoothing = 1.0 / samples.size(1); // To use in CPT computation
|
||||
int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads);
|
||||
if (maxThreadsRunning < 1) {
|
||||
maxThreadsRunning = 1;
|
||||
}
|
||||
vector<thread> threads;
|
||||
mutex mtx;
|
||||
condition_variable cv;
|
||||
int activeThreads = 0;
|
||||
int nextNodeIndex = 0;
|
||||
while (nextNodeIndex < nodes.size()) {
|
||||
unique_lock<mutex> lock(mtx);
|
||||
cv.wait(lock, [&activeThreads, &maxThreadsRunning]() { return activeThreads < maxThreadsRunning; });
|
||||
threads.emplace_back([this, &nextNodeIndex, &mtx, &cv, &activeThreads, &weights]() {
|
||||
while (true) {
|
||||
unique_lock<mutex> lock(mtx);
|
||||
if (nextNodeIndex >= nodes.size()) {
|
||||
break; // No more work remaining
|
||||
}
|
||||
auto& pair = *std::next(nodes.begin(), nextNodeIndex);
|
||||
++nextNodeIndex;
|
||||
lock.unlock();
|
||||
pair.second->computeCPT(samples, features, laplaceSmoothing, weights);
|
||||
lock.lock();
|
||||
nodes[pair.first] = std::move(pair.second);
|
||||
lock.unlock();
|
||||
}
|
||||
lock_guard<mutex> lock(mtx);
|
||||
--activeThreads;
|
||||
cv.notify_one();
|
||||
for (auto& node : nodes) {
|
||||
threads.emplace_back([this, &node, &weights]() {
|
||||
node.second->computeCPT(samples, features, laplaceSmoothing, weights);
|
||||
});
|
||||
++activeThreads;
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
@@ -399,7 +373,6 @@ namespace bayesnet {
|
||||
auto result = features;
|
||||
result.erase(remove(result.begin(), result.end(), className), result.end());
|
||||
bool ending{ false };
|
||||
int idx = 0;
|
||||
while (!ending) {
|
||||
ending = true;
|
||||
for (auto feature : features) {
|
||||
|
@@ -27,6 +27,7 @@ namespace bayesnet {
|
||||
Network();
|
||||
explicit Network(float);
|
||||
explicit Network(Network&);
|
||||
~Network() = default;
|
||||
torch::Tensor& getSamples();
|
||||
float getmaxThreads();
|
||||
void addNode(const string&);
|
||||
@@ -52,7 +53,7 @@ namespace bayesnet {
|
||||
vector<string> graph(const string& title) const; // Returns a vector of strings representing the graph in graphviz format
|
||||
void initialize();
|
||||
void dump_cpt() const;
|
||||
inline string version() { return "0.1.0"; }
|
||||
inline string version() { return "0.2.0"; }
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -100,7 +100,7 @@ namespace bayesnet {
|
||||
}
|
||||
int name_index = pos - features.begin();
|
||||
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
|
||||
torch::List<c10::optional<torch::Tensor>> coordinates;
|
||||
c10::List<c10::optional<at::Tensor>> coordinates;
|
||||
coordinates.push_back(dataset.index({ name_index, n_sample }));
|
||||
for (auto parent : parents) {
|
||||
pos = find(features.begin(), features.end(), parent->getName());
|
||||
@@ -118,10 +118,10 @@ namespace bayesnet {
|
||||
}
|
||||
float Node::getFactorValue(map<string, int>& evidence)
|
||||
{
|
||||
torch::List<c10::optional<torch::Tensor>> coordinates;
|
||||
c10::List<c10::optional<at::Tensor>> coordinates;
|
||||
// following predetermined order of indices in the cpTable (see Node.h)
|
||||
coordinates.push_back(torch::tensor(evidence[name]));
|
||||
transform(parents.begin(), parents.end(), back_inserter(coordinates), [&evidence](const auto& parent) { return torch::tensor(evidence[parent->getName()]); });
|
||||
coordinates.push_back(at::tensor(evidence[name]));
|
||||
transform(parents.begin(), parents.end(), back_inserter(coordinates), [&evidence](const auto& parent) { return at::tensor(evidence[parent->getName()]); });
|
||||
return cpTable.index({ coordinates }).item<float>();
|
||||
}
|
||||
vector<string> Node::graph(const string& className)
|
||||
|
@@ -9,6 +9,15 @@ namespace bayesnet {
|
||||
delete value;
|
||||
}
|
||||
}
|
||||
void Proposal::checkInput(const torch::Tensor& X, const torch::Tensor& y)
|
||||
{
|
||||
if (!torch::is_floating_point(X)) {
|
||||
throw std::invalid_argument("X must be a floating point tensor");
|
||||
}
|
||||
if (torch::is_floating_point(y)) {
|
||||
throw std::invalid_argument("y must be an integer tensor");
|
||||
}
|
||||
}
|
||||
map<string, vector<int>> Proposal::localDiscretizationProposal(const map<string, vector<int>>& oldStates, Network& model)
|
||||
{
|
||||
// order of local discretization is important. no good 0, 1, 2...
|
||||
@@ -44,15 +53,6 @@ namespace bayesnet {
|
||||
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
|
||||
auto xvf = vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
|
||||
discretizers[feature]->fit(xvf, yxv);
|
||||
//
|
||||
//
|
||||
//
|
||||
// auto tmp = discretizers[feature]->transform(xvf);
|
||||
// Xv[index] = tmp;
|
||||
// auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
|
||||
// iota(xStates.begin(), xStates.end(), 0);
|
||||
// //Update new states of the feature/node
|
||||
// states[feature] = xStates;
|
||||
}
|
||||
if (upgrade) {
|
||||
// Discretize again X (only the affected indices) with the new fitted discretizers
|
||||
|
@@ -13,6 +13,7 @@ namespace bayesnet {
|
||||
Proposal(torch::Tensor& pDataset, vector<string>& features_, string& className_);
|
||||
virtual ~Proposal();
|
||||
protected:
|
||||
void checkInput(const torch::Tensor& X, const torch::Tensor& y);
|
||||
torch::Tensor prepareX(torch::Tensor& X);
|
||||
map<string, vector<int>> localDiscretizationProposal(const map<string, vector<int>>& states, Network& model);
|
||||
map<string, vector<int>> fit_local_discretization(const torch::Tensor& y);
|
||||
|
@@ -3,9 +3,9 @@
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}
|
||||
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
|
||||
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
|
||||
{
|
||||
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
|
||||
checkInput(X_, y_);
|
||||
features = features_;
|
||||
className = className_;
|
||||
Xf = X_;
|
||||
@@ -18,11 +18,13 @@ namespace bayesnet {
|
||||
states = localDiscretizationProposal(states, model);
|
||||
return *this;
|
||||
}
|
||||
SPODELd& SPODELd::fit(torch::Tensor& dataset, vector<string>& features_, string className_, map<string, vector<int>>& states_)
|
||||
SPODELd& SPODELd::fit(torch::Tensor& dataset, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
|
||||
{
|
||||
if (!torch::is_floating_point(dataset)) {
|
||||
throw std::runtime_error("Dataset must be a floating point tensor");
|
||||
}
|
||||
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
|
||||
y = dataset.index({ -1, "..." }).clone();
|
||||
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
|
||||
features = features_;
|
||||
className = className_;
|
||||
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
|
@@ -9,8 +9,8 @@ namespace bayesnet {
|
||||
public:
|
||||
explicit SPODELd(int root);
|
||||
virtual ~SPODELd() = default;
|
||||
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
SPODELd& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
|
||||
SPODELd& fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
|
||||
vector<string> graph(const string& name = "SPODE") const override;
|
||||
Tensor predict(Tensor& X) override;
|
||||
static inline string version() { return "0.0.1"; };
|
||||
|
@@ -3,7 +3,6 @@
|
||||
#include "Classifier.h"
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
using namespace torch;
|
||||
class TAN : public Classifier {
|
||||
private:
|
||||
protected:
|
||||
|
@@ -3,9 +3,9 @@
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {}
|
||||
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
|
||||
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
|
||||
{
|
||||
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
|
||||
checkInput(X_, y_);
|
||||
features = features_;
|
||||
className = className_;
|
||||
Xf = X_;
|
||||
|
@@ -10,7 +10,7 @@ namespace bayesnet {
|
||||
public:
|
||||
TANLd();
|
||||
virtual ~TANLd() = default;
|
||||
TANLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
TANLd& fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
|
||||
vector<string> graph(const string& name = "TAN") const override;
|
||||
Tensor predict(Tensor& X) override;
|
||||
static inline string version() { return "0.0.1"; };
|
||||
|
@@ -4,9 +4,13 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc Report.cc)
|
||||
add_executable(manage manage.cc Results.cc Report.cc)
|
||||
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc ReportConsole.cc ReportBase.cc)
|
||||
add_executable(manage manage.cc Results.cc ReportConsole.cc ReportExcel.cc ReportBase.cc)
|
||||
add_executable(list list.cc platformUtils Datasets.cc)
|
||||
target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
|
||||
target_link_libraries(manage "${TORCH_LIBRARIES}")
|
||||
if (${CMAKE_HOST_SYSTEM_NAME} MATCHES "Linux")
|
||||
target_link_libraries(manage "${TORCH_LIBRARIES}" OpenXLSX::OpenXLSX stdc++fs)
|
||||
else()
|
||||
target_link_libraries(manage "${TORCH_LIBRARIES}" OpenXLSX::OpenXLSX)
|
||||
endif()
|
||||
target_link_libraries(list ArffFiles mdlp "${TORCH_LIBRARIES}")
|
@@ -1,6 +1,7 @@
|
||||
#include "Datasets.h"
|
||||
#include "platformUtils.h"
|
||||
#include "ArffFiles.h"
|
||||
#include <fstream>
|
||||
namespace platform {
|
||||
void Datasets::load()
|
||||
{
|
||||
@@ -212,10 +213,11 @@ namespace platform {
|
||||
{
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
states[features[i]] = vector<int>(*max_element(Xd[i].begin(), Xd[i].end()) + 1);
|
||||
iota(begin(states[features[i]]), end(states[features[i]]), 0);
|
||||
auto item = states.at(features[i]);
|
||||
iota(begin(item), end(item), 0);
|
||||
}
|
||||
states[className] = vector<int>(*max_element(yv.begin(), yv.end()) + 1);
|
||||
iota(begin(states[className]), end(states[className]), 0);
|
||||
iota(begin(states.at(className)), end(states.at(className)), 0);
|
||||
}
|
||||
void Dataset::load_arff()
|
||||
{
|
||||
|
@@ -1,8 +1,8 @@
|
||||
#include "Experiment.h"
|
||||
#include "Datasets.h"
|
||||
#include "Models.h"
|
||||
#include "Report.h"
|
||||
|
||||
#include "ReportConsole.h"
|
||||
#include <fstream>
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
string get_date()
|
||||
@@ -25,6 +25,7 @@ namespace platform {
|
||||
oss << std::put_time(timeinfo, "%H:%M:%S");
|
||||
return oss.str();
|
||||
}
|
||||
Experiment::Experiment() : hyperparameters(json::parse("{}")) {}
|
||||
string Experiment::get_file_name()
|
||||
{
|
||||
string result = "results_" + score_name + "_" + model + "_" + platform + "_" + get_date() + "_" + get_time() + "_" + (stratified ? "1" : "0") + ".json";
|
||||
@@ -90,7 +91,7 @@ namespace platform {
|
||||
void Experiment::report()
|
||||
{
|
||||
json data = build_json();
|
||||
Report report(data);
|
||||
ReportConsole report(data);
|
||||
report.show();
|
||||
}
|
||||
|
||||
@@ -110,6 +111,26 @@ namespace platform {
|
||||
}
|
||||
}
|
||||
|
||||
string getColor(bayesnet::status_t status)
|
||||
{
|
||||
switch (status) {
|
||||
case bayesnet::NORMAL:
|
||||
return Colors::GREEN();
|
||||
case bayesnet::WARNING:
|
||||
return Colors::YELLOW();
|
||||
case bayesnet::ERROR:
|
||||
return Colors::RED();
|
||||
default:
|
||||
return Colors::RESET();
|
||||
}
|
||||
}
|
||||
|
||||
void showProgress(int fold, const string& color, const string& phase)
|
||||
{
|
||||
string prefix = phase == "a" ? "" : "\b\b\b\b";
|
||||
cout << prefix << color << fold << Colors::RESET() << "(" << color << phase << Colors::RESET() << ")" << flush;
|
||||
|
||||
}
|
||||
void Experiment::cross_validation(const string& path, const string& fileName)
|
||||
{
|
||||
auto datasets = platform::Datasets(path, discretized, platform::ARFF);
|
||||
@@ -124,6 +145,8 @@ namespace platform {
|
||||
auto result = Result();
|
||||
auto [values, counts] = at::_unique(y);
|
||||
result.setSamples(X.size(1)).setFeatures(X.size(0)).setClasses(values.size(0));
|
||||
result.setHyperparameters(hyperparameters);
|
||||
// Initialize results vectors
|
||||
int nResults = nfolds * static_cast<int>(randomSeeds.size());
|
||||
auto accuracy_test = torch::zeros({ nResults }, torch::kFloat64);
|
||||
auto accuracy_train = torch::zeros({ nResults }, torch::kFloat64);
|
||||
@@ -144,6 +167,10 @@ namespace platform {
|
||||
for (int nfold = 0; nfold < nfolds; nfold++) {
|
||||
auto clf = Models::instance()->create(model);
|
||||
setModelVersion(clf->getVersion());
|
||||
if (hyperparameters.size() != 0) {
|
||||
clf->setHyperparameters(hyperparameters);
|
||||
}
|
||||
// Split train - test dataset
|
||||
train_timer.start();
|
||||
auto [train, test] = fold->getFold(nfold);
|
||||
auto train_t = torch::tensor(train);
|
||||
@@ -152,24 +179,31 @@ namespace platform {
|
||||
auto y_train = y.index({ train_t });
|
||||
auto X_test = X.index({ "...", test_t });
|
||||
auto y_test = y.index({ test_t });
|
||||
cout << nfold + 1 << ", " << flush;
|
||||
showProgress(nfold + 1, getColor(clf->getStatus()), "a");
|
||||
// Train model
|
||||
clf->fit(X_train, y_train, features, className, states);
|
||||
showProgress(nfold + 1, getColor(clf->getStatus()), "b");
|
||||
nodes[item] = clf->getNumberOfNodes();
|
||||
edges[item] = clf->getNumberOfEdges();
|
||||
num_states[item] = clf->getNumberOfStates();
|
||||
train_time[item] = train_timer.getDuration();
|
||||
// Score train
|
||||
auto accuracy_train_value = clf->score(X_train, y_train);
|
||||
// Test model
|
||||
showProgress(nfold + 1, getColor(clf->getStatus()), "c");
|
||||
test_timer.start();
|
||||
auto accuracy_test_value = clf->score(X_test, y_test);
|
||||
test_time[item] = test_timer.getDuration();
|
||||
accuracy_train[item] = accuracy_train_value;
|
||||
accuracy_test[item] = accuracy_test_value;
|
||||
cout << "\b\b\b, " << flush;
|
||||
// Store results and times in vector
|
||||
result.addScoreTrain(accuracy_train_value);
|
||||
result.addScoreTest(accuracy_test_value);
|
||||
result.addTimeTrain(train_time[item].item<double>());
|
||||
result.addTimeTest(test_time[item].item<double>());
|
||||
item++;
|
||||
clf.reset();
|
||||
}
|
||||
cout << "end. " << flush;
|
||||
delete fold;
|
||||
@@ -177,6 +211,7 @@ namespace platform {
|
||||
result.setScoreTest(torch::mean(accuracy_test).item<double>()).setScoreTrain(torch::mean(accuracy_train).item<double>());
|
||||
result.setScoreTestStd(torch::std(accuracy_test).item<double>()).setScoreTrainStd(torch::std(accuracy_train).item<double>());
|
||||
result.setTrainTime(torch::mean(train_time).item<double>()).setTestTime(torch::mean(test_time).item<double>());
|
||||
result.setTestTimeStd(torch::std(test_time).item<double>()).setTrainTimeStd(torch::std(train_time).item<double>());
|
||||
result.setNodes(torch::mean(nodes).item<double>()).setLeaves(torch::mean(edges).item<double>()).setDepth(torch::mean(num_states).item<double>());
|
||||
result.setDataset(fileName);
|
||||
addResult(result);
|
||||
|
@@ -29,7 +29,8 @@ namespace platform {
|
||||
};
|
||||
class Result {
|
||||
private:
|
||||
string dataset, hyperparameters, model_version;
|
||||
string dataset, model_version;
|
||||
json hyperparameters;
|
||||
int samples{ 0 }, features{ 0 }, classes{ 0 };
|
||||
double score_train{ 0 }, score_test{ 0 }, score_train_std{ 0 }, score_test_std{ 0 }, train_time{ 0 }, train_time_std{ 0 }, test_time{ 0 }, test_time_std{ 0 };
|
||||
float nodes{ 0 }, leaves{ 0 }, depth{ 0 };
|
||||
@@ -37,7 +38,7 @@ namespace platform {
|
||||
public:
|
||||
Result() = default;
|
||||
Result& setDataset(const string& dataset) { this->dataset = dataset; return *this; }
|
||||
Result& setHyperparameters(const string& hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
|
||||
Result& setHyperparameters(const json& hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
|
||||
Result& setSamples(int samples) { this->samples = samples; return *this; }
|
||||
Result& setFeatures(int features) { this->features = features; return *this; }
|
||||
Result& setClasses(int classes) { this->classes = classes; return *this; }
|
||||
@@ -59,7 +60,7 @@ namespace platform {
|
||||
const float get_score_train() const { return score_train; }
|
||||
float get_score_test() { return score_test; }
|
||||
const string& getDataset() const { return dataset; }
|
||||
const string& getHyperparameters() const { return hyperparameters; }
|
||||
const json& getHyperparameters() const { return hyperparameters; }
|
||||
const int getSamples() const { return samples; }
|
||||
const int getFeatures() const { return features; }
|
||||
const int getClasses() const { return classes; }
|
||||
@@ -85,11 +86,12 @@ namespace platform {
|
||||
bool discretized{ false }, stratified{ false };
|
||||
vector<Result> results;
|
||||
vector<int> randomSeeds;
|
||||
json hyperparameters = "{}";
|
||||
int nfolds{ 0 };
|
||||
float duration{ 0 };
|
||||
json build_json();
|
||||
public:
|
||||
Experiment() = default;
|
||||
Experiment();
|
||||
Experiment& setTitle(const string& title) { this->title = title; return *this; }
|
||||
Experiment& setModel(const string& model) { this->model = model; return *this; }
|
||||
Experiment& setPlatform(const string& platform) { this->platform = platform; return *this; }
|
||||
@@ -103,6 +105,7 @@ namespace platform {
|
||||
Experiment& addResult(Result result) { results.push_back(result); return *this; }
|
||||
Experiment& addRandomSeed(int randomSeed) { randomSeeds.push_back(randomSeed); return *this; }
|
||||
Experiment& setDuration(float duration) { this->duration = duration; return *this; }
|
||||
Experiment& setHyperparameters(const json& hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
|
||||
string get_file_name();
|
||||
void save(const string& path);
|
||||
void cross_validation(const string& path, const string& fileName);
|
||||
|
@@ -1,95 +1,97 @@
|
||||
#include "Folding.h"
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
Fold::Fold(int k, int n, int seed) : k(k), n(n), seed(seed)
|
||||
{
|
||||
random_device rd;
|
||||
random_seed = default_random_engine(seed == -1 ? rd() : seed);
|
||||
srand(seed == -1 ? time(0) : seed);
|
||||
}
|
||||
KFold::KFold(int k, int n, int seed) : Fold(k, n, seed), indices(vector<int>(n))
|
||||
{
|
||||
iota(begin(indices), end(indices), 0); // fill with 0, 1, ..., n - 1
|
||||
shuffle(indices.begin(), indices.end(), random_seed);
|
||||
}
|
||||
pair<vector<int>, vector<int>> KFold::getFold(int nFold)
|
||||
{
|
||||
if (nFold >= k || nFold < 0) {
|
||||
throw out_of_range("nFold (" + to_string(nFold) + ") must be less than k (" + to_string(k) + ")");
|
||||
namespace platform {
|
||||
Fold::Fold(int k, int n, int seed) : k(k), n(n), seed(seed)
|
||||
{
|
||||
random_device rd;
|
||||
random_seed = default_random_engine(seed == -1 ? rd() : seed);
|
||||
srand(seed == -1 ? time(0) : seed);
|
||||
}
|
||||
int nTest = n / k;
|
||||
auto train = vector<int>();
|
||||
auto test = vector<int>();
|
||||
for (int i = 0; i < n; i++) {
|
||||
if (i >= nTest * nFold && i < nTest * (nFold + 1)) {
|
||||
test.push_back(indices[i]);
|
||||
} else {
|
||||
train.push_back(indices[i]);
|
||||
}
|
||||
}
|
||||
return { train, test };
|
||||
}
|
||||
StratifiedKFold::StratifiedKFold(int k, torch::Tensor& y, int seed) : Fold(k, y.numel(), seed)
|
||||
{
|
||||
n = y.numel();
|
||||
this->y = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + n);
|
||||
build();
|
||||
}
|
||||
StratifiedKFold::StratifiedKFold(int k, const vector<int>& y, int seed)
|
||||
: Fold(k, y.size(), seed)
|
||||
{
|
||||
this->y = y;
|
||||
n = y.size();
|
||||
build();
|
||||
}
|
||||
void StratifiedKFold::build()
|
||||
{
|
||||
stratified_indices = vector<vector<int>>(k);
|
||||
int fold_size = n / k;
|
||||
// Compute class counts and indices
|
||||
auto class_indices = map<int, vector<int>>();
|
||||
vector<int> class_counts(*max_element(y.begin(), y.end()) + 1, 0);
|
||||
for (auto i = 0; i < n; ++i) {
|
||||
class_counts[y[i]]++;
|
||||
class_indices[y[i]].push_back(i);
|
||||
}
|
||||
// Shuffle class indices
|
||||
for (auto& [cls, indices] : class_indices) {
|
||||
KFold::KFold(int k, int n, int seed) : Fold(k, n, seed), indices(vector<int>(n))
|
||||
{
|
||||
iota(begin(indices), end(indices), 0); // fill with 0, 1, ..., n - 1
|
||||
shuffle(indices.begin(), indices.end(), random_seed);
|
||||
}
|
||||
// Assign indices to folds
|
||||
for (auto label = 0; label < class_counts.size(); ++label) {
|
||||
auto num_samples_to_take = class_counts[label] / k;
|
||||
if (num_samples_to_take == 0)
|
||||
continue;
|
||||
auto remainder_samples_to_take = class_counts[label] % k;
|
||||
for (auto fold = 0; fold < k; ++fold) {
|
||||
auto it = next(class_indices[label].begin(), num_samples_to_take);
|
||||
move(class_indices[label].begin(), it, back_inserter(stratified_indices[fold])); // ##
|
||||
class_indices[label].erase(class_indices[label].begin(), it);
|
||||
pair<vector<int>, vector<int>> KFold::getFold(int nFold)
|
||||
{
|
||||
if (nFold >= k || nFold < 0) {
|
||||
throw out_of_range("nFold (" + to_string(nFold) + ") must be less than k (" + to_string(k) + ")");
|
||||
}
|
||||
while (remainder_samples_to_take > 0) {
|
||||
int fold = (rand() % static_cast<int>(k));
|
||||
if (stratified_indices[fold].size() == fold_size + 1) {
|
||||
continue;
|
||||
int nTest = n / k;
|
||||
auto train = vector<int>();
|
||||
auto test = vector<int>();
|
||||
for (int i = 0; i < n; i++) {
|
||||
if (i >= nTest * nFold && i < nTest * (nFold + 1)) {
|
||||
test.push_back(indices[i]);
|
||||
} else {
|
||||
train.push_back(indices[i]);
|
||||
}
|
||||
}
|
||||
return { train, test };
|
||||
}
|
||||
StratifiedKFold::StratifiedKFold(int k, torch::Tensor& y, int seed) : Fold(k, y.numel(), seed)
|
||||
{
|
||||
n = y.numel();
|
||||
this->y = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + n);
|
||||
build();
|
||||
}
|
||||
StratifiedKFold::StratifiedKFold(int k, const vector<int>& y, int seed)
|
||||
: Fold(k, y.size(), seed)
|
||||
{
|
||||
this->y = y;
|
||||
n = y.size();
|
||||
build();
|
||||
}
|
||||
void StratifiedKFold::build()
|
||||
{
|
||||
stratified_indices = vector<vector<int>>(k);
|
||||
int fold_size = n / k;
|
||||
// Compute class counts and indices
|
||||
auto class_indices = map<int, vector<int>>();
|
||||
vector<int> class_counts(*max_element(y.begin(), y.end()) + 1, 0);
|
||||
for (auto i = 0; i < n; ++i) {
|
||||
class_counts[y[i]]++;
|
||||
class_indices[y[i]].push_back(i);
|
||||
}
|
||||
// Shuffle class indices
|
||||
for (auto& [cls, indices] : class_indices) {
|
||||
shuffle(indices.begin(), indices.end(), random_seed);
|
||||
}
|
||||
// Assign indices to folds
|
||||
for (auto label = 0; label < class_counts.size(); ++label) {
|
||||
auto num_samples_to_take = class_counts[label] / k;
|
||||
if (num_samples_to_take == 0)
|
||||
continue;
|
||||
auto remainder_samples_to_take = class_counts[label] % k;
|
||||
for (auto fold = 0; fold < k; ++fold) {
|
||||
auto it = next(class_indices[label].begin(), num_samples_to_take);
|
||||
move(class_indices[label].begin(), it, back_inserter(stratified_indices[fold])); // ##
|
||||
class_indices[label].erase(class_indices[label].begin(), it);
|
||||
}
|
||||
while (remainder_samples_to_take > 0) {
|
||||
int fold = (rand() % static_cast<int>(k));
|
||||
if (stratified_indices[fold].size() == fold_size + 1) {
|
||||
continue;
|
||||
}
|
||||
auto it = next(class_indices[label].begin(), 1);
|
||||
stratified_indices[fold].push_back(*class_indices[label].begin());
|
||||
class_indices[label].erase(class_indices[label].begin(), it);
|
||||
remainder_samples_to_take--;
|
||||
}
|
||||
auto it = next(class_indices[label].begin(), 1);
|
||||
stratified_indices[fold].push_back(*class_indices[label].begin());
|
||||
class_indices[label].erase(class_indices[label].begin(), it);
|
||||
remainder_samples_to_take--;
|
||||
}
|
||||
}
|
||||
}
|
||||
pair<vector<int>, vector<int>> StratifiedKFold::getFold(int nFold)
|
||||
{
|
||||
if (nFold >= k || nFold < 0) {
|
||||
throw out_of_range("nFold (" + to_string(nFold) + ") must be less than k (" + to_string(k) + ")");
|
||||
pair<vector<int>, vector<int>> StratifiedKFold::getFold(int nFold)
|
||||
{
|
||||
if (nFold >= k || nFold < 0) {
|
||||
throw out_of_range("nFold (" + to_string(nFold) + ") must be less than k (" + to_string(k) + ")");
|
||||
}
|
||||
vector<int> test_indices = stratified_indices[nFold];
|
||||
vector<int> train_indices;
|
||||
for (int i = 0; i < k; ++i) {
|
||||
if (i == nFold) continue;
|
||||
train_indices.insert(train_indices.end(), stratified_indices[i].begin(), stratified_indices[i].end());
|
||||
}
|
||||
return { train_indices, test_indices };
|
||||
}
|
||||
vector<int> test_indices = stratified_indices[nFold];
|
||||
vector<int> train_indices;
|
||||
for (int i = 0; i < k; ++i) {
|
||||
if (i == nFold) continue;
|
||||
train_indices.insert(train_indices.end(), stratified_indices[i].begin(), stratified_indices[i].end());
|
||||
}
|
||||
return { train_indices, test_indices };
|
||||
}
|
@@ -4,34 +4,35 @@
|
||||
#include <vector>
|
||||
#include <random>
|
||||
using namespace std;
|
||||
|
||||
class Fold {
|
||||
protected:
|
||||
int k;
|
||||
int n;
|
||||
int seed;
|
||||
default_random_engine random_seed;
|
||||
public:
|
||||
Fold(int k, int n, int seed = -1);
|
||||
virtual pair<vector<int>, vector<int>> getFold(int nFold) = 0;
|
||||
virtual ~Fold() = default;
|
||||
int getNumberOfFolds() { return k; }
|
||||
};
|
||||
class KFold : public Fold {
|
||||
private:
|
||||
vector<int> indices;
|
||||
public:
|
||||
KFold(int k, int n, int seed = -1);
|
||||
pair<vector<int>, vector<int>> getFold(int nFold) override;
|
||||
};
|
||||
class StratifiedKFold : public Fold {
|
||||
private:
|
||||
vector<int> y;
|
||||
vector<vector<int>> stratified_indices;
|
||||
void build();
|
||||
public:
|
||||
StratifiedKFold(int k, const vector<int>& y, int seed = -1);
|
||||
StratifiedKFold(int k, torch::Tensor& y, int seed = -1);
|
||||
pair<vector<int>, vector<int>> getFold(int nFold) override;
|
||||
};
|
||||
namespace platform {
|
||||
class Fold {
|
||||
protected:
|
||||
int k;
|
||||
int n;
|
||||
int seed;
|
||||
default_random_engine random_seed;
|
||||
public:
|
||||
Fold(int k, int n, int seed = -1);
|
||||
virtual pair<vector<int>, vector<int>> getFold(int nFold) = 0;
|
||||
virtual ~Fold() = default;
|
||||
int getNumberOfFolds() { return k; }
|
||||
};
|
||||
class KFold : public Fold {
|
||||
private:
|
||||
vector<int> indices;
|
||||
public:
|
||||
KFold(int k, int n, int seed = -1);
|
||||
pair<vector<int>, vector<int>> getFold(int nFold) override;
|
||||
};
|
||||
class StratifiedKFold : public Fold {
|
||||
private:
|
||||
vector<int> y;
|
||||
vector<vector<int>> stratified_indices;
|
||||
void build();
|
||||
public:
|
||||
StratifiedKFold(int k, const vector<int>& y, int seed = -1);
|
||||
StratifiedKFold(int k, torch::Tensor& y, int seed = -1);
|
||||
pair<vector<int>, vector<int>> getFold(int nFold) override;
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -26,7 +26,7 @@ namespace platform {
|
||||
instance = it->second();
|
||||
// wrap instance in a shared ptr and return
|
||||
if (instance != nullptr)
|
||||
return shared_ptr<bayesnet::BaseClassifier>(instance);
|
||||
return unique_ptr<bayesnet::BaseClassifier>(instance);
|
||||
else
|
||||
return nullptr;
|
||||
}
|
||||
|
@@ -6,6 +6,7 @@ namespace platform {
|
||||
public:
|
||||
static std::string datasets() { return "datasets/"; }
|
||||
static std::string results() { return "results/"; }
|
||||
static std::string excel() { return "excel/"; }
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,26 +0,0 @@
|
||||
#ifndef REPORT_H
|
||||
#define REPORT_H
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "Colors.h"
|
||||
|
||||
using json = nlohmann::json;
|
||||
const int MAXL = 128;
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
class Report {
|
||||
public:
|
||||
explicit Report(json data_) { data = data_; };
|
||||
virtual ~Report() = default;
|
||||
void show();
|
||||
private:
|
||||
void header();
|
||||
void body();
|
||||
void footer();
|
||||
string fromVector(const string& key);
|
||||
json data;
|
||||
double totalScore; // Total score of all results in a report
|
||||
};
|
||||
};
|
||||
#endif
|
37
src/Platform/ReportBase.cc
Normal file
37
src/Platform/ReportBase.cc
Normal file
@@ -0,0 +1,37 @@
|
||||
#include <sstream>
|
||||
#include <locale>
|
||||
#include "ReportBase.h"
|
||||
#include "BestResult.h"
|
||||
|
||||
|
||||
namespace platform {
|
||||
string ReportBase::fromVector(const string& key)
|
||||
{
|
||||
stringstream oss;
|
||||
string sep = "";
|
||||
oss << "[";
|
||||
for (auto& item : data[key]) {
|
||||
oss << sep << item.get<double>();
|
||||
sep = ", ";
|
||||
}
|
||||
oss << "]";
|
||||
return oss.str();
|
||||
}
|
||||
string ReportBase::fVector(const string& title, const json& data, const int width, const int precision)
|
||||
{
|
||||
stringstream oss;
|
||||
string sep = "";
|
||||
oss << title << "[";
|
||||
for (const auto& item : data) {
|
||||
oss << sep << fixed << setw(width) << setprecision(precision) << item.get<double>();
|
||||
sep = ", ";
|
||||
}
|
||||
oss << "]";
|
||||
return oss.str();
|
||||
}
|
||||
void ReportBase::show()
|
||||
{
|
||||
header();
|
||||
body();
|
||||
}
|
||||
}
|
23
src/Platform/ReportBase.h
Normal file
23
src/Platform/ReportBase.h
Normal file
@@ -0,0 +1,23 @@
|
||||
#ifndef REPORTBASE_H
|
||||
#define REPORTBASE_H
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
using json = nlohmann::json;
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
class ReportBase {
|
||||
public:
|
||||
explicit ReportBase(json data_) { data = data_; };
|
||||
virtual ~ReportBase() = default;
|
||||
void show();
|
||||
protected:
|
||||
json data;
|
||||
string fromVector(const string& key);
|
||||
string fVector(const string& title, const json& data, const int width, const int precision);
|
||||
virtual void header() = 0;
|
||||
virtual void body() = 0;
|
||||
};
|
||||
};
|
||||
#endif
|
@@ -1,52 +1,24 @@
|
||||
#include <sstream>
|
||||
#include <locale>
|
||||
#include "Report.h"
|
||||
#include "ReportConsole.h"
|
||||
#include "BestResult.h"
|
||||
|
||||
|
||||
namespace platform {
|
||||
string headerLine(const string& text)
|
||||
{
|
||||
int n = MAXL - text.length() - 3;
|
||||
n = n < 0 ? 0 : n;
|
||||
return "* " + text + string(n, ' ') + "*\n";
|
||||
}
|
||||
string Report::fromVector(const string& key)
|
||||
{
|
||||
stringstream oss;
|
||||
string sep = "";
|
||||
oss << "[";
|
||||
for (auto& item : data[key]) {
|
||||
oss << sep << item.get<double>();
|
||||
sep = ", ";
|
||||
}
|
||||
oss << "]";
|
||||
return oss.str();
|
||||
}
|
||||
string fVector(const string& title, const json& data, const int width, const int precision)
|
||||
{
|
||||
stringstream oss;
|
||||
string sep = "";
|
||||
oss << title << "[";
|
||||
for (const auto& item : data) {
|
||||
oss << sep << fixed << setw(width) << setprecision(precision) << item.get<double>();
|
||||
sep = ", ";
|
||||
}
|
||||
oss << "]";
|
||||
return oss.str();
|
||||
}
|
||||
void Report::show()
|
||||
{
|
||||
header();
|
||||
body();
|
||||
footer();
|
||||
}
|
||||
struct separated : numpunct<char> {
|
||||
char do_decimal_point() const { return ','; }
|
||||
char do_thousands_sep() const { return '.'; }
|
||||
string do_grouping() const { return "\03"; }
|
||||
};
|
||||
void Report::header()
|
||||
|
||||
string ReportConsole::headerLine(const string& text)
|
||||
{
|
||||
int n = MAXL - text.length() - 3;
|
||||
n = n < 0 ? 0 : n;
|
||||
return "* " + text + string(n, ' ') + "*\n";
|
||||
}
|
||||
|
||||
void ReportConsole::header()
|
||||
{
|
||||
locale mylocale(cout.getloc(), new separated);
|
||||
locale::global(mylocale);
|
||||
@@ -62,16 +34,23 @@ namespace platform {
|
||||
cout << string(MAXL, '*') << endl;
|
||||
cout << endl;
|
||||
}
|
||||
void Report::body()
|
||||
void ReportConsole::body()
|
||||
{
|
||||
cout << Colors::GREEN() << "Dataset Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << endl;
|
||||
cout << "============================== ====== ===== === ========= ========= ========= =============== ================== ===============" << endl;
|
||||
cout << Colors::GREEN() << " # Dataset Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << endl;
|
||||
cout << "=== ============================== ====== ===== === ========= ========= ========= =============== ================== ===============" << endl;
|
||||
json lastResult;
|
||||
totalScore = 0;
|
||||
double totalScore = 0.0;
|
||||
bool odd = true;
|
||||
int index = 0;
|
||||
for (const auto& r : data["results"]) {
|
||||
if (selectedIndex != -1 && index != selectedIndex) {
|
||||
index++;
|
||||
continue;
|
||||
}
|
||||
auto color = odd ? Colors::CYAN() : Colors::BLUE();
|
||||
cout << color << setw(30) << left << r["dataset"].get<string>() << " ";
|
||||
cout << color;
|
||||
cout << setw(3) << index++ << " ";
|
||||
cout << setw(30) << left << r["dataset"].get<string>() << " ";
|
||||
cout << setw(6) << right << r["samples"].get<int>() << " ";
|
||||
cout << setw(5) << right << r["features"].get<int>() << " ";
|
||||
cout << setw(3) << right << r["classes"].get<int>() << " ";
|
||||
@@ -91,16 +70,18 @@ namespace platform {
|
||||
totalScore += r["score"].get<double>();
|
||||
odd = !odd;
|
||||
}
|
||||
if (data["results"].size() == 1) {
|
||||
if (data["results"].size() == 1 || selectedIndex != -1) {
|
||||
cout << string(MAXL, '*') << endl;
|
||||
cout << headerLine(fVector("Train scores: ", lastResult["scores_train"], 14, 12));
|
||||
cout << headerLine(fVector("Test scores: ", lastResult["scores_test"], 14, 12));
|
||||
cout << headerLine(fVector("Train times: ", lastResult["times_train"], 10, 3));
|
||||
cout << headerLine(fVector("Test times: ", lastResult["times_test"], 10, 3));
|
||||
cout << string(MAXL, '*') << endl;
|
||||
} else {
|
||||
footer(totalScore);
|
||||
}
|
||||
}
|
||||
void Report::footer()
|
||||
void ReportConsole::footer(double totalScore)
|
||||
{
|
||||
cout << Colors::MAGENTA() << string(MAXL, '*') << endl;
|
||||
auto score = data["score_name"].get<string>();
|
||||
@@ -110,6 +91,5 @@ namespace platform {
|
||||
cout << headerLine(oss.str());
|
||||
}
|
||||
cout << string(MAXL, '*') << endl << Colors::RESET();
|
||||
|
||||
}
|
||||
}
|
23
src/Platform/ReportConsole.h
Normal file
23
src/Platform/ReportConsole.h
Normal file
@@ -0,0 +1,23 @@
|
||||
#ifndef REPORTCONSOLE_H
|
||||
#define REPORTCONSOLE_H
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include "ReportBase.h"
|
||||
#include "Colors.h"
|
||||
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
const int MAXL = 132;
|
||||
class ReportConsole : public ReportBase {
|
||||
public:
|
||||
explicit ReportConsole(json data_, int index = -1) : ReportBase(data_), selectedIndex(index) {};
|
||||
virtual ~ReportConsole() = default;
|
||||
private:
|
||||
int selectedIndex;
|
||||
string headerLine(const string& text);
|
||||
void header() override;
|
||||
void body() override;
|
||||
void footer(double totalScore);
|
||||
};
|
||||
};
|
||||
#endif
|
109
src/Platform/ReportExcel.cc
Normal file
109
src/Platform/ReportExcel.cc
Normal file
@@ -0,0 +1,109 @@
|
||||
#include <sstream>
|
||||
#include <locale>
|
||||
#include "ReportExcel.h"
|
||||
#include "BestResult.h"
|
||||
|
||||
|
||||
namespace platform {
|
||||
struct separated : numpunct<char> {
|
||||
char do_decimal_point() const { return ','; }
|
||||
|
||||
char do_thousands_sep() const { return '.'; }
|
||||
|
||||
string do_grouping() const { return "\03"; }
|
||||
};
|
||||
|
||||
void ReportExcel::createFile()
|
||||
{
|
||||
doc.create(Paths::excel() + "some_results.xlsx");
|
||||
wks = doc.workbook().worksheet("Sheet1");
|
||||
wks.setName(data["model"].get<string>());
|
||||
}
|
||||
|
||||
void ReportExcel::closeFile()
|
||||
{
|
||||
doc.save();
|
||||
doc.close();
|
||||
}
|
||||
|
||||
void ReportExcel::header()
|
||||
{
|
||||
locale mylocale(cout.getloc(), new separated);
|
||||
locale::global(mylocale);
|
||||
cout.imbue(mylocale);
|
||||
stringstream oss;
|
||||
wks.cell("A1").value().set(
|
||||
"Report " + data["model"].get<string>() + " ver. " + data["version"].get<string>() + " with " +
|
||||
to_string(data["folds"].get<int>()) + " Folds cross validation and " + to_string(data["seeds"].size()) +
|
||||
" random seeds. " + data["date"].get<string>() + " " + data["time"].get<string>());
|
||||
wks.cell("A2").value() = data["title"].get<string>();
|
||||
wks.cell("A3").value() = "Random seeds: " + fromVector("seeds") + " Stratified: " +
|
||||
(data["stratified"].get<bool>() ? "True" : "False");
|
||||
oss << "Execution took " << setprecision(2) << fixed << data["duration"].get<float>() << " seconds, "
|
||||
<< data["duration"].get<float>() / 3600 << " hours, on " << data["platform"].get<string>();
|
||||
wks.cell("A4").value() = oss.str();
|
||||
wks.cell("A5").value() = "Score is " + data["score_name"].get<string>();
|
||||
}
|
||||
|
||||
void ReportExcel::body()
|
||||
{
|
||||
auto head = vector<string>(
|
||||
{ "Dataset", "Samples", "Features", "Classes", "Nodes", "Edges", "States", "Score", "Score Std.", "Time",
|
||||
"Time Std.", "Hyperparameters" });
|
||||
int col = 1;
|
||||
for (const auto& item : head) {
|
||||
wks.cell(8, col++).value() = item;
|
||||
}
|
||||
int row = 9;
|
||||
col = 1;
|
||||
json lastResult;
|
||||
double totalScore = 0.0;
|
||||
string hyperparameters;
|
||||
for (const auto& r : data["results"]) {
|
||||
wks.cell(row, col).value() = r["dataset"].get<string>();
|
||||
wks.cell(row, col + 1).value() = r["samples"].get<int>();
|
||||
wks.cell(row, col + 2).value() = r["features"].get<int>();
|
||||
wks.cell(row, col + 3).value() = r["classes"].get<int>();
|
||||
wks.cell(row, col + 4).value() = r["nodes"].get<float>();
|
||||
wks.cell(row, col + 5).value() = r["leaves"].get<float>();
|
||||
wks.cell(row, col + 6).value() = r["depth"].get<float>();
|
||||
wks.cell(row, col + 7).value() = r["score"].get<double>();
|
||||
wks.cell(row, col + 8).value() = r["score_std"].get<double>();
|
||||
wks.cell(row, col + 9).value() = r["time"].get<double>();
|
||||
wks.cell(row, col + 10).value() = r["time_std"].get<double>();
|
||||
try {
|
||||
hyperparameters = r["hyperparameters"].get<string>();
|
||||
}
|
||||
catch (const exception& err) {
|
||||
stringstream oss;
|
||||
oss << r["hyperparameters"];
|
||||
hyperparameters = oss.str();
|
||||
}
|
||||
wks.cell(row, col + 11).value() = hyperparameters;
|
||||
lastResult = r;
|
||||
totalScore += r["score"].get<double>();
|
||||
row++;
|
||||
}
|
||||
if (data["results"].size() == 1) {
|
||||
for (const string& group : { "scores_train", "scores_test", "times_train", "times_test" }) {
|
||||
row++;
|
||||
col = 1;
|
||||
wks.cell(row, col).value() = group;
|
||||
for (double item : lastResult[group]) {
|
||||
wks.cell(row, ++col).value() = item;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
footer(totalScore, row);
|
||||
}
|
||||
}
|
||||
|
||||
void ReportExcel::footer(double totalScore, int row)
|
||||
{
|
||||
auto score = data["score_name"].get<string>();
|
||||
if (score == BestResult::scoreName()) {
|
||||
wks.cell(row + 2, 1).value() = score + " compared to " + BestResult::title() + " .: ";
|
||||
wks.cell(row + 2, 5).value() = totalScore / BestResult::score();
|
||||
}
|
||||
}
|
||||
}
|
25
src/Platform/ReportExcel.h
Normal file
25
src/Platform/ReportExcel.h
Normal file
@@ -0,0 +1,25 @@
|
||||
#ifndef REPORTEXCEL_H
|
||||
#define REPORTEXCEL_H
|
||||
#include <OpenXLSX.hpp>
|
||||
#include "ReportBase.h"
|
||||
#include "Paths.h"
|
||||
#include "Colors.h"
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
using namespace OpenXLSX;
|
||||
const int MAXLL = 128;
|
||||
class ReportExcel : public ReportBase{
|
||||
public:
|
||||
explicit ReportExcel(json data_) : ReportBase(data_) {createFile();};
|
||||
virtual ~ReportExcel() {closeFile();};
|
||||
private:
|
||||
void createFile();
|
||||
void closeFile();
|
||||
XLDocument doc;
|
||||
XLWorksheet wks;
|
||||
void header() override;
|
||||
void body() override;
|
||||
void footer(double totalScore, int row);
|
||||
};
|
||||
};
|
||||
#endif // !REPORTEXCEL_H
|
@@ -1,7 +1,8 @@
|
||||
#include <filesystem>
|
||||
#include "platformUtils.h"
|
||||
#include "Results.h"
|
||||
#include "Report.h"
|
||||
#include "ReportConsole.h"
|
||||
#include "ReportExcel.h"
|
||||
#include "BestResult.h"
|
||||
#include "Colors.h"
|
||||
namespace platform {
|
||||
@@ -22,6 +23,7 @@ namespace platform {
|
||||
title = data["title"];
|
||||
duration = data["duration"];
|
||||
model = data["model"];
|
||||
complete = data["results"].size() > 1;
|
||||
}
|
||||
json Result::load() const
|
||||
{
|
||||
@@ -40,7 +42,7 @@ namespace platform {
|
||||
if (filename.find(".json") != string::npos && filename.find("results_") == 0) {
|
||||
auto result = Result(path, filename);
|
||||
bool addResult = true;
|
||||
if (model != "any" && result.getModel() != model || scoreName != "any" && scoreName != result.getScoreName())
|
||||
if (model != "any" && result.getModel() != model || scoreName != "any" && scoreName != result.getScoreName() || complete && !result.isComplete() || partial && result.isComplete())
|
||||
addResult = false;
|
||||
if (addResult)
|
||||
files.push_back(result);
|
||||
@@ -54,6 +56,8 @@ namespace platform {
|
||||
oss << setw(12) << left << model << " ";
|
||||
oss << setw(11) << left << scoreName << " ";
|
||||
oss << right << setw(11) << setprecision(7) << fixed << score << " ";
|
||||
auto completeString = isComplete() ? "C" : "P";
|
||||
oss << setw(1) << " " << completeString << " ";
|
||||
oss << setw(9) << setprecision(3) << fixed << duration << " ";
|
||||
oss << setw(50) << left << title << " ";
|
||||
return oss.str();
|
||||
@@ -62,9 +66,15 @@ namespace platform {
|
||||
{
|
||||
cout << Colors::GREEN() << "Results found: " << files.size() << endl;
|
||||
cout << "-------------------" << endl;
|
||||
if (complete) {
|
||||
cout << Colors::MAGENTA() << "Only listing complete results" << endl;
|
||||
}
|
||||
if (partial) {
|
||||
cout << Colors::MAGENTA() << "Only listing partial results" << endl;
|
||||
}
|
||||
auto i = 0;
|
||||
cout << " # Date Model Score Name Score Duration Title" << endl;
|
||||
cout << "=== ========== ============ =========== =========== ========= =============================================================" << endl;
|
||||
cout << Colors::GREEN() << " # Date Model Score Name Score C/P Duration Title" << endl;
|
||||
cout << "=== ========== ============ =========== =========== === ========= =============================================================" << endl;
|
||||
bool odd = true;
|
||||
for (const auto& result : files) {
|
||||
auto color = odd ? Colors::BLUE() : Colors::CYAN();
|
||||
@@ -94,21 +104,37 @@ namespace platform {
|
||||
cout << "Invalid index" << endl;
|
||||
return -1;
|
||||
}
|
||||
void Results::report(const int index) const
|
||||
void Results::report(const int index, const bool excelReport) const
|
||||
{
|
||||
cout << Colors::YELLOW() << "Reporting " << files.at(index).getFilename() << endl;
|
||||
auto data = files.at(index).load();
|
||||
Report report(data);
|
||||
report.show();
|
||||
if (excelReport) {
|
||||
ReportExcel reporter(data);
|
||||
reporter.show();
|
||||
} else {
|
||||
ReportConsole reporter(data);
|
||||
reporter.show();
|
||||
}
|
||||
}
|
||||
void Results::showIndex(const int index, const int idx) const
|
||||
{
|
||||
auto data = files.at(index).load();
|
||||
if (idx < 0 or idx >= static_cast<int>(data["results"].size())) {
|
||||
cout << "Invalid index" << endl;
|
||||
return;
|
||||
}
|
||||
cout << Colors::YELLOW() << "Showing " << files.at(index).getFilename() << endl;
|
||||
ReportConsole reporter(data, idx);
|
||||
reporter.show();
|
||||
}
|
||||
void Results::menu()
|
||||
{
|
||||
char option;
|
||||
int index;
|
||||
bool finished = false;
|
||||
string filename, line, options = "qldhsr";
|
||||
string filename, line, options = "qldhsre";
|
||||
while (!finished) {
|
||||
cout << Colors::RESET() << "Choose option (quit='q', list='l', delete='d', hide='h', sort='s', report='r'): ";
|
||||
cout << Colors::RESET() << "Choose option (quit='q', list='l', delete='d', hide='h', sort='s', report='r', excel='e'): ";
|
||||
getline(cin, line);
|
||||
if (line.size() == 0)
|
||||
continue;
|
||||
@@ -119,12 +145,21 @@ namespace platform {
|
||||
}
|
||||
option = line[0];
|
||||
} else {
|
||||
index = stoi(line);
|
||||
if (index >= 0 && index < files.size()) {
|
||||
report(index);
|
||||
} else {
|
||||
cout << "Invalid option" << endl;
|
||||
if (all_of(line.begin(), line.end(), ::isdigit)) {
|
||||
int idx = stoi(line);
|
||||
if (indexList) {
|
||||
index = idx;
|
||||
if (index >= 0 && index < files.size()) {
|
||||
report(index, false);
|
||||
indexList = false;
|
||||
continue;
|
||||
}
|
||||
} else {
|
||||
showIndex(index, idx);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
cout << "Invalid option" << endl;
|
||||
continue;
|
||||
}
|
||||
switch (option) {
|
||||
@@ -133,6 +168,7 @@ namespace platform {
|
||||
break;
|
||||
case 'l':
|
||||
show();
|
||||
indexList = true;
|
||||
break;
|
||||
case 'd':
|
||||
index = getIndex("delete");
|
||||
@@ -144,6 +180,7 @@ namespace platform {
|
||||
files.erase(files.begin() + index);
|
||||
cout << "File: " + filename + " deleted!" << endl;
|
||||
show();
|
||||
indexList = true;
|
||||
break;
|
||||
case 'h':
|
||||
index = getIndex("hide");
|
||||
@@ -155,16 +192,26 @@ namespace platform {
|
||||
files.erase(files.begin() + index);
|
||||
show();
|
||||
menu();
|
||||
indexList = true;
|
||||
break;
|
||||
case 's':
|
||||
sortList();
|
||||
indexList = true;
|
||||
show();
|
||||
break;
|
||||
case 'r':
|
||||
index = getIndex("report");
|
||||
if (index == -1)
|
||||
break;
|
||||
report(index);
|
||||
indexList = false;
|
||||
report(index, false);
|
||||
break;
|
||||
case 'e':
|
||||
index = getIndex("excel");
|
||||
if (index == -1)
|
||||
break;
|
||||
indexList = true;
|
||||
report(index, true);
|
||||
break;
|
||||
default:
|
||||
cout << "Invalid option" << endl;
|
||||
@@ -231,6 +278,7 @@ namespace platform {
|
||||
cout << "No results found!" << endl;
|
||||
exit(0);
|
||||
}
|
||||
sortDate();
|
||||
show();
|
||||
menu();
|
||||
cout << "Done!" << endl;
|
||||
|
@@ -20,6 +20,7 @@ namespace platform {
|
||||
double getDuration() const { return duration; };
|
||||
string getModel() const { return model; };
|
||||
string getScoreName() const { return scoreName; };
|
||||
bool isComplete() const { return complete; };
|
||||
private:
|
||||
string path;
|
||||
string filename;
|
||||
@@ -29,20 +30,25 @@ namespace platform {
|
||||
double duration;
|
||||
string model;
|
||||
string scoreName;
|
||||
bool complete;
|
||||
};
|
||||
class Results {
|
||||
public:
|
||||
Results(const string& path, const int max, const string& model, const string& score) : path(path), max(max), model(model), scoreName(score) { load(); };
|
||||
Results(const string& path, const int max, const string& model, const string& score, bool complete, bool partial) : path(path), max(max), model(model), scoreName(score), complete(complete), partial(partial) { load(); };
|
||||
void manage();
|
||||
private:
|
||||
string path;
|
||||
int max;
|
||||
string model;
|
||||
string scoreName;
|
||||
bool complete;
|
||||
bool partial;
|
||||
bool indexList = true;
|
||||
vector<Result> files;
|
||||
void load(); // Loads the list of results
|
||||
void show() const;
|
||||
void report(const int index) const;
|
||||
void report(const int index, const bool excelReport) const;
|
||||
void showIndex(const int index, const int idx) const;
|
||||
int getIndex(const string& intent) const;
|
||||
void menu();
|
||||
void sortList();
|
||||
|
@@ -1,5 +1,6 @@
|
||||
#include <iostream>
|
||||
#include <argparse/argparse.hpp>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "platformUtils.h"
|
||||
#include "Experiment.h"
|
||||
#include "Datasets.h"
|
||||
@@ -10,12 +11,14 @@
|
||||
|
||||
|
||||
using namespace std;
|
||||
using json = nlohmann::json;
|
||||
|
||||
argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
{
|
||||
auto env = platform::DotEnv();
|
||||
argparse::ArgumentParser program("main");
|
||||
program.add_argument("-d", "--dataset").default_value("").help("Dataset file name");
|
||||
program.add_argument("--hyperparameters").default_value("{}").help("Hyperparamters passed to the model in Experiment");
|
||||
program.add_argument("-p", "--path")
|
||||
.help("folder where the data files are located, default")
|
||||
.default_value(string{ platform::Paths::datasets() });
|
||||
@@ -31,6 +34,7 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
);
|
||||
program.add_argument("--title").default_value("").help("Experiment title");
|
||||
program.add_argument("--discretize").help("Discretize input dataset").default_value((bool)stoi(env.get("discretize"))).implicit_value(true);
|
||||
program.add_argument("--save").help("Save result (always save if no dataset is supplied)").default_value(false).implicit_value(true);
|
||||
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value((bool)stoi(env.get("stratified"))).implicit_value(true);
|
||||
program.add_argument("-f", "--folds").help("Number of folds").default_value(stoi(env.get("n_folds"))).scan<'i', int>().action([](const string& value) {
|
||||
try {
|
||||
@@ -59,6 +63,8 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
auto seeds = program.get<vector<int>>("seeds");
|
||||
auto complete_file_name = path + file_name + ".arff";
|
||||
auto title = program.get<string>("title");
|
||||
auto hyperparameters = program.get<string>("hyperparameters");
|
||||
auto saveResults = program.get<bool>("save");
|
||||
if (title == "" && file_name == "") {
|
||||
throw runtime_error("title is mandatory if dataset is not provided");
|
||||
}
|
||||
@@ -74,7 +80,6 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
auto program = manageArguments(argc, argv);
|
||||
bool saveResults = false;
|
||||
auto file_name = program.get<string>("dataset");
|
||||
auto path = program.get<string>("path");
|
||||
auto model_name = program.get<string>("model");
|
||||
@@ -82,9 +87,11 @@ int main(int argc, char** argv)
|
||||
auto stratified = program.get<bool>("stratified");
|
||||
auto n_folds = program.get<int>("folds");
|
||||
auto seeds = program.get<vector<int>>("seeds");
|
||||
auto hyperparameters =program.get<string>("hyperparameters");
|
||||
vector<string> filesToTest;
|
||||
auto datasets = platform::Datasets(path, true, platform::ARFF);
|
||||
auto title = program.get<string>("title");
|
||||
auto saveResults = program.get<bool>("save");
|
||||
if (file_name != "") {
|
||||
if (!datasets.isDataset(file_name)) {
|
||||
cerr << "Dataset " << file_name << " not found" << endl;
|
||||
@@ -106,6 +113,7 @@ int main(int argc, char** argv)
|
||||
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("14.0.3");
|
||||
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform(env.get("platform"));
|
||||
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy");
|
||||
experiment.setHyperparameters(json::parse(hyperparameters));
|
||||
for (auto seed : seeds) {
|
||||
experiment.addRandomSeed(seed);
|
||||
}
|
||||
@@ -113,10 +121,10 @@ int main(int argc, char** argv)
|
||||
timer.start();
|
||||
experiment.go(filesToTest, path);
|
||||
experiment.setDuration(timer.getDuration());
|
||||
if (saveResults)
|
||||
if (saveResults) {
|
||||
experiment.save(platform::Paths::results());
|
||||
else
|
||||
experiment.report();
|
||||
}
|
||||
experiment.report();
|
||||
cout << "Done!" << endl;
|
||||
return 0;
|
||||
}
|
||||
|
@@ -12,6 +12,8 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
program.add_argument("-n", "--number").default_value(0).help("Number of results to show (0 = all)").scan<'i', int>();
|
||||
program.add_argument("-m", "--model").default_value("any").help("Filter results of the selected model)");
|
||||
program.add_argument("-s", "--score").default_value("any").help("Filter results of the score name supplied");
|
||||
program.add_argument("--complete").help("Show only results with all datasets").default_value(false).implicit_value(true);
|
||||
program.add_argument("--partial").help("Show only partial results").default_value(false).implicit_value(true);
|
||||
try {
|
||||
program.parse_args(argc, argv);
|
||||
auto number = program.get<int>("number");
|
||||
@@ -20,6 +22,8 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
}
|
||||
auto model = program.get<string>("model");
|
||||
auto score = program.get<string>("score");
|
||||
auto complete = program.get<bool>("complete");
|
||||
auto partial = program.get<bool>("partial");
|
||||
}
|
||||
catch (const exception& err) {
|
||||
cerr << err.what() << endl;
|
||||
@@ -35,7 +39,11 @@ int main(int argc, char** argv)
|
||||
auto number = program.get<int>("number");
|
||||
auto model = program.get<string>("model");
|
||||
auto score = program.get<string>("score");
|
||||
auto results = platform::Results(platform::Paths::results(), number, model, score);
|
||||
auto complete = program.get<bool>("complete");
|
||||
auto partial = program.get<bool>("partial");
|
||||
if (complete)
|
||||
partial = false;
|
||||
auto results = platform::Results(platform::Paths::results(), number, model, score, complete, partial);
|
||||
results.manage();
|
||||
return 0;
|
||||
}
|
||||
|
@@ -69,11 +69,12 @@ tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadData
|
||||
Xd = torch::zeros({ static_cast<int>(Xr[0].size()), static_cast<int>(Xr.size()) }, torch::kInt32);
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
states[features[i]] = vector<int>(*max_element(Xr[i].begin(), Xr[i].end()) + 1);
|
||||
iota(begin(states[features[i]]), end(states[features[i]]), 0);
|
||||
auto item = states.at(features[i]);
|
||||
iota(begin(item), end(item), 0);
|
||||
Xd.index_put_({ "...", i }, torch::tensor(Xr[i], torch::kInt32));
|
||||
}
|
||||
states[className] = vector<int>(*max_element(y.begin(), y.end()) + 1);
|
||||
iota(begin(states[className]), end(states[className]), 0);
|
||||
iota(begin(states.at(className)), end(states.at(className)), 0);
|
||||
} else {
|
||||
Xd = torch::zeros({ static_cast<int>(X[0].size()), static_cast<int>(X.size()) }, torch::kFloat32);
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
|
@@ -4,6 +4,7 @@ if(ENABLE_TESTING)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
set(TEST_SOURCES BayesModels.cc BayesNetwork.cc ${BayesNet_SOURCE_DIR}/src/Platform/platformUtils.cc ${BayesNet_SOURCES})
|
||||
add_executable(${TEST_MAIN} ${TEST_SOURCES})
|
||||
target_link_libraries(${TEST_MAIN} PUBLIC "${TORCH_LIBRARIES}" ArffFiles mdlp Catch2::Catch2WithMain)
|
||||
|
Reference in New Issue
Block a user