Compare commits

...

103 Commits

Author SHA1 Message Date
97ca8ac084 Move check valid hyperparameters to Classifier 2023-08-22 22:12:20 +02:00
1c1385b768 Fix maxModels mistake in BoostAODE if !repeatSp
Throw exception if wrong hyperparmeter is supplied
2023-08-22 21:55:17 +02:00
35432b6294 Fix time std was not saved in experiment 2023-08-22 12:30:27 +02:00
c59dd30e53 Complete Excel Report with data 2023-08-22 11:55:15 +02:00
d2da0ddb88 Create ReportExcel eq to ReportConsole 2023-08-21 17:51:49 +02:00
8066701c3c Refactor Report class into ReportBase & ReportCons 2023-08-21 17:16:29 +02:00
0f66ac73d0 Revert "Refactor Report into ReportBase & ReportConsole"
This reverts commit 4370bf51d7.
2023-08-21 17:15:14 +02:00
4370bf51d7 Refactor Report into ReportBase & ReportConsole 2023-08-21 17:14:23 +02:00
2b7353b9e0 Add default sorting by date in manage 2023-08-21 16:30:10 +02:00
b686b3c9c3 Enhance copy in Makefile 2023-08-21 12:18:23 +02:00
2dd04a6c44 enhance saving results and add Makefile copy 2023-08-21 11:57:45 +02:00
1da83662d0 Always save results 2023-08-21 10:55:20 +02:00
3ac9593c65 Fix mistake in sample 2023-08-20 20:36:46 +02:00
6b317accf1 Add hyperparameters and processing order to Boost 2023-08-20 20:31:23 +02:00
4964aab722 Add hyperparameters management in experiments 2023-08-20 17:57:38 +02:00
7a6ec73d63 Merge pull request 'boostAode' (#5) from boostAode into main
Reviewed-on: https://gitea.rmontanana.es:11000/rmontanana/BayesNet/pulls/5
Implement boostAODE
add list datasets
add manage results
2023-08-20 09:02:07 +00:00
1a534888d6 Fix report format 2023-08-19 23:30:44 +02:00
59ffd179f4 Fix report format 2023-08-19 21:26:48 +02:00
9972738deb Add list datasets and add locale format 2023-08-19 19:05:16 +02:00
bafcb26bb6 Add manage to build target 2023-08-18 13:43:53 +02:00
2d7999d5f2 Add manage to release targets 2023-08-18 13:43:13 +02:00
a6bb22dfb5 Complete first BoostAODE 2023-08-18 11:50:34 +02:00
704dc937be Remove FeatureSel, add SelectKBest to BayesMetrics 2023-08-16 19:05:18 +02:00
a3e665eed6 make weights double 2023-08-16 12:46:09 +02:00
918a7b4180 Remove unneeded output 2023-08-16 12:36:38 +02:00
80b20f35b4 Fix weights mistakes in computation 2023-08-16 12:32:51 +02:00
4d4780c1d5 Add BoostAODE model based on AODE 2023-08-15 16:16:04 +02:00
fa612c531e Complete Adding weights to Models 2023-08-15 15:59:56 +02:00
24b68f9ae2 Add weigths as parameter 2023-08-15 15:04:56 +02:00
a062ebf445 Merge pull request 'reports' (#4) from reports into boostAode
Reviewed-on: https://gitea.rmontanana.es:11000/rmontanana/BayesNet/pulls/4
2023-08-14 16:58:48 +00:00
2a3fc9aa45 Add colors and enhace input control 2023-08-14 17:03:06 +02:00
55d21294d5 Add class Paths and enhance input 2023-08-14 00:40:31 +02:00
3691cb4a61 Add totals and filter by scoreName and model 2023-08-13 18:13:00 +02:00
054567c65a Add sorting capacity 2023-08-13 17:10:18 +02:00
2729b92f06 Summary list 2023-08-13 16:19:17 +02:00
f26ea1f0ac Add weights to BayesMetrics 2023-08-13 12:56:06 +02:00
af0419c9da First approx with const 1 weights 2023-08-13 00:59:02 +02:00
90c92e5c56 Merge pull request 'Add states as result in Proposal methods' (#3) from optimize_memory into main
Reviewed-on: https://gitea.rmontanana.es:11000/rmontanana/BayesNet/pulls/3
2023-08-12 14:16:55 +00:00
182b52a887 Add states as result in Proposal methods 2023-08-12 16:16:17 +02:00
6679b90a82 Merge pull request 'optimize_memory' (#2) from optimize_memory into main
Reviewed-on: https://gitea.rmontanana.es:11000/rmontanana/BayesNet/pulls/2
2023-08-12 14:15:03 +00:00
405887f833 Solved Ld poor results 2023-08-12 11:49:18 +02:00
3a85481a5a Redo pass states to Network Fit needed in crossval
fix mistake in headerline (report)
2023-08-12 11:10:53 +02:00
0ad5505c16 Spodeld working with poor accuracy 2023-08-10 02:06:18 +02:00
323444b74a const functions 2023-08-08 01:53:41 +02:00
ef1bffcac3 Fixed normal classifiers 2023-08-07 13:50:11 +02:00
06db8f51ce Refactor library and models to lighten data stored
Refactro Ensemble to inherit from Classifier insted of BaseClassifier
2023-08-07 12:49:37 +02:00
e74565ba01 update clang-tidy 2023-08-07 00:44:12 +02:00
2da0fb5d8f Merge branch 'main' into TANNew 2023-08-06 11:40:10 +02:00
14ea51648a Complete AODELd 2023-08-06 11:31:44 +02:00
9e94f4e140 Rename suffix of proposal classifier to Ld 2023-08-05 23:23:31 +02:00
1d0fd629c9 Add SPODENew to models 2023-08-05 23:11:36 +02:00
506ef34c6f Add report output to main 2023-08-05 20:29:05 +02:00
7f45495837 Refactor New classifiers to extract predict 2023-08-05 18:39:48 +02:00
1a09ccca4c Add KDBNew fix computeCPT error 2023-08-05 14:40:42 +02:00
a1c6ab18f3 TANNew restructured with poor results 2023-08-04 20:11:22 +02:00
64ac8fb4f2 TANNew as a TAN variant working 2023-08-04 19:42:18 +02:00
c568ba111d Add Proposal class 2023-08-04 13:05:12 +02:00
45c1d052ac Compile TANNew with poor accuracy 2023-08-04 01:35:45 +02:00
eb1cec58a3 Complete nxm 2023-08-03 20:22:33 +02:00
f520b40016 Almost complete proposal in TANNew 2023-08-02 02:21:55 +02:00
cdfb45d2cb Add topological order to Network 2023-08-02 00:56:52 +02:00
f63a9a64f9 Update Makefile to add Release & Debug build 2023-08-01 19:02:37 +02:00
285f0938a6 Update mdlp library 2023-08-01 17:33:01 +02:00
8f8f9773ce Make TANNew same as TAN with local discretization 2023-08-01 13:17:12 +02:00
a9ba21560d Add environment platform to experiment result 2023-08-01 10:55:53 +02:00
a18fbe5594 Begin implementation 2023-07-31 19:53:55 +02:00
adf650d257 Max threading 2023-07-31 18:49:18 +02:00
43bb017d5d Fix problem with tensors way 2023-07-30 19:00:02 +02:00
53697648e7 Merge branch 'aftermath' into main 2023-07-30 01:05:31 +02:00
4ebc9c2013 Complete fixing the linter warnings 2023-07-30 00:16:58 +02:00
b882569169 Fix some more lint warnings 2023-07-30 00:04:18 +02:00
8b2ed26ab7 Fix some lint warnings 2023-07-29 20:37:51 +02:00
5efa3beaee Fix some lint warnings 2023-07-29 20:20:38 +02:00
9a0449c12d Fix some lint warnings 2023-07-29 19:38:42 +02:00
7222119dfb Refactor experiment crossvalidation 2023-07-29 19:00:39 +02:00
cb54f61a69 Refactor Models to be a singleton factory
Add Registrar of models
2023-07-29 18:22:15 +02:00
07d572a98c Add Model factory 2023-07-29 17:27:43 +02:00
c4f3e6f19a Refactor crossvalidation to remove unneeded params 2023-07-29 16:49:06 +02:00
adc0ca238f Refactor cross_validation 2023-07-29 16:44:07 +02:00
b9e76becce Add show experiment 2023-07-29 16:31:36 +02:00
85cb447283 Add Dataset, Models and DotEnv 2023-07-29 16:21:38 +02:00
b03e84044a Fix some mistakes in timer and output format 2023-07-27 18:40:04 +02:00
7f7ddad36a Fix stratified folding mistake in remainders 2023-07-27 16:51:27 +02:00
3d8fea7a37 Complete Experiment 2023-07-27 15:49:58 +02:00
bc214a496c Adding Datasets management 2023-07-27 01:56:06 +02:00
3e954ba841 Complete json output compatible with benchmark 2023-07-26 19:01:39 +02:00
6f7fb290b0 Add json lib and json result generation 2023-07-26 17:49:03 +02:00
49a49a9dcd Fix Experiment 2023-07-26 14:11:49 +02:00
af7a1d2b40 Fix score with tensors and finis sample 2023-07-26 13:29:47 +02:00
4a54bd42a2 Fix some mistakes 2023-07-26 12:53:01 +02:00
099b4bea09 Fix some mistakes in tensors treatment 2023-07-26 01:39:01 +02:00
be06e475f0 Refactor tensor2vector 2023-07-24 13:22:53 +02:00
c10ebca0e0 Add Experiment, Result and Timer classes 2023-07-24 01:15:12 +02:00
0c226371cc Ensemble Experiment, Folding, Classifiers and Network together 2023-07-23 14:10:28 +02:00
644b6c9be0 Begin experiment 2023-07-23 01:47:57 +02:00
9981ad1811 Refactor Library renaming Base classes 2023-07-22 23:07:56 +02:00
41cceece20 Complete Stratified K Fold 2023-07-22 11:23:35 +02:00
f6e154bc6e Begin Stratified KFold 2023-07-21 21:49:02 +02:00
a2622a4fb6 Begin Folding 2023-07-21 16:07:50 +02:00
d8218f9713 refactor sample to use new argparse library 2023-07-21 02:12:47 +02:00
48bfa02e1d Add clang-tidy conf 2023-07-20 23:55:01 +02:00
f519003766 Remove unneeded files 2023-07-20 18:56:10 +02:00
8ddfd58a50 Fix some mistakes to correct tests 2023-07-20 18:55:56 +02:00
95 changed files with 3720 additions and 1364 deletions

16
.clang-tidy Normal file
View File

@@ -0,0 +1,16 @@
---
Checks: '-*,
clang-*,
bugprone-*,
cppcoreguidelines-*,
modernize-*,
performance-*,
-cppcoreguidelines-pro-type-vararg,
-modernize-use-trailing-return-type,
-bugprone-exception-escape'
HeaderFilterRegex: 'src/*'
AnalyzeTemporaryDtors: false
WarningsAsErrors: ''
FormatStyle: file
...

12
.gitmodules vendored Normal file
View File

@@ -0,0 +1,12 @@
[submodule "lib/mdlp"]
path = lib/mdlp
url = https://github.com/rmontanana/mdlp
[submodule "lib/catch2"]
path = lib/catch2
url = https://github.com/catchorg/Catch2.git
[submodule "lib/argparse"]
path = lib/argparse
url = https://github.com/p-ranav/argparse
[submodule "lib/json"]
path = lib/json
url = https://github.com/nlohmann/json.git

53
.vscode/launch.json vendored
View File

@@ -4,22 +4,57 @@
{ {
"type": "lldb", "type": "lldb",
"request": "launch", "request": "launch",
"name": "bayesnet", "name": "sample",
"program": "${workspaceFolder}/build/sample/main", "program": "${workspaceFolder}/build/sample/BayesNetSample",
"args": [ "args": [
"-f", "-d",
"iris" "iris",
"-m",
"KDB",
"-s",
"271",
"-p",
"/Users/rmontanana/Code/discretizbench/datasets/",
], ],
"cwd": "${workspaceFolder}", //"cwd": "${workspaceFolder}/build/sample/",
"preLaunchTask": "CMake: build"
}, },
{ {
"type": "lldb", "type": "lldb",
"request": "launch", "request": "launch",
"name": "aout", "name": "experiment",
"program": "${workspaceFolder}/a.out", "program": "${workspaceFolder}/build/src/Platform/main",
"args": [
"-m",
"BoostAODE",
"-p",
"/Users/rmontanana/Code/discretizbench/datasets",
"--discretize",
"--stratified",
"-d",
"glass",
"--hyperparameters",
"{\"repeatSparent\": true, \"maxModels\": 12}"
],
"cwd": "/Users/rmontanana/Code/discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "manage",
"program": "${workspaceFolder}/build/src/Platform/manage",
"args": [
"-n",
"20"
],
"cwd": "/Users/rmontanana/Code/discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "list",
"program": "${workspaceFolder}/build/src/Platform/list",
"args": [], "args": [],
"cwd": "${workspaceFolder}" "cwd": "/Users/rmontanana/Code/discretizbench",
}, },
{ {
"name": "Build & debug active file", "name": "Build & debug active file",

View File

@@ -97,7 +97,12 @@
"future": "cpp", "future": "cpp",
"queue": "cpp", "queue": "cpp",
"typeindex": "cpp", "typeindex": "cpp",
"shared_mutex": "cpp" "shared_mutex": "cpp",
"*.ipp": "cpp",
"cassert": "cpp",
"charconv": "cpp",
"source_location": "cpp",
"ranges": "cpp"
}, },
"cmake.configureOnOpen": false, "cmake.configureOnOpen": false,
"C_Cpp.default.configurationProvider": "ms-vscode.cmake-tools" "C_Cpp.default.configurationProvider": "ms-vscode.cmake-tools"

23
.vscode/tasks.json vendored
View File

@@ -32,6 +32,29 @@
], ],
"group": "build", "group": "build",
"detail": "Task generated by Debugger." "detail": "Task generated by Debugger."
},
{
"type": "cppbuild",
"label": "C/C++: g++ build active file",
"command": "/usr/bin/g++",
"args": [
"-fdiagnostics-color=always",
"-g",
"${file}",
"-o",
"${fileDirname}/${fileBasenameNoExtension}"
],
"options": {
"cwd": "${fileDirname}"
},
"problemMatcher": [
"$gcc"
],
"group": {
"kind": "build",
"isDefault": true
},
"detail": "Task generated by Debugger."
} }
] ]
} }

View File

@@ -7,10 +7,14 @@ project(BayesNet
LANGUAGES CXX LANGUAGES CXX
) )
if (CODE_COVERAGE AND NOT ENABLE_TESTING)
MESSAGE(FATAL_ERROR "Code coverage requires testing enabled")
endif (CODE_COVERAGE AND NOT ENABLE_TESTING)
find_package(Torch REQUIRED) find_package(Torch REQUIRED)
if (POLICY CMP0135) if (POLICY CMP0135)
cmake_policy(SET CMP0135 NEW) cmake_policy(SET CMP0135 NEW)
endif () endif ()
# Global CMake variables # Global CMake variables
@@ -24,21 +28,41 @@ set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
# Options # Options
# ------- # -------
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF) option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
option(ENABLE_TESTING "Unit testing build" ON) option(ENABLE_TESTING "Unit testing build" OFF)
option(CODE_COVERAGE "Collect coverage from test library" ON) option(CODE_COVERAGE "Collect coverage from test library" OFF)
set(CMAKE_BUILD_TYPE "Debug")
# CMakes modules # CMakes modules
# -------------- # --------------
set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH}) set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH})
include(AddGitSubmodule)
if (CODE_COVERAGE)
enable_testing()
include(CodeCoverage)
MESSAGE("Code coverage enabled")
set(CMAKE_C_FLAGS " ${CMAKE_C_FLAGS} -fprofile-arcs -ftest-coverage")
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage")
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
endif (CODE_COVERAGE)
if (ENABLE_CLANG_TIDY)
include(StaticAnalyzers) # clang-tidy
endif (ENABLE_CLANG_TIDY)
# External libraries - dependencies of BayesNet
# ---------------------------------------------
# include(FetchContent)
add_git_submodule("lib/mdlp")
add_git_submodule("lib/argparse")
add_git_submodule("lib/json")
add_git_submodule("lib/openXLSX")
# Subdirectories # Subdirectories
# -------------- # --------------
add_subdirectory(config) add_subdirectory(config)
add_subdirectory(${BayesNet_SOURCE_DIR}/src/BayesNet) add_subdirectory(lib/Files)
add_subdirectory(${BayesNet_SOURCE_DIR}/src/Platform) add_subdirectory(src/BayesNet)
add_subdirectory(src/Platform)
add_subdirectory(sample) add_subdirectory(sample)
file(GLOB BayesNet_HEADERS CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.h ${BayesNet_SOURCE_DIR}/BayesNet/*.hpp) file(GLOB BayesNet_HEADERS CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.h ${BayesNet_SOURCE_DIR}/BayesNet/*.hpp)
@@ -47,18 +71,11 @@ file(GLOB Platform_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/Platform
# Testing # Testing
# ------- # -------
if (ENABLE_TESTING) if (ENABLE_TESTING)
MESSAGE("Testing enabled") MESSAGE("Testing enabled")
enable_testing() add_git_submodule("lib/catch2")
if (CODE_COVERAGE)
include(CodeCoverage)
MESSAGE("Code coverage enabled")
set(CMAKE_C_FLAGS " ${CMAKE_C_FLAGS} -fprofile-arcs -ftest-coverage")
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage")
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
endif (CODE_COVERAGE)
find_package(Catch2 3 REQUIRED)
include(CTest) include(CTest)
include(Catch)
add_subdirectory(tests) add_subdirectory(tests)
endif (ENABLE_TESTING) endif (ENABLE_TESTING)

View File

@@ -11,17 +11,41 @@ setup: ## Install dependencies for tests and coverage
pip install gcovr; \ pip install gcovr; \
fi fi
dest ?= ../discretizbench
copy: ## Copy binary files to selected folder
@echo "Destination folder: $(dest)"
make build
@echo ">>> Copying files to $(dest)"
@cp build/src/Platform/main $(dest)
@cp build/src/Platform/list $(dest)
@cp build/src/Platform/manage $(dest)
@echo ">>> Done"
dependency: ## Create a dependency graph diagram of the project (build/dependency.png) dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
cd build && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png cd build && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
build: ## Build the project build: ## Build the main and BayesNetSample
@echo ">>> Building BayesNet ..."; cmake --build build -t main -t BayesNetSample -t manage -t list -j 32
clean: ## Clean the debug info
@echo ">>> Cleaning Debug BayesNet ...";
find . -name "*.gcda" -print0 | xargs -0 rm
@echo ">>> Done";
debug: ## Build a debug version of the project
@echo ">>> Building Debug BayesNet ...";
@if [ -d ./build ]; then rm -rf ./build; fi @if [ -d ./build ]; then rm -rf ./build; fi
@mkdir build; @mkdir build;
cmake -S . -B build; \ cmake -S . -B build -D CMAKE_BUILD_TYPE=Debug -D ENABLE_TESTING=ON -D CODE_COVERAGE=ON; \
cd build; \ cmake --build build -j 32;
make; \ @echo ">>> Done";
release: ## Build a Release version of the project
@echo ">>> Building Release BayesNet ...";
@if [ -d ./build ]; then rm -rf ./build; fi
@mkdir build;
cmake -S . -B build -D CMAKE_BUILD_TYPE=Release; \
cmake --build build -t main -t BayesNetSample -t manage -t list -j 32;
@echo ">>> Done"; @echo ">>> Done";
test: ## Run tests test: ## Run tests

12
TAN_iris.dot Normal file
View File

@@ -0,0 +1,12 @@
digraph BayesNet {
label=<BayesNet >
fontsize=30
fontcolor=blue
labelloc=t
layout=circo
class [shape=circle, fontcolor=red, fillcolor=lightblue, style=filled ]
class -> sepallength class -> sepalwidth class -> petallength class -> petalwidth petallength [shape=circle]
petallength -> sepallength petalwidth [shape=circle]
sepallength [shape=circle]
sepallength -> sepalwidth sepalwidth [shape=circle]
sepalwidth -> petalwidth }

View File

@@ -0,0 +1,12 @@
function(add_git_submodule dir)
find_package(Git REQUIRED)
if(NOT EXISTS ${dir}/CMakeLists.txt)
message(STATUS "🚨 Adding git submodule => ${dir}")
execute_process(COMMAND ${GIT_EXECUTABLE}
submodule update --init --recursive -- ${dir}
WORKING_DIRECTORY ${PROJECT_SOURCE_DIR})
endif()
add_subdirectory(${dir})
endfunction(add_git_submodule)

View File

@@ -0,0 +1,22 @@
if(ENABLE_CLANG_TIDY)
find_program(CLANG_TIDY_COMMAND NAMES clang-tidy)
if(NOT CLANG_TIDY_COMMAND)
message(WARNING "🔴 CMake_RUN_CLANG_TIDY is ON but clang-tidy is not found!")
set(CMAKE_CXX_CLANG_TIDY "" CACHE STRING "" FORCE)
else()
message(STATUS "🟢 CMake_RUN_CLANG_TIDY is ON")
set(CLANGTIDY_EXTRA_ARGS
"-extra-arg=-Wno-unknown-warning-option"
)
set(CMAKE_CXX_CLANG_TIDY "${CLANG_TIDY_COMMAND};-p=${CMAKE_BINARY_DIR};${CLANGTIDY_EXTRA_ARGS}" CACHE STRING "" FORCE)
add_custom_target(clang-tidy
COMMAND ${CMAKE_COMMAND} --build ${CMAKE_BINARY_DIR} --target ${CMAKE_PROJECT_NAME}
COMMAND ${CMAKE_COMMAND} --build ${CMAKE_BINARY_DIR} --target clang-tidy
COMMENT "Running clang-tidy..."
)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
endif()
endif(ENABLE_CLANG_TIDY)

View File

@@ -0,0 +1 @@
null

View File

@@ -1,5 +1,4 @@
filter = src/ filter = src/
exclude = external/ exclude-directories = build/lib/
exclude = tests/
print-summary = yes print-summary = yes
sort-percentage = yes sort-percentage = yes

View File

@@ -2,6 +2,7 @@
#include <fstream> #include <fstream>
#include <sstream> #include <sstream>
#include <map> #include <map>
#include <iostream>
using namespace std; using namespace std;
@@ -42,7 +43,7 @@ vector<int>& ArffFiles::getY()
return y; return y;
} }
void ArffFiles::load(const string& fileName, bool classLast) void ArffFiles::loadCommon(string fileName)
{ {
ifstream file(fileName); ifstream file(fileName);
if (!file.is_open()) { if (!file.is_open()) {
@@ -74,24 +75,51 @@ void ArffFiles::load(const string& fileName, bool classLast)
file.close(); file.close();
if (attributes.empty()) if (attributes.empty())
throw invalid_argument("No attributes found"); throw invalid_argument("No attributes found");
}
void ArffFiles::load(const string& fileName, bool classLast)
{
int labelIndex;
loadCommon(fileName);
if (classLast) { if (classLast) {
className = get<0>(attributes.back()); className = get<0>(attributes.back());
classType = get<1>(attributes.back()); classType = get<1>(attributes.back());
attributes.pop_back(); attributes.pop_back();
labelIndex = static_cast<int>(attributes.size());
} else { } else {
className = get<0>(attributes.front()); className = get<0>(attributes.front());
classType = get<1>(attributes.front()); classType = get<1>(attributes.front());
attributes.erase(attributes.begin()); attributes.erase(attributes.begin());
labelIndex = 0;
} }
generateDataset(classLast); generateDataset(labelIndex);
}
void ArffFiles::load(const string& fileName, const string& name)
{
int labelIndex;
loadCommon(fileName);
bool found = false;
for (int i = 0; i < attributes.size(); ++i) {
if (attributes[i].first == name) {
className = get<0>(attributes[i]);
classType = get<1>(attributes[i]);
attributes.erase(attributes.begin() + i);
labelIndex = i;
found = true;
break;
}
}
if (!found) {
throw invalid_argument("Class name not found");
}
generateDataset(labelIndex);
} }
void ArffFiles::generateDataset(bool classLast) void ArffFiles::generateDataset(int labelIndex)
{ {
X = vector<vector<float>>(attributes.size(), vector<float>(lines.size())); X = vector<vector<float>>(attributes.size(), vector<float>(lines.size()));
auto yy = vector<string>(lines.size(), ""); auto yy = vector<string>(lines.size(), "");
int labelIndex = classLast ? static_cast<int>(attributes.size()) : 0; auto removeLines = vector<int>(); // Lines with missing values
for (size_t i = 0; i < lines.size(); i++) { for (size_t i = 0; i < lines.size(); i++) {
stringstream ss(lines[i]); stringstream ss(lines[i]);
string value; string value;
@@ -101,10 +129,20 @@ void ArffFiles::generateDataset(bool classLast)
if (pos++ == labelIndex) { if (pos++ == labelIndex) {
yy[i] = value; yy[i] = value;
} else { } else {
X[xIndex++][i] = stof(value); if (value == "?") {
X[xIndex++][i] = -1;
removeLines.push_back(i);
} else
X[xIndex++][i] = stof(value);
} }
} }
} }
for (auto i : removeLines) {
yy.erase(yy.begin() + i);
for (auto& x : X) {
x.erase(x.begin() + i);
}
}
y = factorize(yy); y = factorize(yy);
} }

View File

@@ -14,12 +14,12 @@ private:
string classType; string classType;
vector<vector<float>> X; vector<vector<float>> X;
vector<int> y; vector<int> y;
void generateDataset(int);
void generateDataset(bool); void loadCommon(string);
public: public:
ArffFiles(); ArffFiles();
void load(const string&, bool = true); void load(const string&, bool = true);
void load(const string&, const string&);
vector<string> getLines() const; vector<string> getLines() const;
unsigned long int getSize() const; unsigned long int getSize() const;
string getClassName() const; string getClassName() const;

1
lib/Files/CMakeLists.txt Normal file
View File

@@ -0,0 +1 @@
add_library(ArffFiles ArffFiles.cc)

1
lib/argparse Submodule

Submodule lib/argparse added at b0930ab028

1
lib/catch2 Submodule

Submodule lib/catch2 added at 4acc51828f

1
lib/json Submodule

Submodule lib/json added at 5d2754306d

1
lib/mdlp Submodule

Submodule lib/mdlp added at 5708dc3de9

1
lib/openXLSX Submodule

Submodule lib/openXLSX added at b80da42d14

View File

@@ -1,4 +1,8 @@
include_directories(${BayesNet_SOURCE_DIR}/src/Platform) include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet) include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
add_executable(sample sample.cc ${BayesNet_SOURCE_DIR}/src/Platform/ArffFiles.cc ${BayesNet_SOURCE_DIR}/src/Platform/CPPFImdlp.cpp ${BayesNet_SOURCE_DIR}/src/Platform/Metrics.cpp ${BayesNet_SOURCE_DIR}/src/Platform/typesFImdlp.h ${BayesNet_HEADERS}) include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
target_link_libraries(sample BayesNet "${TORCH_LIBRARIES}") include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
add_executable(BayesNetSample sample.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
target_link_libraries(BayesNetSample BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")

View File

@@ -1,96 +1,20 @@
#include <iostream> #include <iostream>
#include <string>
#include <torch/torch.h> #include <torch/torch.h>
#include <thread> #include <string>
#include <getopt.h> #include <map>
#include <argparse/argparse.hpp>
#include <nlohmann/json.hpp>
#include "ArffFiles.h" #include "ArffFiles.h"
#include "Network.h" #include "BayesMetrics.h"
#include "Metrics.hpp"
#include "CPPFImdlp.h" #include "CPPFImdlp.h"
#include "KDB.h" #include "Folding.h"
#include "SPODE.h" #include "Models.h"
#include "AODE.h" #include "modelRegister.h"
#include "TAN.h"
using namespace std; using namespace std;
const string PATH = "data/"; const string PATH = "../../data/";
/* print a description of all supported options */
void usage(const char* path)
{
/* take only the last portion of the path */
const char* basename = strrchr(path, '/');
basename = basename ? basename + 1 : path;
cout << "usage: " << basename << "[OPTION]" << endl;
cout << " -h, --help\t\t Print this help and exit." << endl;
cout
<< " -f, --file[=FILENAME]\t {diabetes, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}."
<< endl;
cout << " -p, --path[=FILENAME]\t folder where the data files are located, default " << PATH << endl;
cout << " -m, --model={AODE, KDB, SPODE, TAN}\t " << endl;
}
tuple<string, string, string> parse_arguments(int argc, char** argv)
{
string file_name;
string model_name;
string path = PATH;
const vector<struct option> long_options = {
{"help", no_argument, nullptr, 'h'},
{"file", required_argument, nullptr, 'f'},
{"path", required_argument, nullptr, 'p'},
{"model", required_argument, nullptr, 'm'},
{nullptr, no_argument, nullptr, 0}
};
while (true) {
const auto c = getopt_long(argc, argv, "hf:p:m:", long_options.data(), nullptr);
if (c == -1)
break;
switch (c) {
case 'h':
usage(argv[0]);
exit(0);
case 'f':
file_name = string(optarg);
break;
case 'm':
model_name = string(optarg);
break;
case 'p':
path = optarg;
if (path.back() != '/')
path += '/';
break;
case '?':
usage(argv[0]);
exit(1);
default:
abort();
}
}
if (file_name.empty()) {
usage(argv[0]);
exit(1);
}
return make_tuple(file_name, path, model_name);
}
inline constexpr auto hash_conv(const std::string_view sv)
{
unsigned long hash{ 5381 };
for (unsigned char c : sv) {
hash = ((hash << 5) + hash) ^ c;
}
return hash;
}
inline constexpr auto operator"" _sh(const char* str, size_t len)
{
return hash_conv(std::string_view{ str, len });
}
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features) pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features)
{ {
@@ -116,8 +40,23 @@ bool file_exists(const std::string& name)
return false; return false;
} }
} }
pair<vector<vector<int>>, vector<int>> extract_indices(vector<int> indices, vector<vector<int>> X, vector<int> y)
{
vector<vector<int>> Xr; // nxm
vector<int> yr;
for (int col = 0; col < X.size(); ++col) {
Xr.push_back(vector<int>());
}
for (auto index : indices) {
for (int col = 0; col < X.size(); ++col) {
Xr[col].push_back(X[col][index]);
}
yr.push_back(y[index]);
}
return { Xr, yr };
}
tuple<string, string, string> get_options(int argc, char** argv) int main(int argc, char** argv)
{ {
map<string, bool> datasets = { map<string, bool> datasets = {
{"diabetes", true}, {"diabetes", true},
@@ -129,97 +68,170 @@ tuple<string, string, string> get_options(int argc, char** argv)
{"liver-disorders", true}, {"liver-disorders", true},
{"mfeat-factors", true}, {"mfeat-factors", true},
}; };
vector <string> models = { "AODE", "KDB", "SPODE", "TAN" }; auto valid_datasets = vector<string>();
string file_name; transform(datasets.begin(), datasets.end(), back_inserter(valid_datasets),
string path; [](const pair<string, bool>& pair) { return pair.first; });
string model_name; argparse::ArgumentParser program("BayesNetSample");
tie(file_name, path, model_name) = parse_arguments(argc, argv); program.add_argument("-d", "--dataset")
if (datasets.find(file_name) == datasets.end()) { .help("Dataset file name")
cout << "Invalid file name: " << file_name << endl; .action([valid_datasets](const std::string& value) {
usage(argv[0]); if (find(valid_datasets.begin(), valid_datasets.end(), value) != valid_datasets.end()) {
return value;
}
throw runtime_error("file must be one of {diabetes, ecoli, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}");
}
);
program.add_argument("-p", "--path")
.help(" folder where the data files are located, default")
.default_value(string{ PATH }
);
program.add_argument("-m", "--model")
.help("Model to use " + platform::Models::instance()->toString())
.action([](const std::string& value) {
static const vector<string> choices = platform::Models::instance()->getNames();
if (find(choices.begin(), choices.end(), value) != choices.end()) {
return value;
}
throw runtime_error("Model must be one of " + platform::Models::instance()->toString());
}
);
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true);
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true);
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const string& value) {
try {
auto k = stoi(value);
if (k < 2) {
throw runtime_error("Number of folds must be greater than 1");
}
return k;
}
catch (const runtime_error& err) {
throw runtime_error(err.what());
}
catch (...) {
throw runtime_error("Number of folds must be an integer");
}});
program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
bool class_last, stratified, tensors, dump_cpt;
string model_name, file_name, path, complete_file_name;
int nFolds, seed;
try {
program.parse_args(argc, argv);
file_name = program.get<string>("dataset");
path = program.get<string>("path");
model_name = program.get<string>("model");
complete_file_name = path + file_name + ".arff";
stratified = program.get<bool>("stratified");
tensors = program.get<bool>("tensors");
nFolds = program.get<int>("folds");
seed = program.get<int>("seed");
dump_cpt = program.get<bool>("dumpcpt");
class_last = datasets[file_name];
if (!file_exists(complete_file_name)) {
throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist");
}
}
catch (const exception& err) {
cerr << err.what() << endl;
cerr << program;
exit(1); exit(1);
} }
if (!file_exists(path + file_name + ".arff")) {
cout << "Data File " << path + file_name + ".arff" << " does not exist" << endl;
usage(argv[0]);
exit(1);
}
if (find(models.begin(), models.end(), model_name) == models.end()) {
cout << "Invalid model name: " << model_name << endl;
usage(argv[0]);
exit(1);
}
return { file_name, path, model_name };
}
int main(int argc, char** argv) /*
{ * Begin Processing
string file_name, path, model_name; */
tie(file_name, path, model_name) = get_options(argc, argv);
auto handler = ArffFiles(); auto handler = ArffFiles();
handler.load(path + file_name + ".arff"); handler.load(complete_file_name, class_last);
// Get Dataset X, y // Get Dataset X, y
vector<mdlp::samples_t>& X = handler.getX(); vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY(); mdlp::labels_t& y = handler.getY();
// Get className & Features // Get className & Features
auto className = handler.getClassName(); auto className = handler.getClassName();
vector<string> features; vector<string> features;
for (auto feature : handler.getAttributes()) { auto attributes = handler.getAttributes();
features.push_back(feature.first); transform(attributes.begin(), attributes.end(), back_inserter(features),
} [](const pair<string, string>& item) { return item.first; });
// Discretize Dataset // Discretize Dataset
vector<mdlp::labels_t> Xd; auto [Xd, maxes] = discretize(X, y, features);
map<string, int> maxes;
tie(Xd, maxes) = discretize(X, y, features);
maxes[className] = *max_element(y.begin(), y.end()) + 1; maxes[className] = *max_element(y.begin(), y.end()) + 1;
map<string, vector<int>> states; map<string, vector<int>> states;
for (auto feature : features) { for (auto feature : features) {
states[feature] = vector<int>(maxes[feature]); states[feature] = vector<int>(maxes[feature]);
} }
states[className] = vector<int>( states[className] = vector<int>(maxes[className]);
maxes[className]); auto clf = platform::Models::instance()->create(model_name);
double score; clf->fit(Xd, y, features, className, states);
vector<string> lines; if (dump_cpt) {
vector<string> graph; cout << "--- CPT Tables ---" << endl;
auto kdb = bayesnet::KDB(2); clf->dump_cpt();
auto aode = bayesnet::AODE();
auto spode = bayesnet::SPODE(2);
auto tan = bayesnet::TAN();
switch (hash_conv(model_name)) {
case "AODE"_sh:
aode.fit(Xd, y, features, className, states);
lines = aode.show();
score = aode.score(Xd, y);
graph = aode.graph();
break;
case "KDB"_sh:
kdb.fit(Xd, y, features, className, states);
lines = kdb.show();
score = kdb.score(Xd, y);
graph = kdb.graph();
break;
case "SPODE"_sh:
spode.fit(Xd, y, features, className, states);
lines = spode.show();
score = spode.score(Xd, y);
graph = spode.graph();
break;
case "TAN"_sh:
tan.fit(Xd, y, features, className, states);
lines = tan.show();
score = tan.score(Xd, y);
graph = tan.graph();
break;
} }
auto lines = clf->show();
for (auto line : lines) { for (auto line : lines) {
cout << line << endl; cout << line << endl;
} }
cout << "--- Topological Order ---" << endl;
auto order = clf->topological_order();
for (auto name : order) {
cout << name << ", ";
}
cout << "end." << endl;
auto score = clf->score(Xd, y);
cout << "Score: " << score << endl; cout << "Score: " << score << endl;
auto graph = clf->graph();
auto dot_file = model_name + "_" + file_name; auto dot_file = model_name + "_" + file_name;
ofstream file(dot_file + ".dot"); ofstream file(dot_file + ".dot");
file << graph; file << graph;
file.close(); file.close();
cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl; cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl; cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
return 0; string stratified_string = stratified ? " Stratified" : "";
cout << nFolds << " Folds" << stratified_string << " Cross validation" << endl;
cout << "==========================================" << endl;
torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
torch::Tensor yt = torch::tensor(y, torch::kInt32);
for (int i = 0; i < features.size(); ++i) {
Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
}
float total_score = 0, total_score_train = 0, score_train, score_test;
Fold* fold;
if (stratified)
fold = new StratifiedKFold(nFolds, y, seed);
else
fold = new KFold(nFolds, y.size(), seed);
for (auto i = 0; i < nFolds; ++i) {
auto [train, test] = fold->getFold(i);
cout << "Fold: " << i + 1 << endl;
if (tensors) {
auto ttrain = torch::tensor(train, torch::kInt64);
auto ttest = torch::tensor(test, torch::kInt64);
torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
torch::Tensor ytraint = yt.index({ ttrain });
torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
torch::Tensor ytestt = yt.index({ ttest });
clf->fit(Xtraint, ytraint, features, className, states);
auto temp = clf->predict(Xtraint);
score_train = clf->score(Xtraint, ytraint);
score_test = clf->score(Xtestt, ytestt);
} else {
auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
auto [Xtest, ytest] = extract_indices(test, Xd, y);
clf->fit(Xtrain, ytrain, features, className, states);
score_train = clf->score(Xtrain, ytrain);
score_test = clf->score(Xtest, ytest);
}
if (dump_cpt) {
cout << "--- CPT Tables ---" << endl;
clf->dump_cpt();
}
total_score_train += score_train;
total_score += score_test;
cout << "Score Train: " << score_train << endl;
cout << "Score Test : " << score_test << endl;
cout << "-------------------------------------------------------------------------------" << endl;
}
cout << "**********************************************************************************" << endl;
cout << "Average Score Train: " << total_score_train / nFolds << endl;
cout << "Average Score Test : " << total_score / nFolds << endl;return 0;
} }

View File

@@ -2,14 +2,16 @@
namespace bayesnet { namespace bayesnet {
AODE::AODE() : Ensemble() {} AODE::AODE() : Ensemble() {}
void AODE::train() void AODE::buildModel(const torch::Tensor& weights)
{ {
models.clear(); models.clear();
for (int i = 0; i < features.size(); ++i) { for (int i = 0; i < features.size(); ++i) {
models.push_back(std::make_unique<SPODE>(i)); models.push_back(std::make_unique<SPODE>(i));
} }
n_models = models.size();
significanceModels = vector<double>(n_models, 1.0);
} }
vector<string> AODE::graph(string title) vector<string> AODE::graph(const string& title) const
{ {
return Ensemble::graph(title); return Ensemble::graph(title);
} }

View File

@@ -5,10 +5,12 @@
namespace bayesnet { namespace bayesnet {
class AODE : public Ensemble { class AODE : public Ensemble {
protected: protected:
void train() override; void buildModel(const torch::Tensor& weights) override;
public: public:
AODE(); AODE();
vector<string> graph(string title = "AODE"); virtual ~AODE() {};
vector<string> graph(const string& title = "AODE") const override;
void setHyperparameters(nlohmann::json& hyperparameters) override {};
}; };
} }
#endif #endif

40
src/BayesNet/AODELd.cc Normal file
View File

@@ -0,0 +1,40 @@
#include "AODELd.h"
#include "Models.h"
namespace bayesnet {
using namespace std;
AODELd::AODELd() : Ensemble(), Proposal(dataset, features, className) {}
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
Ensemble::fit(dataset, features, className, states);
return *this;
}
void AODELd::buildModel(const torch::Tensor& weights)
{
models.clear();
for (int i = 0; i < features.size(); ++i) {
models.push_back(std::make_unique<SPODELd>(i));
}
n_models = models.size();
}
void AODELd::trainModel(const torch::Tensor& weights)
{
for (const auto& model : models) {
model->fit(Xf, y, features, className, states);
}
}
vector<string> AODELd::graph(const string& name) const
{
return Ensemble::graph(name);
}
}

22
src/BayesNet/AODELd.h Normal file
View File

@@ -0,0 +1,22 @@
#ifndef AODELD_H
#define AODELD_H
#include "Ensemble.h"
#include "Proposal.h"
#include "SPODELd.h"
namespace bayesnet {
using namespace std;
class AODELd : public Ensemble, public Proposal {
protected:
void trainModel(const torch::Tensor& weights) override;
void buildModel(const torch::Tensor& weights) override;
public:
AODELd();
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_) override;
virtual ~AODELd() = default;
vector<string> graph(const string& name = "AODE") const override;
static inline string version() { return "0.0.1"; };
void setHyperparameters(nlohmann::json& hyperparameters) override {};
};
}
#endif // !AODELD_H

View File

@@ -1,127 +0,0 @@
#include "BaseClassifier.h"
#include "bayesnetUtils.h"
namespace bayesnet {
using namespace std;
using namespace torch;
BaseClassifier::BaseClassifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
BaseClassifier& BaseClassifier::build(vector<string>& features, string className, map<string, vector<int>>& states)
{
dataset = torch::cat({ X, y.view({y.size(0), 1}) }, 1);
this->features = features;
this->className = className;
this->states = states;
checkFitParameters();
auto n_classes = states[className].size();
metrics = Metrics(dataset, features, className, n_classes);
train();
model.fit(Xv, yv, features, className);
fitted = true;
return *this;
}
BaseClassifier& BaseClassifier::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
{
this->X = torch::zeros({ static_cast<int64_t>(X[0].size()), static_cast<int64_t>(X.size()) }, kInt64);
Xv = X;
for (int i = 0; i < X.size(); ++i) {
this->X.index_put_({ "...", i }, torch::tensor(X[i], kInt64));
}
this->y = torch::tensor(y, kInt64);
yv = y;
return build(features, className, states);
}
void BaseClassifier::checkFitParameters()
{
auto sizes = X.sizes();
m = sizes[0];
n = sizes[1];
if (m != y.size(0)) {
throw invalid_argument("X and y must have the same number of samples");
}
if (n != features.size()) {
throw invalid_argument("X and features must have the same number of features");
}
if (states.find(className) == states.end()) {
throw invalid_argument("className not found in states");
}
for (auto feature : features) {
if (states.find(feature) == states.end()) {
throw invalid_argument("feature [" + feature + "] not found in states");
}
}
}
Tensor BaseClassifier::predict(Tensor& X)
{
if (!fitted) {
throw logic_error("Classifier has not been fitted");
}
auto m_ = X.size(0);
auto n_ = X.size(1);
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
for (auto i = 0; i < n_; i++) {
auto temp = X.index({ "...", i });
Xd[i] = vector<int>(temp.data_ptr<int>(), temp.data_ptr<int>() + m_);
}
auto yp = model.predict(Xd);
auto ypred = torch::tensor(yp, torch::kInt64);
return ypred;
}
vector<int> BaseClassifier::predict(vector<vector<int>>& X)
{
if (!fitted) {
throw logic_error("Classifier has not been fitted");
}
auto m_ = X[0].size();
auto n_ = X.size();
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
for (auto i = 0; i < n_; i++) {
Xd[i] = vector<int>(X[i].begin(), X[i].end());
}
auto yp = model.predict(Xd);
return yp;
}
float BaseClassifier::score(Tensor& X, Tensor& y)
{
if (!fitted) {
throw logic_error("Classifier has not been fitted");
}
Tensor y_pred = predict(X);
return (y_pred == y).sum().item<float>() / y.size(0);
}
float BaseClassifier::score(vector<vector<int>>& X, vector<int>& y)
{
if (!fitted) {
throw logic_error("Classifier has not been fitted");
}
auto m_ = X[0].size();
auto n_ = X.size();
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
for (auto i = 0; i < n_; i++) {
Xd[i] = vector<int>(X[i].begin(), X[i].end());
}
return model.score(Xd, y);
}
vector<string> BaseClassifier::show()
{
return model.show();
}
void BaseClassifier::addNodes()
{
// Add all nodes to the network
for (auto feature : features) {
model.addNode(feature, states[feature].size());
}
model.addNode(className, states[className].size());
}
int BaseClassifier::getNumberOfNodes()
{
// Features does not include class
return fitted ? model.getFeatures().size() + 1 : 0;
}
int BaseClassifier::getNumberOfEdges()
{
return fitted ? model.getEdges().size() : 0;
}
}

View File

@@ -1,48 +1,34 @@
#ifndef CLASSIFIERS_H #ifndef BASE_H
#define CLASSIFIERS_H #define BASE_H
#include <torch/torch.h> #include <torch/torch.h>
#include "Network.h" #include <nlohmann/json.hpp>
#include "Metrics.hpp" #include <vector>
using namespace std;
using namespace torch;
namespace bayesnet { namespace bayesnet {
using namespace std;
class BaseClassifier { class BaseClassifier {
private:
bool fitted;
BaseClassifier& build(vector<string>& features, string className, map<string, vector<int>>& states);
protected: protected:
Network model; virtual void trainModel(const torch::Tensor& weights) = 0;
int m, n; // m: number of samples, n: number of features
Tensor X;
vector<vector<int>> Xv;
Tensor y;
vector<int> yv;
Tensor dataset;
Metrics metrics;
vector<string> features;
string className;
map<string, vector<int>> states;
void checkFitParameters();
virtual void train() = 0;
public: public:
BaseClassifier(Network model); // X is nxm vector, y is nx1 vector
virtual BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
// X is nxm tensor, y is nx1 tensor
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
virtual BaseClassifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
virtual BaseClassifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights) = 0;
virtual ~BaseClassifier() = default; virtual ~BaseClassifier() = default;
BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states); torch::Tensor virtual predict(torch::Tensor& X) = 0;
void addNodes(); vector<int> virtual predict(vector<vector<int>>& X) = 0;
int getNumberOfNodes(); float virtual score(vector<vector<int>>& X, vector<int>& y) = 0;
int getNumberOfEdges(); float virtual score(torch::Tensor& X, torch::Tensor& y) = 0;
Tensor predict(Tensor& X); int virtual getNumberOfNodes()const = 0;
vector<int> predict(vector<vector<int>>& X); int virtual getNumberOfEdges()const = 0;
float score(Tensor& X, Tensor& y); int virtual getNumberOfStates() const = 0;
float score(vector<vector<int>>& X, vector<int>& y); vector<string> virtual show() const = 0;
vector<string> show(); vector<string> virtual graph(const string& title = "") const = 0;
virtual vector<string> graph(string title) = 0; const string inline getVersion() const { return "0.1.0"; };
vector<string> virtual topological_order() = 0;
void virtual dump_cpt()const = 0;
virtual void setHyperparameters(nlohmann::json& hyperparameters) = 0;
}; };
} }
#endif #endif

View File

@@ -0,0 +1,174 @@
#include "BayesMetrics.h"
#include "Mst.h"
namespace bayesnet {
//samples is nxm tensor used to fit the model
Metrics::Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates)
: samples(samples)
, features(features)
, className(className)
, classNumStates(classNumStates)
{
}
//samples is nxm vector used to fit the model
Metrics::Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates)
: features(features)
, className(className)
, classNumStates(classNumStates)
, samples(torch::zeros({ static_cast<int>(vsamples[0].size()), static_cast<int>(vsamples.size() + 1) }, torch::kInt32))
{
for (int i = 0; i < vsamples.size(); ++i) {
samples.index_put_({ i, "..." }, torch::tensor(vsamples[i], torch::kInt32));
}
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
}
vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, bool ascending, unsigned k)
{
// Return the K Best features
auto n = samples.size(0) - 1;
if (k == 0) {
k = n;
}
// compute scores
scoresKBest.clear();
featuresKBest.clear();
auto label = samples.index({ -1, "..." });
for (int i = 0; i < n; ++i) {
scoresKBest.push_back(mutualInformation(label, samples.index({ i, "..." }), weights));
featuresKBest.push_back(i);
}
// sort & reduce scores and features
if (ascending) {
sort(featuresKBest.begin(), featuresKBest.end(), [&](int i, int j)
{ return scoresKBest[i] < scoresKBest[j]; });
sort(scoresKBest.begin(), scoresKBest.end(), std::less<double>());
if (k < n) {
for (int i = 0; i < n - k; ++i) {
featuresKBest.erase(featuresKBest.begin());
scoresKBest.erase(scoresKBest.begin());
}
}
} else {
sort(featuresKBest.begin(), featuresKBest.end(), [&](int i, int j)
{ return scoresKBest[i] > scoresKBest[j]; });
sort(scoresKBest.begin(), scoresKBest.end(), std::greater<double>());
featuresKBest.resize(k);
scoresKBest.resize(k);
}
return featuresKBest;
}
vector<double> Metrics::getScoresKBest() const
{
return scoresKBest;
}
vector<pair<string, string>> Metrics::doCombinations(const vector<string>& source)
{
vector<pair<string, string>> result;
for (int i = 0; i < source.size(); ++i) {
string temp = source[i];
for (int j = i + 1; j < source.size(); ++j) {
result.push_back({ temp, source[j] });
}
}
return result;
}
torch::Tensor Metrics::conditionalEdge(const torch::Tensor& weights)
{
auto result = vector<double>();
auto source = vector<string>(features);
source.push_back(className);
auto combinations = doCombinations(source);
double totalWeight = weights.sum().item<double>();
// Compute class prior
auto margin = torch::zeros({ classNumStates }, torch::kFloat);
for (int value = 0; value < classNumStates; ++value) {
auto mask = samples.index({ -1, "..." }) == value;
margin[value] = mask.sum().item<double>() / samples.size(1);
}
for (auto [first, second] : combinations) {
int index_first = find(features.begin(), features.end(), first) - features.begin();
int index_second = find(features.begin(), features.end(), second) - features.begin();
double accumulated = 0;
for (int value = 0; value < classNumStates; ++value) {
auto mask = samples.index({ -1, "..." }) == value;
auto first_dataset = samples.index({ index_first, mask });
auto second_dataset = samples.index({ index_second, mask });
auto weights_dataset = weights.index({ mask });
auto mi = mutualInformation(first_dataset, second_dataset, weights_dataset);
auto pb = margin[value].item<double>();
accumulated += pb * mi;
}
result.push_back(accumulated);
}
long n_vars = source.size();
auto matrix = torch::zeros({ n_vars, n_vars });
auto indices = torch::triu_indices(n_vars, n_vars, 1);
for (auto i = 0; i < result.size(); ++i) {
auto x = indices[0][i];
auto y = indices[1][i];
matrix[x][y] = result[i];
matrix[y][x] = result[i];
}
return matrix;
}
// To use in Python
vector<float> Metrics::conditionalEdgeWeights(vector<float>& weights_)
{
const torch::Tensor weights = torch::tensor(weights_);
auto matrix = conditionalEdge(weights);
std::vector<float> v(matrix.data_ptr<float>(), matrix.data_ptr<float>() + matrix.numel());
return v;
}
double Metrics::entropy(const torch::Tensor& feature, const torch::Tensor& weights)
{
torch::Tensor counts = feature.bincount(weights);
double totalWeight = counts.sum().item<double>();
torch::Tensor probs = counts.to(torch::kFloat) / totalWeight;
torch::Tensor logProbs = torch::log(probs);
torch::Tensor entropy = -probs * logProbs;
return entropy.nansum().item<double>();
}
// H(Y|X) = sum_{x in X} p(x) H(Y|X=x)
double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
{
int numSamples = firstFeature.sizes()[0];
torch::Tensor featureCounts = secondFeature.bincount(weights);
unordered_map<int, unordered_map<int, double>> jointCounts;
double totalWeight = 0;
for (auto i = 0; i < numSamples; i++) {
jointCounts[secondFeature[i].item<int>()][firstFeature[i].item<int>()] += weights[i].item<double>();
totalWeight += weights[i].item<float>();
}
if (totalWeight == 0)
return 0;
double entropyValue = 0;
for (int value = 0; value < featureCounts.sizes()[0]; ++value) {
double p_f = featureCounts[value].item<double>() / totalWeight;
double entropy_f = 0;
for (auto& [label, jointCount] : jointCounts[value]) {
double p_l_f = jointCount / featureCounts[value].item<double>();
if (p_l_f > 0) {
entropy_f -= p_l_f * log(p_l_f);
} else {
entropy_f = 0;
}
}
entropyValue += p_f * entropy_f;
}
return entropyValue;
}
// I(X;Y) = H(Y) - H(Y|X)
double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
{
return entropy(firstFeature, weights) - conditionalEntropy(firstFeature, secondFeature, weights);
}
/*
Compute the maximum spanning tree considering the weights as distances
and the indices of the weights as nodes of this square matrix using
Kruskal algorithm
*/
vector<pair<int, int>> Metrics::maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root)
{
auto mst = MST(features, weights, root);
return mst.maximumSpanningTree();
}
}

View File

@@ -0,0 +1,32 @@
#ifndef BAYESNET_METRICS_H
#define BAYESNET_METRICS_H
#include <torch/torch.h>
#include <vector>
#include <string>
namespace bayesnet {
using namespace std;
using namespace torch;
class Metrics {
private:
Tensor samples; // nxm tensor used to fit the model
vector<string> features;
string className;
int classNumStates = 0;
vector<double> scoresKBest;
vector<int> featuresKBest; // sorted indices of the features
double entropy(const Tensor& feature, const Tensor& weights);
double conditionalEntropy(const Tensor& firstFeature, const Tensor& secondFeature, const Tensor& weights);
vector<pair<string, string>> doCombinations(const vector<string>&);
public:
Metrics() = default;
Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates);
Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates);
vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending=false, unsigned k = 0);
vector<double> getScoresKBest() const;
double mutualInformation(const Tensor& firstFeature, const Tensor& secondFeature, const Tensor& weights);
vector<float> conditionalEdgeWeights(vector<float>& weights); // To use in Python
Tensor conditionalEdge(const torch::Tensor& weights);
vector<pair<int, int>> maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root);
};
}
#endif

91
src/BayesNet/BoostAODE.cc Normal file
View File

@@ -0,0 +1,91 @@
#include "BoostAODE.h"
#include <set>
#include "BayesMetrics.h"
namespace bayesnet {
BoostAODE::BoostAODE() : Ensemble() {}
void BoostAODE::buildModel(const torch::Tensor& weights)
{
// Models shall be built in trainModel
}
void BoostAODE::setHyperparameters(nlohmann::json& hyperparameters)
{
// Check if hyperparameters are valid
const vector<string> validKeys = { "repeatSparent", "maxModels", "ascending" };
checkHyperparameters(validKeys, hyperparameters);
if (hyperparameters.contains("repeatSparent")) {
repeatSparent = hyperparameters["repeatSparent"];
}
if (hyperparameters.contains("maxModels")) {
maxModels = hyperparameters["maxModels"];
}
if (hyperparameters.contains("ascending")) {
ascending = hyperparameters["ascending"];
}
}
void BoostAODE::trainModel(const torch::Tensor& weights)
{
models.clear();
n_models = 0;
if (maxModels == 0)
maxModels = .1 * n > 10 ? .1 * n : n;
Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
auto X_ = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
auto y_ = dataset.index({ -1, "..." });
bool exitCondition = false;
unordered_set<int> featuresUsed;
// Step 0: Set the finish condition
// if not repeatSparent a finish condition is run out of features
// n_models == maxModels
int numClasses = states[className].size();
while (!exitCondition) {
// Step 1: Build ranking with mutual information
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
unique_ptr<Classifier> model;
auto feature = featureSelection[0];
if (!repeatSparent || featuresUsed.size() < featureSelection.size()) {
bool found = false;
for (auto feat : featureSelection) {
if (find(featuresUsed.begin(), featuresUsed.end(), feat) != featuresUsed.end()) {
continue;
}
found = true;
feature = feat;
break;
}
if (!found) {
exitCondition = true;
continue;
}
}
featuresUsed.insert(feature);
model = std::make_unique<SPODE>(feature);
n_models++;
model->fit(dataset, features, className, states, weights_);
auto ypred = model->predict(X_);
// Step 3.1: Compute the classifier amout of say
auto mask_wrong = ypred != y_;
auto masked_weights = weights_ * mask_wrong.to(weights_.dtype());
double wrongWeights = masked_weights.sum().item<double>();
double significance = wrongWeights == 0 ? 1 : 0.5 * log((1 - wrongWeights) / wrongWeights);
// Step 3.2: Update weights for next classifier
// Step 3.2.1: Update weights of wrong samples
weights_ += mask_wrong.to(weights_.dtype()) * exp(significance) * weights_;
// Step 3.3: Normalise the weights
double totalWeights = torch::sum(weights_).item<double>();
weights_ = weights_ / totalWeights;
// Step 3.4: Store classifier and its accuracy to weigh its future vote
models.push_back(std::move(model));
significanceModels.push_back(significance);
exitCondition = n_models == maxModels && repeatSparent;
}
if (featuresUsed.size() != features.size()) {
cout << "Warning: BoostAODE did not use all the features" << endl;
}
weights.copy_(weights_);
}
vector<string> BoostAODE::graph(const string& title) const
{
return Ensemble::graph(title);
}
}

21
src/BayesNet/BoostAODE.h Normal file
View File

@@ -0,0 +1,21 @@
#ifndef BOOSTAODE_H
#define BOOSTAODE_H
#include "Ensemble.h"
#include "SPODE.h"
namespace bayesnet {
class BoostAODE : public Ensemble {
public:
BoostAODE();
virtual ~BoostAODE() {};
vector<string> graph(const string& title = "BoostAODE") const override;
void setHyperparameters(nlohmann::json& hyperparameters) override;
protected:
void buildModel(const torch::Tensor& weights) override;
void trainModel(const torch::Tensor& weights) override;
private:
bool repeatSparent=false;
int maxModels=0;
bool ascending=false; //Process KBest features ascending or descending order
};
}
#endif

View File

@@ -1,2 +1,9 @@
add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc Metrics.cc BaseClassifier.cc KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc Mst.cc) include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
target_link_libraries(BayesNet "${TORCH_LIBRARIES}") include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc
KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc BoostAODE.cc
Mst.cc Proposal.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
target_link_libraries(BayesNet mdlp "${TORCH_LIBRARIES}")

163
src/BayesNet/Classifier.cc Normal file
View File

@@ -0,0 +1,163 @@
#include "Classifier.h"
#include "bayesnetUtils.h"
namespace bayesnet {
using namespace torch;
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
Classifier& Classifier::build(vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights)
{
this->features = features;
this->className = className;
this->states = states;
m = dataset.size(1);
n = dataset.size(0) - 1;
checkFitParameters();
auto n_classes = states[className].size();
metrics = Metrics(dataset, features, className, n_classes);
model.initialize();
buildModel(weights);
trainModel(weights);
fitted = true;
return *this;
}
void Classifier::buildDataset(Tensor& ytmp)
{
try {
auto yresized = torch::transpose(ytmp.view({ ytmp.size(0), 1 }), 0, 1);
dataset = torch::cat({ dataset, yresized }, 0);
}
catch (const std::exception& e) {
std::cerr << e.what() << '\n';
cout << "X dimensions: " << dataset.sizes() << "\n";
cout << "y dimensions: " << ytmp.sizes() << "\n";
exit(1);
}
}
void Classifier::trainModel(const torch::Tensor& weights)
{
model.fit(dataset, weights, features, className, states);
}
// X is nxm where n is the number of features and m the number of samples
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
{
dataset = X;
buildDataset(y);
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
return build(features, className, states, weights);
}
// X is nxm where n is the number of features and m the number of samples
Classifier& Classifier::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
{
dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, kInt32);
for (int i = 0; i < X.size(); ++i) {
dataset.index_put_({ i, "..." }, torch::tensor(X[i], kInt32));
}
auto ytmp = torch::tensor(y, kInt32);
buildDataset(ytmp);
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
return build(features, className, states, weights);
}
Classifier& Classifier::fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states)
{
this->dataset = dataset;
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
return build(features, className, states, weights);
}
Classifier& Classifier::fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights)
{
this->dataset = dataset;
return build(features, className, states, weights);
}
void Classifier::checkFitParameters()
{
if (n != features.size()) {
throw invalid_argument("X " + to_string(n) + " and features " + to_string(features.size()) + " must have the same number of features");
}
if (states.find(className) == states.end()) {
throw invalid_argument("className not found in states");
}
for (auto feature : features) {
if (states.find(feature) == states.end()) {
throw invalid_argument("feature [" + feature + "] not found in states");
}
}
}
Tensor Classifier::predict(Tensor& X)
{
if (!fitted) {
throw logic_error("Classifier has not been fitted");
}
return model.predict(X);
}
vector<int> Classifier::predict(vector<vector<int>>& X)
{
if (!fitted) {
throw logic_error("Classifier has not been fitted");
}
auto m_ = X[0].size();
auto n_ = X.size();
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
for (auto i = 0; i < n_; i++) {
Xd[i] = vector<int>(X[i].begin(), X[i].end());
}
auto yp = model.predict(Xd);
return yp;
}
float Classifier::score(Tensor& X, Tensor& y)
{
if (!fitted) {
throw logic_error("Classifier has not been fitted");
}
Tensor y_pred = predict(X);
return (y_pred == y).sum().item<float>() / y.size(0);
}
float Classifier::score(vector<vector<int>>& X, vector<int>& y)
{
if (!fitted) {
throw logic_error("Classifier has not been fitted");
}
return model.score(X, y);
}
vector<string> Classifier::show() const
{
return model.show();
}
void Classifier::addNodes()
{
// Add all nodes to the network
for (const auto& feature : features) {
model.addNode(feature);
}
model.addNode(className);
}
int Classifier::getNumberOfNodes() const
{
// Features does not include class
return fitted ? model.getFeatures().size() + 1 : 0;
}
int Classifier::getNumberOfEdges() const
{
return fitted ? model.getNumEdges() : 0;
}
int Classifier::getNumberOfStates() const
{
return fitted ? model.getStates() : 0;
}
vector<string> Classifier::topological_order()
{
return model.topological_sort();
}
void Classifier::dump_cpt() const
{
model.dump_cpt();
}
void Classifier::checkHyperparameters(const vector<string>& validKeys, nlohmann::json& hyperparameters)
{
for (const auto& item : hyperparameters.items()) {
if (find(validKeys.begin(), validKeys.end(), item.key()) == validKeys.end()) {
throw invalid_argument("Hyperparameter " + item.key() + " is not valid");
}
}
}
}

53
src/BayesNet/Classifier.h Normal file
View File

@@ -0,0 +1,53 @@
#ifndef CLASSIFIER_H
#define CLASSIFIER_H
#include <torch/torch.h>
#include "BaseClassifier.h"
#include "Network.h"
#include "BayesMetrics.h"
using namespace std;
using namespace torch;
namespace bayesnet {
class Classifier : public BaseClassifier {
private:
void buildDataset(torch::Tensor& y);
Classifier& build(vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights);
protected:
bool fitted;
int m, n; // m: number of samples, n: number of features
Network model;
Metrics metrics;
vector<string> features;
string className;
map<string, vector<int>> states;
Tensor dataset; // (n+1)xm tensor
void checkFitParameters();
virtual void buildModel(const torch::Tensor& weights) = 0;
void trainModel(const torch::Tensor& weights) override;
void checkHyperparameters(const vector<string>& validKeys, nlohmann::json& hyperparameters);
public:
Classifier(Network model);
virtual ~Classifier() = default;
Classifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
Classifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
Classifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override;
Classifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights) override;
void addNodes();
int getNumberOfNodes() const override;
int getNumberOfEdges() const override;
int getNumberOfStates() const override;
Tensor predict(Tensor& X) override;
vector<int> predict(vector<vector<int>>& X) override;
float score(Tensor& X, Tensor& y) override;
float score(vector<vector<int>>& X, vector<int>& y) override;
vector<string> show() const override;
vector<string> topological_order() override;
void dump_cpt() const override;
};
}
#endif

View File

@@ -1,64 +1,54 @@
#include "Ensemble.h" #include "Ensemble.h"
namespace bayesnet { namespace bayesnet {
using namespace std;
using namespace torch; using namespace torch;
Ensemble::Ensemble() : m(0), n(0), n_models(0), metrics(Metrics()), fitted(false) {} Ensemble::Ensemble() : Classifier(Network()) {}
Ensemble& Ensemble::build(vector<string>& features, string className, map<string, vector<int>>& states)
void Ensemble::trainModel(const torch::Tensor& weights)
{ {
dataset = cat({ X, y.view({y.size(0), 1}) }, 1);
this->features = features;
this->className = className;
this->states = states;
auto n_classes = states[className].size();
metrics = Metrics(dataset, features, className, n_classes);
// Build models
train();
// Train models
n_models = models.size(); n_models = models.size();
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {
models[i]->fit(Xv, yv, features, className, states); // fit with vectors
models[i]->fit(dataset, features, className, states);
} }
fitted = true;
return *this;
} }
Ensemble& Ensemble::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) vector<int> Ensemble::voting(Tensor& y_pred)
{ {
this->X = torch::zeros({ static_cast<int64_t>(X[0].size()), static_cast<int64_t>(X.size()) }, kInt64); auto y_pred_ = y_pred.accessor<int, 2>();
Xv = X; vector<int> y_pred_final;
for (int i = 0; i < X.size(); ++i) { for (int i = 0; i < y_pred.size(0); ++i) {
this->X.index_put_({ "...", i }, torch::tensor(X[i], kInt64)); vector<double> votes(y_pred.size(1), 0);
for (int j = 0; j < y_pred.size(1); ++j) {
votes[y_pred_[i][j]] += significanceModels[j];
}
// argsort in descending order
auto indices = argsort(votes);
y_pred_final.push_back(indices[0]);
} }
this->y = torch::tensor(y, kInt64); return y_pred_final;
yv = y;
return build(features, className, states);
} }
Tensor Ensemble::predict(Tensor& X) Tensor Ensemble::predict(Tensor& X)
{ {
if (!fitted) { if (!fitted) {
throw logic_error("Ensemble has not been fitted"); throw logic_error("Ensemble has not been fitted");
} }
Tensor y_pred = torch::zeros({ X.size(0), n_models }, kInt64); Tensor y_pred = torch::zeros({ X.size(1), n_models }, kInt32);
//Create a threadpool
auto threads{ vector<thread>() };
mutex mtx;
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {
y_pred.index_put_({ "...", i }, models[i]->predict(X)); threads.push_back(thread([&, i]() {
auto ypredict = models[i]->predict(X);
lock_guard<mutex> lock(mtx);
y_pred.index_put_({ "...", i }, ypredict);
}));
}
for (auto& thread : threads) {
thread.join();
} }
return torch::tensor(voting(y_pred)); return torch::tensor(voting(y_pred));
} }
vector<int> Ensemble::voting(Tensor& y_pred)
{
auto y_pred_ = y_pred.accessor<int64_t, 2>();
vector<int> y_pred_final;
for (int i = 0; i < y_pred.size(0); ++i) {
vector<float> votes(states[className].size(), 0);
for (int j = 0; j < y_pred.size(1); ++j) {
votes[y_pred_[i][j]] += 1;
}
auto indices = argsort(votes);
y_pred_final.push_back(indices[0]);
}
return y_pred_final;
}
vector<int> Ensemble::predict(vector<vector<int>>& X) vector<int> Ensemble::predict(vector<vector<int>>& X)
{ {
if (!fitted) { if (!fitted) {
@@ -70,12 +60,26 @@ namespace bayesnet {
for (auto i = 0; i < n_; i++) { for (auto i = 0; i < n_; i++) {
Xd[i] = vector<int>(X[i].begin(), X[i].end()); Xd[i] = vector<int>(X[i].begin(), X[i].end());
} }
Tensor y_pred = torch::zeros({ m_, n_models }, kInt64); Tensor y_pred = torch::zeros({ m_, n_models }, kInt32);
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {
y_pred.index_put_({ "...", i }, torch::tensor(models[i]->predict(Xd), kInt64)); y_pred.index_put_({ "...", i }, torch::tensor(models[i]->predict(Xd), kInt32));
} }
return voting(y_pred); return voting(y_pred);
} }
float Ensemble::score(Tensor& X, Tensor& y)
{
if (!fitted) {
throw logic_error("Ensemble has not been fitted");
}
auto y_pred = predict(X);
int correct = 0;
for (int i = 0; i < y_pred.size(0); ++i) {
if (y_pred[i].item<int>() == y[i].item<int>()) {
correct++;
}
}
return (double)correct / y_pred.size(0);
}
float Ensemble::score(vector<vector<int>>& X, vector<int>& y) float Ensemble::score(vector<vector<int>>& X, vector<int>& y)
{ {
if (!fitted) { if (!fitted) {
@@ -89,9 +93,8 @@ namespace bayesnet {
} }
} }
return (double)correct / y_pred.size(); return (double)correct / y_pred.size();
} }
vector<string> Ensemble::show() vector<string> Ensemble::show() const
{ {
auto result = vector<string>(); auto result = vector<string>();
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {
@@ -100,7 +103,7 @@ namespace bayesnet {
} }
return result; return result;
} }
vector<string> Ensemble::graph(string title) vector<string> Ensemble::graph(const string& title) const
{ {
auto result = vector<string>(); auto result = vector<string>();
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {
@@ -109,4 +112,28 @@ namespace bayesnet {
} }
return result; return result;
} }
int Ensemble::getNumberOfNodes() const
{
int nodes = 0;
for (auto i = 0; i < n_models; ++i) {
nodes += models[i]->getNumberOfNodes();
}
return nodes;
}
int Ensemble::getNumberOfEdges() const
{
int edges = 0;
for (auto i = 0; i < n_models; ++i) {
edges += models[i]->getNumberOfEdges();
}
return edges;
}
int Ensemble::getNumberOfStates() const
{
int nstates = 0;
for (auto i = 0; i < n_models; ++i) {
nstates += models[i]->getNumberOfStates();
}
return nstates;
}
} }

View File

@@ -1,42 +1,41 @@
#ifndef ENSEMBLE_H #ifndef ENSEMBLE_H
#define ENSEMBLE_H #define ENSEMBLE_H
#include <torch/torch.h> #include <torch/torch.h>
#include "BaseClassifier.h" #include "Classifier.h"
#include "Metrics.hpp" #include "BayesMetrics.h"
#include "bayesnetUtils.h" #include "bayesnetUtils.h"
using namespace std; using namespace std;
using namespace torch; using namespace torch;
namespace bayesnet { namespace bayesnet {
class Ensemble { class Ensemble : public Classifier {
private: private:
bool fitted;
long n_models;
Ensemble& build(vector<string>& features, string className, map<string, vector<int>>& states); Ensemble& build(vector<string>& features, string className, map<string, vector<int>>& states);
protected: protected:
vector<unique_ptr<BaseClassifier>> models; unsigned n_models;
int m, n; // m: number of samples, n: number of features vector<unique_ptr<Classifier>> models;
Tensor X; vector<double> significanceModels;
vector<vector<int>> Xv; void trainModel(const torch::Tensor& weights) override;
Tensor y;
vector<int> yv;
Tensor dataset;
Metrics metrics;
vector<string> features;
string className;
map<string, vector<int>> states;
void virtual train() = 0;
vector<int> voting(Tensor& y_pred); vector<int> voting(Tensor& y_pred);
public: public:
Ensemble(); Ensemble();
virtual ~Ensemble() = default; virtual ~Ensemble() = default;
Ensemble& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states); Tensor predict(Tensor& X) override;
Tensor predict(Tensor& X); vector<int> predict(vector<vector<int>>& X) override;
vector<int> predict(vector<vector<int>>& X); float score(Tensor& X, Tensor& y) override;
float score(Tensor& X, Tensor& y); float score(vector<vector<int>>& X, vector<int>& y) override;
float score(vector<vector<int>>& X, vector<int>& y); int getNumberOfNodes() const override;
vector<string> show(); int getNumberOfEdges() const override;
vector<string> graph(string title); int getNumberOfStates() const override;
vector<string> show() const override;
vector<string> graph(const string& title) const override;
vector<string> topological_order() override
{
return vector<string>();
}
void dump_cpt() const override
{
}
}; };
} }
#endif #endif

View File

@@ -1,11 +1,10 @@
#include "KDB.h" #include "KDB.h"
namespace bayesnet { namespace bayesnet {
using namespace std;
using namespace torch; using namespace torch;
KDB::KDB(int k, float theta) : BaseClassifier(Network()), k(k), theta(theta) {} KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {}
void KDB::train() void KDB::buildModel(const torch::Tensor& weights)
{ {
/* /*
1. For each feature Xi, compute mutual information, I(X;C), 1. For each feature Xi, compute mutual information, I(X;C),
@@ -28,25 +27,25 @@ namespace bayesnet {
*/ */
// 1. For each feature Xi, compute mutual information, I(X;C), // 1. For each feature Xi, compute mutual information, I(X;C),
// where C is the class. // where C is the class.
vector <float> mi; addNodes();
const Tensor& y = dataset.index({ -1, "..." });
vector<double> mi;
for (auto i = 0; i < features.size(); i++) { for (auto i = 0; i < features.size(); i++) {
Tensor firstFeature = X.index({ "...", i }); Tensor firstFeature = dataset.index({ i, "..." });
mi.push_back(metrics.mutualInformation(firstFeature, y)); mi.push_back(metrics.mutualInformation(firstFeature, y, weights));
} }
// 2. Compute class conditional mutual information I(Xi;XjIC), f or each // 2. Compute class conditional mutual information I(Xi;XjIC), f or each
auto conditionalEdgeWeights = metrics.conditionalEdge(); auto conditionalEdgeWeights = metrics.conditionalEdge(weights);
// 3. Let the used variable list, S, be empty. // 3. Let the used variable list, S, be empty.
vector<int> S; vector<int> S;
// 4. Let the DAG network being constructed, BN, begin with a single // 4. Let the DAG network being constructed, BN, begin with a single
// class node, C. // class node, C.
model.addNode(className, states[className].size());
// 5. Repeat until S includes all domain features // 5. Repeat until S includes all domain features
// 5.1. Select feature Xmax which is not in S and has the largest value // 5.1. Select feature Xmax which is not in S and has the largest value
// I(Xmax;C). // I(Xmax;C).
auto order = argsort(mi); auto order = argsort(mi);
for (auto idx : order) { for (auto idx : order) {
// 5.2. Add a node to BN representing Xmax. // 5.2. Add a node to BN representing Xmax.
model.addNode(features[idx], states[features[idx]].size());
// 5.3. Add an arc from C to Xmax in BN. // 5.3. Add an arc from C to Xmax in BN.
model.addEdge(className, features[idx]); model.addEdge(className, features[idx]);
// 5.4. Add m = min(lSl,/c) arcs from m distinct features Xj in S with // 5.4. Add m = min(lSl,/c) arcs from m distinct features Xj in S with
@@ -80,11 +79,12 @@ namespace bayesnet {
exit_cond = num == n_edges || candidates.size(0) == 0; exit_cond = num == n_edges || candidates.size(0) == 0;
} }
} }
vector<string> KDB::graph(string title) vector<string> KDB::graph(const string& title) const
{ {
string header{ title };
if (title == "KDB") { if (title == "KDB") {
title += " (k=" + to_string(k) + ", theta=" + to_string(theta) + ")"; header += " (k=" + to_string(k) + ", theta=" + to_string(theta) + ")";
} }
return model.graph(title); return model.graph(header);
} }
} }

View File

@@ -1,20 +1,23 @@
#ifndef KDB_H #ifndef KDB_H
#define KDB_H #define KDB_H
#include "BaseClassifier.h" #include <torch/torch.h>
#include "Classifier.h"
#include "bayesnetUtils.h" #include "bayesnetUtils.h"
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
using namespace torch; using namespace torch;
class KDB : public BaseClassifier { class KDB : public Classifier {
private: private:
int k; int k;
float theta; float theta;
void add_m_edges(int idx, vector<int>& S, Tensor& weights); void add_m_edges(int idx, vector<int>& S, Tensor& weights);
protected: protected:
void train() override; void buildModel(const torch::Tensor& weights) override;
public: public:
KDB(int k, float theta = 0.03); explicit KDB(int k, float theta = 0.03);
vector<string> graph(string name = "KDB") override; virtual ~KDB() {};
void setHyperparameters(nlohmann::json& hyperparameters) override {};
vector<string> graph(const string& name = "KDB") const override;
}; };
} }
#endif #endif

30
src/BayesNet/KDBLd.cc Normal file
View File

@@ -0,0 +1,30 @@
#include "KDBLd.h"
namespace bayesnet {
using namespace std;
KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {}
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network
KDB::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
}
Tensor KDBLd::predict(Tensor& X)
{
auto Xt = prepareX(X);
return KDB::predict(Xt);
}
vector<string> KDBLd::graph(const string& name) const
{
return KDB::graph(name);
}
}

20
src/BayesNet/KDBLd.h Normal file
View File

@@ -0,0 +1,20 @@
#ifndef KDBLD_H
#define KDBLD_H
#include "KDB.h"
#include "Proposal.h"
namespace bayesnet {
using namespace std;
class KDBLd : public KDB, public Proposal {
private:
public:
explicit KDBLd(int k);
virtual ~KDBLd() = default;
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "KDB") const override;
Tensor predict(Tensor& X) override;
void setHyperparameters(nlohmann::json& hyperparameters) override {};
static inline string version() { return "0.0.1"; };
};
}
#endif // !KDBLD_H

View File

@@ -1,131 +0,0 @@
#include "Metrics.hpp"
#include "Mst.h"
using namespace std;
namespace bayesnet {
Metrics::Metrics(torch::Tensor& samples, vector<string>& features, string& className, int classNumStates)
: samples(samples)
, features(features)
, className(className)
, classNumStates(classNumStates)
{
}
Metrics::Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates)
: features(features)
, className(className)
, classNumStates(classNumStates)
{
samples = torch::zeros({ static_cast<int64_t>(vsamples[0].size()), static_cast<int64_t>(vsamples.size() + 1) }, torch::kInt64);
for (int i = 0; i < vsamples.size(); ++i) {
samples.index_put_({ "...", i }, torch::tensor(vsamples[i], torch::kInt64));
}
samples.index_put_({ "...", -1 }, torch::tensor(labels, torch::kInt64));
}
vector<pair<string, string>> Metrics::doCombinations(const vector<string>& source)
{
vector<pair<string, string>> result;
for (int i = 0; i < source.size(); ++i) {
string temp = source[i];
for (int j = i + 1; j < source.size(); ++j) {
result.push_back({ temp, source[j] });
}
}
return result;
}
torch::Tensor Metrics::conditionalEdge()
{
auto result = vector<double>();
auto source = vector<string>(features);
source.push_back(className);
auto combinations = doCombinations(source);
// Compute class prior
auto margin = torch::zeros({ classNumStates });
for (int value = 0; value < classNumStates; ++value) {
auto mask = samples.index({ "...", -1 }) == value;
margin[value] = mask.sum().item<float>() / samples.sizes()[0];
}
for (auto [first, second] : combinations) {
int64_t index_first = find(features.begin(), features.end(), first) - features.begin();
int64_t index_second = find(features.begin(), features.end(), second) - features.begin();
double accumulated = 0;
for (int value = 0; value < classNumStates; ++value) {
auto mask = samples.index({ "...", -1 }) == value;
auto first_dataset = samples.index({ mask, index_first });
auto second_dataset = samples.index({ mask, index_second });
auto mi = mutualInformation(first_dataset, second_dataset);
auto pb = margin[value].item<float>();
accumulated += pb * mi;
}
result.push_back(accumulated);
}
long n_vars = source.size();
auto matrix = torch::zeros({ n_vars, n_vars });
auto indices = torch::triu_indices(n_vars, n_vars, 1);
for (auto i = 0; i < result.size(); ++i) {
auto x = indices[0][i];
auto y = indices[1][i];
matrix[x][y] = result[i];
matrix[y][x] = result[i];
}
return matrix;
}
vector<float> Metrics::conditionalEdgeWeights()
{
auto matrix = conditionalEdge();
std::vector<float> v(matrix.data_ptr<float>(), matrix.data_ptr<float>() + matrix.numel());
return v;
}
double Metrics::entropy(torch::Tensor& feature)
{
torch::Tensor counts = feature.bincount();
int totalWeight = counts.sum().item<int>();
torch::Tensor probs = counts.to(torch::kFloat) / totalWeight;
torch::Tensor logProbs = torch::log(probs);
torch::Tensor entropy = -probs * logProbs;
return entropy.nansum().item<double>();
}
// H(Y|X) = sum_{x in X} p(x) H(Y|X=x)
double Metrics::conditionalEntropy(torch::Tensor& firstFeature, torch::Tensor& secondFeature)
{
int numSamples = firstFeature.sizes()[0];
torch::Tensor featureCounts = secondFeature.bincount();
unordered_map<int, unordered_map<int, double>> jointCounts;
double totalWeight = 0;
for (auto i = 0; i < numSamples; i++) {
jointCounts[secondFeature[i].item<int>()][firstFeature[i].item<int>()] += 1;
totalWeight += 1;
}
if (totalWeight == 0)
throw invalid_argument("Total weight should not be zero");
double entropyValue = 0;
for (int value = 0; value < featureCounts.sizes()[0]; ++value) {
double p_f = featureCounts[value].item<double>() / totalWeight;
double entropy_f = 0;
for (auto& [label, jointCount] : jointCounts[value]) {
double p_l_f = jointCount / featureCounts[value].item<double>();
if (p_l_f > 0) {
entropy_f -= p_l_f * log(p_l_f);
} else {
entropy_f = 0;
}
}
entropyValue += p_f * entropy_f;
}
return entropyValue;
}
// I(X;Y) = H(Y) - H(Y|X)
double Metrics::mutualInformation(torch::Tensor& firstFeature, torch::Tensor& secondFeature)
{
return entropy(firstFeature) - conditionalEntropy(firstFeature, secondFeature);
}
/*
Compute the maximum spanning tree considering the weights as distances
and the indices of the weights as nodes of this square matrix using
Kruskal algorithm
*/
vector<pair<int, int>> Metrics::maximumSpanningTree(vector<string> features, Tensor& weights, int root)
{
auto result = vector<pair<int, int>>();
auto mst = MST(features, weights, root);
return mst.maximumSpanningTree();
}
}

View File

@@ -1,28 +0,0 @@
#ifndef BAYESNET_METRICS_H
#define BAYESNET_METRICS_H
#include <torch/torch.h>
#include <vector>
#include <string>
namespace bayesnet {
using namespace std;
using namespace torch;
class Metrics {
private:
Tensor samples;
vector<string> features;
string className;
int classNumStates;
public:
Metrics() = default;
Metrics(Tensor&, vector<string>&, string&, int);
Metrics(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&, const int);
double entropy(Tensor&);
double conditionalEntropy(Tensor&, Tensor&);
double mutualInformation(Tensor&, Tensor&);
vector<float> conditionalEdgeWeights();
Tensor conditionalEdge();
vector<pair<string, string>> doCombinations(const vector<string>&);
vector<pair<int, int>> maximumSpanningTree(vector<string> features, Tensor& weights, int root);
};
}
#endif

View File

@@ -7,9 +7,8 @@
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
Graph::Graph(int V) Graph::Graph(int V) : V(V), parent(vector<int>(V))
{ {
parent = vector<int>(V);
for (int i = 0; i < V; i++) for (int i = 0; i < V; i++)
parent[i] = i; parent[i] = i;
G.clear(); G.clear();
@@ -34,10 +33,10 @@ namespace bayesnet {
} }
void Graph::kruskal_algorithm() void Graph::kruskal_algorithm()
{ {
int i, uSt, vEd;
// sort the edges ordered on decreasing weight // sort the edges ordered on decreasing weight
sort(G.begin(), G.end(), [](auto& left, auto& right) {return left.first > right.first;}); sort(G.begin(), G.end(), [](const auto& left, const auto& right) {return left.first > right.first;});
for (i = 0; i < G.size(); i++) { for (int i = 0; i < G.size(); i++) {
int uSt, vEd;
uSt = find_set(G[i].second.first); uSt = find_set(G[i].second.first);
vEd = find_set(G[i].second.second); vEd = find_set(G[i].second.second);
if (uSt != vEd) { if (uSt != vEd) {
@@ -95,7 +94,7 @@ namespace bayesnet {
return result; return result;
} }
MST::MST(vector<string>& features, Tensor& weights, int root) : features(features), weights(weights), root(root) {} MST::MST(const vector<string>& features, const Tensor& weights, const int root) : features(features), weights(weights), root(root) {}
vector<pair<int, int>> MST::maximumSpanningTree() vector<pair<int, int>> MST::maximumSpanningTree()
{ {
auto num_features = features.size(); auto num_features = features.size();
@@ -103,7 +102,7 @@ namespace bayesnet {
// Make a complete graph // Make a complete graph
for (int i = 0; i < num_features - 1; ++i) { for (int i = 0; i < num_features - 1; ++i) {
for (int j = i; j < num_features; ++j) { for (int j = i + 1; j < num_features; ++j) {
g.addEdge(i, j, weights[i][j].item<float>()); g.addEdge(i, j, weights[i][j].item<float>());
} }
} }

View File

@@ -10,10 +10,10 @@ namespace bayesnet {
private: private:
Tensor weights; Tensor weights;
vector<string> features; vector<string> features;
int root; int root = 0;
public: public:
MST() = default; MST() = default;
MST(vector<string>& features, Tensor& weights, int root); MST(const vector<string>& features, const Tensor& weights, const int root);
vector<pair<int, int>> maximumSpanningTree(); vector<pair<int, int>> maximumSpanningTree();
}; };
class Graph { class Graph {
@@ -23,7 +23,7 @@ namespace bayesnet {
vector <pair<float, pair<int, int>>> T; // vector for mst vector <pair<float, pair<int, int>>> T; // vector for mst
vector<int> parent; vector<int> parent;
public: public:
Graph(int V); explicit Graph(int V);
void addEdge(int u, int v, float wt); void addEdge(int u, int v, float wt);
int find_set(int i); int find_set(int i);
void union_set(int u, int v); void union_set(int u, int v);

View File

@@ -1,16 +1,26 @@
#include <thread> #include <thread>
#include <mutex> #include <mutex>
#include "Network.h" #include "Network.h"
#include "bayesnetUtils.h"
namespace bayesnet { namespace bayesnet {
Network::Network() : laplaceSmoothing(1), features(vector<string>()), className(""), classNumStates(0), maxThreads(0.8), fitted(false) {} Network::Network() : features(vector<string>()), className(""), classNumStates(0), fitted(false) {}
Network::Network(float maxT) : laplaceSmoothing(1), features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {} Network::Network(float maxT) : features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {}
Network::Network(float maxT, int smoothing) : laplaceSmoothing(smoothing), features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {} Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other.
Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other.getmaxThreads()), fitted(other.fitted) getmaxThreads()), fitted(other.fitted)
{ {
for (auto& pair : other.nodes) { for (const auto& pair : other.nodes) {
nodes[pair.first] = make_unique<Node>(*pair.second); nodes[pair.first] = std::make_unique<Node>(*pair.second);
} }
} }
void Network::initialize()
{
features = vector<string>();
className = "";
classNumStates = 0;
fitted = false;
nodes.clear();
samples = torch::Tensor();
}
float Network::getmaxThreads() float Network::getmaxThreads()
{ {
return maxThreads; return maxThreads;
@@ -19,27 +29,28 @@ namespace bayesnet {
{ {
return samples; return samples;
} }
void Network::addNode(string name, int numStates) void Network::addNode(const string& name)
{ {
if (name == "") {
throw invalid_argument("Node name cannot be empty");
}
if (nodes.find(name) != nodes.end()) {
return;
}
if (find(features.begin(), features.end(), name) == features.end()) { if (find(features.begin(), features.end(), name) == features.end()) {
features.push_back(name); features.push_back(name);
} }
if (nodes.find(name) != nodes.end()) { nodes[name] = std::make_unique<Node>(name);
// if node exists update its number of states
nodes[name]->setNumStates(numStates);
return;
}
nodes[name] = make_unique<Node>(name, numStates);
} }
vector<string> Network::getFeatures() vector<string> Network::getFeatures() const
{ {
return features; return features;
} }
int Network::getClassNumStates() int Network::getClassNumStates() const
{ {
return classNumStates; return classNumStates;
} }
int Network::getStates() int Network::getStates() const
{ {
int result = 0; int result = 0;
for (auto& node : nodes) { for (auto& node : nodes) {
@@ -47,7 +58,7 @@ namespace bayesnet {
} }
return result; return result;
} }
string Network::getClassName() string Network::getClassName() const
{ {
return className; return className;
} }
@@ -67,7 +78,7 @@ namespace bayesnet {
recStack.erase(nodeId); // remove node from recursion stack before function ends recStack.erase(nodeId); // remove node from recursion stack before function ends
return false; return false;
} }
void Network::addEdge(const string parent, const string child) void Network::addEdge(const string& parent, const string& child)
{ {
if (nodes.find(parent) == nodes.end()) { if (nodes.find(parent) == nodes.end()) {
throw invalid_argument("Parent node " + parent + " does not exist"); throw invalid_argument("Parent node " + parent + " does not exist");
@@ -87,27 +98,82 @@ namespace bayesnet {
nodes[child]->removeParent(nodes[parent].get()); nodes[child]->removeParent(nodes[parent].get());
throw invalid_argument("Adding this edge forms a cycle in the graph."); throw invalid_argument("Adding this edge forms a cycle in the graph.");
} }
} }
map<string, std::unique_ptr<Node>>& Network::getNodes() map<string, std::unique_ptr<Node>>& Network::getNodes()
{ {
return nodes; return nodes;
} }
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<string>& featureNames, const string& className) void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states, const torch::Tensor& weights)
{ {
features = featureNames; if (weights.size(0) != n_samples) {
this->className = className; throw invalid_argument("Weights (" + to_string(weights.size(0)) + ") must have the same number of elements as samples (" + to_string(n_samples) + ") in Network::fit");
dataset.clear();
// Build dataset & tensor of samples
samples = torch::zeros({ static_cast<int64_t>(input_data[0].size()), static_cast<int64_t>(input_data.size() + 1) }, torch::kInt64);
for (int i = 0; i < featureNames.size(); ++i) {
dataset[featureNames[i]] = input_data[i];
samples.index_put_({ "...", i }, torch::tensor(input_data[i], torch::kInt64));
} }
dataset[className] = labels; if (n_samples != n_samples_y) {
samples.index_put_({ "...", -1 }, torch::tensor(labels, torch::kInt64)); throw invalid_argument("X and y must have the same number of samples in Network::fit (" + to_string(n_samples) + " != " + to_string(n_samples_y) + ")");
classNumStates = *max_element(labels.begin(), labels.end()) + 1; }
if (n_features != featureNames.size()) {
throw invalid_argument("X and features must have the same number of features in Network::fit (" + to_string(n_features) + " != " + to_string(featureNames.size()) + ")");
}
if (n_features != features.size() - 1) {
throw invalid_argument("X and local features must have the same number of features in Network::fit (" + to_string(n_features) + " != " + to_string(features.size() - 1) + ")");
}
if (find(features.begin(), features.end(), className) == features.end()) {
throw invalid_argument("className not found in Network::features");
}
for (auto& feature : featureNames) {
if (find(features.begin(), features.end(), feature) == features.end()) {
throw invalid_argument("Feature " + feature + " not found in Network::features");
}
if (states.find(feature) == states.end()) {
throw invalid_argument("Feature " + feature + " not found in states");
}
}
}
void Network::setStates(const map<string, vector<int>>& states)
{
// Set states to every Node in the network
for (int i = 0; i < features.size(); ++i) {
nodes[features[i]]->setNumStates(states.at(features[i]).size());
}
classNumStates = nodes[className]->getNumStates();
}
// X comes in nxm, where n is the number of features and m the number of samples
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states, weights);
this->className = className;
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
samples = torch::cat({ X , ytmp }, 0);
for (int i = 0; i < featureNames.size(); ++i) {
auto row_feature = X.index({ i, "..." });
}
completeFit(states, weights);
}
void Network::fit(const torch::Tensor& samples, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{
checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states, weights);
this->className = className;
this->samples = samples;
completeFit(states, weights);
}
// input_data comes in nxm, where n is the number of features and m the number of samples
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<float>& weights_, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{
const torch::Tensor weights = torch::tensor(weights_, torch::kFloat64);
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states, weights);
this->className = className;
// Build tensor of samples (nxm) (n+1 because of the class)
samples = torch::zeros({ static_cast<int>(input_data.size() + 1), static_cast<int>(input_data[0].size()) }, torch::kInt32);
for (int i = 0; i < featureNames.size(); ++i) {
samples.index_put_({ i, "..." }, torch::tensor(input_data[i], torch::kInt32));
}
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
completeFit(states, weights);
}
void Network::completeFit(const map<string, vector<int>>& states, const torch::Tensor& weights)
{
setStates(states);
laplaceSmoothing = 1.0 / samples.size(1); // To use in CPT computation
int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads); int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads);
if (maxThreadsRunning < 1) { if (maxThreadsRunning < 1) {
maxThreadsRunning = 1; maxThreadsRunning = 1;
@@ -117,16 +183,10 @@ namespace bayesnet {
condition_variable cv; condition_variable cv;
int activeThreads = 0; int activeThreads = 0;
int nextNodeIndex = 0; int nextNodeIndex = 0;
while (nextNodeIndex < nodes.size()) { while (nextNodeIndex < nodes.size()) {
unique_lock<mutex> lock(mtx); unique_lock<mutex> lock(mtx);
cv.wait(lock, [&activeThreads, &maxThreadsRunning]() { return activeThreads < maxThreadsRunning; }); cv.wait(lock, [&activeThreads, &maxThreadsRunning]() { return activeThreads < maxThreadsRunning; });
threads.emplace_back([this, &nextNodeIndex, &mtx, &cv, &activeThreads, &weights]() {
if (nextNodeIndex >= nodes.size()) {
break; // No more work remaining
}
threads.emplace_back([this, &nextNodeIndex, &mtx, &cv, &activeThreads]() {
while (true) { while (true) {
unique_lock<mutex> lock(mtx); unique_lock<mutex> lock(mtx);
if (nextNodeIndex >= nodes.size()) { if (nextNodeIndex >= nodes.size()) {
@@ -135,8 +195,7 @@ namespace bayesnet {
auto& pair = *std::next(nodes.begin(), nextNodeIndex); auto& pair = *std::next(nodes.begin(), nextNodeIndex);
++nextNodeIndex; ++nextNodeIndex;
lock.unlock(); lock.unlock();
pair.second->computeCPT(samples, features, laplaceSmoothing, weights);
pair.second->computeCPT(dataset, laplaceSmoothing);
lock.lock(); lock.lock();
nodes[pair.first] = std::move(pair.second); nodes[pair.first] = std::move(pair.second);
lock.unlock(); lock.unlock();
@@ -145,7 +204,6 @@ namespace bayesnet {
--activeThreads; --activeThreads;
cv.notify_one(); cv.notify_one();
}); });
++activeThreads; ++activeThreads;
} }
for (auto& thread : threads) { for (auto& thread : threads) {
@@ -153,7 +211,39 @@ namespace bayesnet {
} }
fitted = true; fitted = true;
} }
torch::Tensor Network::predict_tensor(const torch::Tensor& samples, const bool proba)
{
if (!fitted) {
throw logic_error("You must call fit() before calling predict()");
}
torch::Tensor result;
result = torch::zeros({ samples.size(1), classNumStates }, torch::kFloat64);
for (int i = 0; i < samples.size(1); ++i) {
const Tensor sample = samples.index({ "...", i });
auto psample = predict_sample(sample);
auto temp = torch::tensor(psample, torch::kFloat64);
// result.index_put_({ i, "..." }, torch::tensor(predict_sample(sample), torch::kFloat64));
result.index_put_({ i, "..." }, temp);
}
if (proba)
return result;
else
return result.argmax(1);
}
// Return mxn tensor of probabilities
Tensor Network::predict_proba(const Tensor& samples)
{
return predict_tensor(samples, true);
}
// Return mxn tensor of probabilities
Tensor Network::predict(const Tensor& samples)
{
return predict_tensor(samples, false);
}
// Return mx1 vector of predictions
// tsamples is nxm vector of samples
vector<int> Network::predict(const vector<vector<int>>& tsamples) vector<int> Network::predict(const vector<vector<int>>& tsamples)
{ {
if (!fitted) { if (!fitted) {
@@ -174,6 +264,7 @@ namespace bayesnet {
} }
return predictions; return predictions;
} }
// Return mxn vector of probabilities
vector<vector<double>> Network::predict_proba(const vector<vector<int>>& tsamples) vector<vector<double>> Network::predict_proba(const vector<vector<int>>& tsamples)
{ {
if (!fitted) { if (!fitted) {
@@ -201,19 +292,33 @@ namespace bayesnet {
} }
return (double)correct / y_pred.size(); return (double)correct / y_pred.size();
} }
// Return 1xn vector of probabilities
vector<double> Network::predict_sample(const vector<int>& sample) vector<double> Network::predict_sample(const vector<int>& sample)
{ {
// Ensure the sample size is equal to the number of features // Ensure the sample size is equal to the number of features
if (sample.size() != features.size()) { if (sample.size() != features.size() - 1) {
throw invalid_argument("Sample size (" + to_string(sample.size()) + throw invalid_argument("Sample size (" + to_string(sample.size()) +
") does not match the number of features (" + to_string(features.size()) + ")"); ") does not match the number of features (" + to_string(features.size() - 1) + ")");
} }
map<string, int> evidence; map<string, int> evidence;
for (int i = 0; i < sample.size(); ++i) { for (int i = 0; i < sample.size(); ++i) {
evidence[features[i]] = sample[i]; evidence[features[i]] = sample[i];
} }
return exactInference(evidence); return exactInference(evidence);
}
// Return 1xn vector of probabilities
vector<double> Network::predict_sample(const Tensor& sample)
{
// Ensure the sample size is equal to the number of features
if (sample.size(0) != features.size() - 1) {
throw invalid_argument("Sample size (" + to_string(sample.size(0)) +
") does not match the number of features (" + to_string(features.size() - 1) + ")");
}
map<string, int> evidence;
for (int i = 0; i < sample.size(0); ++i) {
evidence[features[i]] = sample[i].item<int>();
}
return exactInference(evidence);
} }
double Network::computeFactor(map<string, int>& completeEvidence) double Network::computeFactor(map<string, int>& completeEvidence)
{ {
@@ -240,15 +345,12 @@ namespace bayesnet {
for (auto& thread : threads) { for (auto& thread : threads) {
thread.join(); thread.join();
} }
// Normalize result // Normalize result
double sum = accumulate(result.begin(), result.end(), 0.0); double sum = accumulate(result.begin(), result.end(), 0.0);
for (double& value : result) { transform(result.begin(), result.end(), result.begin(), [sum](const double& value) { return value / sum; });
value /= sum;
}
return result; return result;
} }
vector<string> Network::show() vector<string> Network::show() const
{ {
vector<string> result; vector<string> result;
// Draw the network // Draw the network
@@ -261,7 +363,7 @@ namespace bayesnet {
} }
return result; return result;
} }
vector<string> Network::graph(string title) vector<string> Network::graph(const string& title) const
{ {
auto output = vector<string>(); auto output = vector<string>();
auto prefix = "digraph BayesNet {\nlabel=<BayesNet "; auto prefix = "digraph BayesNet {\nlabel=<BayesNet ";
@@ -275,7 +377,7 @@ namespace bayesnet {
output.push_back("}\n"); output.push_back("}\n");
return output; return output;
} }
vector<pair<string, string>> Network::getEdges() vector<pair<string, string>> Network::getEdges() const
{ {
auto edges = vector<pair<string, string>>(); auto edges = vector<pair<string, string>>();
for (const auto& node : nodes) { for (const auto& node : nodes) {
@@ -287,5 +389,53 @@ namespace bayesnet {
} }
return edges; return edges;
} }
int Network::getNumEdges() const
{
return getEdges().size();
}
vector<string> Network::topological_sort()
{
/* Check if al the fathers of every node are before the node */
auto result = features;
result.erase(remove(result.begin(), result.end(), className), result.end());
bool ending{ false };
int idx = 0;
while (!ending) {
ending = true;
for (auto feature : features) {
auto fathers = nodes[feature]->getParents();
for (const auto& father : fathers) {
auto fatherName = father->getName();
if (fatherName == className) {
continue;
}
// Check if father is placed before the actual feature
auto it = find(result.begin(), result.end(), fatherName);
if (it != result.end()) {
auto it2 = find(result.begin(), result.end(), feature);
if (it2 != result.end()) {
if (distance(it, it2) < 0) {
// if it is not, insert it before the feature
result.erase(remove(result.begin(), result.end(), fatherName), result.end());
result.insert(it2, fatherName);
ending = false;
}
} else {
throw logic_error("Error in topological sort because of node " + feature + " is not in result");
}
} else {
throw logic_error("Error in topological sort because of node father " + fatherName + " is not in result");
}
}
}
}
return result;
}
void Network::dump_cpt() const
{
for (auto& node : nodes) {
cout << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << endl;
cout << node.second->getCPT() << endl;
}
}
} }

View File

@@ -7,46 +7,51 @@
namespace bayesnet { namespace bayesnet {
class Network { class Network {
private: private:
map<string, std::unique_ptr<Node>> nodes; map<string, unique_ptr<Node>> nodes;
map<string, vector<int>> dataset;
bool fitted; bool fitted;
float maxThreads; float maxThreads = 0.95;
int classNumStates; int classNumStates;
vector<string> features; vector<string> features; // Including classname
string className; string className;
int laplaceSmoothing; double laplaceSmoothing;
torch::Tensor samples; torch::Tensor samples; // nxm tensor used to fit the model
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&); bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
vector<double> predict_sample(const vector<int>&); vector<double> predict_sample(const vector<int>&);
vector<double> predict_sample(const torch::Tensor&);
vector<double> exactInference(map<string, int>&); vector<double> exactInference(map<string, int>&);
double computeFactor(map<string, int>&); double computeFactor(map<string, int>&);
double mutual_info(torch::Tensor&, torch::Tensor&); void completeFit(const map<string, vector<int>>& states, const torch::Tensor& weights);
double entropy(torch::Tensor&); void checkFitData(int n_features, int n_samples, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states, const torch::Tensor& weights);
double conditionalEntropy(torch::Tensor&, torch::Tensor&); void setStates(const map<string, vector<int>>&);
double mutualInformation(torch::Tensor&, torch::Tensor&);
public: public:
Network(); Network();
Network(float, int); explicit Network(float);
Network(float); explicit Network(Network&);
Network(Network&);
torch::Tensor& getSamples(); torch::Tensor& getSamples();
float getmaxThreads(); float getmaxThreads();
void addNode(string, int); void addNode(const string&);
void addEdge(const string, const string); void addEdge(const string&, const string&);
map<string, std::unique_ptr<Node>>& getNodes(); map<string, std::unique_ptr<Node>>& getNodes();
vector<string> getFeatures(); vector<string> getFeatures() const;
int getStates(); int getStates() const;
vector<pair<string, string>> getEdges(); vector<pair<string, string>> getEdges() const;
int getClassNumStates(); int getNumEdges() const;
string getClassName(); int getClassNumStates() const;
void fit(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&); string getClassName() const;
vector<int> predict(const vector<vector<int>>&); void fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<float>& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
//Computes the conditional edge weight of variable index u and v conditioned on class_node void fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
torch::Tensor conditionalEdgeWeight(); void fit(const torch::Tensor& samples, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
vector<vector<double>> predict_proba(const vector<vector<int>>&); vector<int> predict(const vector<vector<int>>&); // Return mx1 vector of predictions
torch::Tensor predict(const torch::Tensor&); // Return mx1 tensor of predictions
torch::Tensor predict_tensor(const torch::Tensor& samples, const bool proba);
vector<vector<double>> predict_proba(const vector<vector<int>>&); // Return mxn vector of probabilities
torch::Tensor predict_proba(const torch::Tensor&); // Return mxn tensor of probabilities
double score(const vector<vector<int>>&, const vector<int>&); double score(const vector<vector<int>>&, const vector<int>&);
vector<string> show(); vector<string> topological_sort();
vector<string> graph(string title); // Returns a vector of strings representing the graph in graphviz format vector<string> show() const;
vector<string> graph(const string& title) const; // Returns a vector of strings representing the graph in graphviz format
void initialize();
void dump_cpt() const;
inline string version() { return "0.1.0"; } inline string version() { return "0.1.0"; }
}; };
} }

View File

@@ -2,10 +2,18 @@
namespace bayesnet { namespace bayesnet {
Node::Node(const std::string& name, int numStates) Node::Node(const std::string& name)
: name(name), numStates(numStates), cpTable(torch::Tensor()), parents(vector<Node*>()), children(vector<Node*>()) : name(name), numStates(0), cpTable(torch::Tensor()), parents(vector<Node*>()), children(vector<Node*>())
{ {
} }
void Node::clear()
{
parents.clear();
children.clear();
cpTable = torch::Tensor();
dimensions.clear();
numStates = 0;
}
string Node::getName() const string Node::getName() const
{ {
return name; return name;
@@ -76,25 +84,34 @@ namespace bayesnet {
} }
return result; return result;
} }
void Node::computeCPT(map<string, vector<int>>& dataset, const int laplaceSmoothing) void Node::computeCPT(const torch::Tensor& dataset, const vector<string>& features, const double laplaceSmoothing, const torch::Tensor& weights)
{ {
dimensions.clear();
// Get dimensions of the CPT // Get dimensions of the CPT
dimensions.push_back(numStates); dimensions.push_back(numStates);
for (auto father : getParents()) { transform(parents.begin(), parents.end(), back_inserter(dimensions), [](const auto& parent) { return parent->getNumStates(); });
dimensions.push_back(father->getNumStates());
}
auto length = dimensions.size();
// Create a tensor of zeros with the dimensions of the CPT // Create a tensor of zeros with the dimensions of the CPT
cpTable = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing; cpTable = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing;
// Fill table with counts // Fill table with counts
for (int n_sample = 0; n_sample < dataset[name].size(); ++n_sample) { auto pos = find(features.begin(), features.end(), name);
if (pos == features.end()) {
throw logic_error("Feature " + name + " not found in dataset");
}
int name_index = pos - features.begin();
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
torch::List<c10::optional<torch::Tensor>> coordinates; torch::List<c10::optional<torch::Tensor>> coordinates;
coordinates.push_back(torch::tensor(dataset[name][n_sample])); coordinates.push_back(dataset.index({ name_index, n_sample }));
for (auto father : getParents()) { for (auto parent : parents) {
coordinates.push_back(torch::tensor(dataset[father->getName()][n_sample])); pos = find(features.begin(), features.end(), parent->getName());
if (pos == features.end()) {
throw logic_error("Feature parent " + parent->getName() + " not found in dataset");
}
int parent_index = pos - features.begin();
coordinates.push_back(dataset.index({ parent_index, n_sample }));
} }
// Increment the count of the corresponding coordinate // Increment the count of the corresponding coordinate
cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + 1); cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + weights.index({ n_sample }).item<double>());
} }
// Normalize the counts // Normalize the counts
cpTable = cpTable / cpTable.sum(0); cpTable = cpTable / cpTable.sum(0);
@@ -104,19 +121,15 @@ namespace bayesnet {
torch::List<c10::optional<torch::Tensor>> coordinates; torch::List<c10::optional<torch::Tensor>> coordinates;
// following predetermined order of indices in the cpTable (see Node.h) // following predetermined order of indices in the cpTable (see Node.h)
coordinates.push_back(torch::tensor(evidence[name])); coordinates.push_back(torch::tensor(evidence[name]));
for (auto parent : getParents()) { transform(parents.begin(), parents.end(), back_inserter(coordinates), [&evidence](const auto& parent) { return torch::tensor(evidence[parent->getName()]); });
coordinates.push_back(torch::tensor(evidence[parent->getName()]));
}
return cpTable.index({ coordinates }).item<float>(); return cpTable.index({ coordinates }).item<float>();
} }
vector<string> Node::graph(string className) vector<string> Node::graph(const string& className)
{ {
auto output = vector<string>(); auto output = vector<string>();
auto suffix = name == className ? ", fontcolor=red, fillcolor=lightblue, style=filled " : ""; auto suffix = name == className ? ", fontcolor=red, fillcolor=lightblue, style=filled " : "";
output.push_back(name + " [shape=circle" + suffix + "] \n"); output.push_back(name + " [shape=circle" + suffix + "] \n");
for (auto& child : children) { transform(children.begin(), children.end(), back_inserter(output), [this](const auto& child) { return name + " -> " + child->getName(); });
output.push_back(name + " -> " + child->getName());
}
return output; return output;
} }
} }

View File

@@ -16,7 +16,8 @@ namespace bayesnet {
vector<int64_t> dimensions; // dimensions of the cpTable vector<int64_t> dimensions; // dimensions of the cpTable
public: public:
vector<pair<string, string>> combinations(const vector<string>&); vector<pair<string, string>> combinations(const vector<string>&);
Node(const std::string&, int); explicit Node(const string&);
void clear();
void addParent(Node*); void addParent(Node*);
void addChild(Node*); void addChild(Node*);
void removeParent(Node*); void removeParent(Node*);
@@ -25,11 +26,11 @@ namespace bayesnet {
vector<Node*>& getParents(); vector<Node*>& getParents();
vector<Node*>& getChildren(); vector<Node*>& getChildren();
torch::Tensor& getCPT(); torch::Tensor& getCPT();
void computeCPT(map<string, vector<int>>&, const int); void computeCPT(const torch::Tensor& dataset, const vector<string>& features, const double laplaceSmoothing, const torch::Tensor& weights);
int getNumStates() const; int getNumStates() const;
void setNumStates(int); void setNumStates(int);
unsigned minFill(); unsigned minFill();
vector<string> graph(string clasName); // Returns a vector of strings representing the graph in graphviz format vector<string> graph(const string& clasName); // Returns a vector of strings representing the graph in graphviz format
float getFactorValue(map<string, int>&); float getFactorValue(map<string, int>&);
}; };
} }

110
src/BayesNet/Proposal.cc Normal file
View File

@@ -0,0 +1,110 @@
#include "Proposal.h"
#include "ArffFiles.h"
namespace bayesnet {
Proposal::Proposal(torch::Tensor& dataset_, vector<string>& features_, string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_) {}
Proposal::~Proposal()
{
for (auto& [key, value] : discretizers) {
delete value;
}
}
map<string, vector<int>> Proposal::localDiscretizationProposal(const map<string, vector<int>>& oldStates, Network& model)
{
// order of local discretization is important. no good 0, 1, 2...
// although we rediscretize features after the local discretization of every feature
auto order = model.topological_sort();
auto& nodes = model.getNodes();
map<string, vector<int>> states = oldStates;
vector<int> indicesToReDiscretize;
bool upgrade = false; // Flag to check if we need to upgrade the model
for (auto feature : order) {
auto nodeParents = nodes[feature]->getParents();
if (nodeParents.size() < 2) continue; // Only has class as parent
upgrade = true;
int index = find(pFeatures.begin(), pFeatures.end(), feature) - pFeatures.begin();
indicesToReDiscretize.push_back(index); // We need to re-discretize this feature
vector<string> parents;
transform(nodeParents.begin(), nodeParents.end(), back_inserter(parents), [](const auto& p) { return p->getName(); });
// Remove class as parent as it will be added later
parents.erase(remove(parents.begin(), parents.end(), pClassName), parents.end());
// Get the indices of the parents
vector<int> indices;
indices.push_back(-1); // Add class index
transform(parents.begin(), parents.end(), back_inserter(indices), [&](const auto& p) {return find(pFeatures.begin(), pFeatures.end(), p) - pFeatures.begin(); });
// Now we fit the discretizer of the feature, conditioned on its parents and the class i.e. discretizer.fit(X[index], X[indices] + y)
vector<string> yJoinParents(Xf.size(1));
for (auto idx : indices) {
for (int i = 0; i < Xf.size(1); ++i) {
yJoinParents[i] += to_string(pDataset.index({ idx, i }).item<int>());
}
}
auto arff = ArffFiles();
auto yxv = arff.factorize(yJoinParents);
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
auto xvf = vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
discretizers[feature]->fit(xvf, yxv);
//
//
//
// auto tmp = discretizers[feature]->transform(xvf);
// Xv[index] = tmp;
// auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
// iota(xStates.begin(), xStates.end(), 0);
// //Update new states of the feature/node
// states[feature] = xStates;
}
if (upgrade) {
// Discretize again X (only the affected indices) with the new fitted discretizers
for (auto index : indicesToReDiscretize) {
auto Xt_ptr = Xf.index({ index }).data_ptr<float>();
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
pDataset.index_put_({ index, "..." }, torch::tensor(discretizers[pFeatures[index]]->transform(Xt)));
auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0);
//Update new states of the feature/node
states[pFeatures[index]] = xStates;
}
const torch::Tensor weights = torch::full({ pDataset.size(1) }, 1.0 / pDataset.size(1), torch::kDouble);
model.fit(pDataset, weights, pFeatures, pClassName, states);
}
return states;
}
map<string, vector<int>> Proposal::fit_local_discretization(const torch::Tensor& y)
{
// Discretize the continuous input data and build pDataset (Classifier::dataset)
int m = Xf.size(1);
int n = Xf.size(0);
map<string, vector<int>> states;
pDataset = torch::zeros({ n + 1, m }, kInt32);
auto yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
// discretize input data by feature(row)
for (auto i = 0; i < pFeatures.size(); ++i) {
auto* discretizer = new mdlp::CPPFImdlp();
auto Xt_ptr = Xf.index({ i }).data_ptr<float>();
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
discretizer->fit(Xt, yv);
pDataset.index_put_({ i, "..." }, torch::tensor(discretizer->transform(Xt)));
auto xStates = vector<int>(discretizer->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0);
states[pFeatures[i]] = xStates;
discretizers[pFeatures[i]] = discretizer;
}
int n_classes = torch::max(y).item<int>() + 1;
auto yStates = vector<int>(n_classes);
iota(yStates.begin(), yStates.end(), 0);
states[pClassName] = yStates;
pDataset.index_put_({ n, "..." }, y);
return states;
}
torch::Tensor Proposal::prepareX(torch::Tensor& X)
{
auto Xtd = torch::zeros_like(X, torch::kInt32);
for (int i = 0; i < X.size(0); ++i) {
auto Xt = vector<float>(X[i].data_ptr<float>(), X[i].data_ptr<float>() + X.size(1));
auto Xd = discretizers[pFeatures[i]]->transform(Xt);
Xtd.index_put_({ i }, torch::tensor(Xd, torch::kInt32));
}
return Xtd;
}
}

29
src/BayesNet/Proposal.h Normal file
View File

@@ -0,0 +1,29 @@
#ifndef PROPOSAL_H
#define PROPOSAL_H
#include <string>
#include <map>
#include <torch/torch.h>
#include "Network.h"
#include "CPPFImdlp.h"
#include "Classifier.h"
namespace bayesnet {
class Proposal {
public:
Proposal(torch::Tensor& pDataset, vector<string>& features_, string& className_);
virtual ~Proposal();
protected:
torch::Tensor prepareX(torch::Tensor& X);
map<string, vector<int>> localDiscretizationProposal(const map<string, vector<int>>& states, Network& model);
map<string, vector<int>> fit_local_discretization(const torch::Tensor& y);
torch::Tensor Xf; // X continuous nxm tensor
torch::Tensor y; // y discrete nx1 tensor
map<string, mdlp::CPPFImdlp*> discretizers;
private:
torch::Tensor& pDataset; // (n+1)xm tensor
vector<string>& pFeatures;
string& pClassName;
};
}
#endif

View File

@@ -2,9 +2,9 @@
namespace bayesnet { namespace bayesnet {
SPODE::SPODE(int root) : BaseClassifier(Network()), root(root) {} SPODE::SPODE(int root) : Classifier(Network()), root(root) {}
void SPODE::train() void SPODE::buildModel(const torch::Tensor& weights)
{ {
// 0. Add all nodes to the model // 0. Add all nodes to the model
addNodes(); addNodes();
@@ -17,7 +17,7 @@ namespace bayesnet {
} }
} }
} }
vector<string> SPODE::graph(string name ) vector<string> SPODE::graph(const string& name) const
{ {
return model.graph(name); return model.graph(name);
} }

View File

@@ -1,15 +1,18 @@
#ifndef SPODE_H #ifndef SPODE_H
#define SPODE_H #define SPODE_H
#include "BaseClassifier.h" #include "Classifier.h"
namespace bayesnet { namespace bayesnet {
class SPODE : public BaseClassifier { class SPODE : public Classifier {
private: private:
int root; int root;
protected: protected:
void train() override; void buildModel(const torch::Tensor& weights) override;
public: public:
SPODE(int root); explicit SPODE(int root);
vector<string> graph(string name = "SPODE") override; virtual ~SPODE() {};
vector<string> graph(const string& name = "SPODE") const override;
void setHyperparameters(nlohmann::json& hyperparameters) override {};
}; };
} }
#endif #endif

46
src/BayesNet/SPODELd.cc Normal file
View File

@@ -0,0 +1,46 @@
#include "SPODELd.h"
namespace bayesnet {
using namespace std;
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
SPODE::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
}
SPODELd& SPODELd::fit(torch::Tensor& dataset, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
y = dataset.index({ -1, "..." }).clone();
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_;
className = className_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
SPODE::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
}
Tensor SPODELd::predict(Tensor& X)
{
auto Xt = prepareX(X);
return SPODE::predict(Xt);
}
vector<string> SPODELd::graph(const string& name) const
{
return SPODE::graph(name);
}
}

20
src/BayesNet/SPODELd.h Normal file
View File

@@ -0,0 +1,20 @@
#ifndef SPODELD_H
#define SPODELD_H
#include "SPODE.h"
#include "Proposal.h"
namespace bayesnet {
using namespace std;
class SPODELd : public SPODE, public Proposal {
public:
explicit SPODELd(int root);
virtual ~SPODELd() = default;
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
SPODELd& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "SPODE") const override;
Tensor predict(Tensor& X) override;
void setHyperparameters(nlohmann::json& hyperparameters) override {};
static inline string version() { return "0.0.1"; };
};
}
#endif // !SPODELD_H

View File

@@ -1,30 +1,29 @@
#include "TAN.h" #include "TAN.h"
namespace bayesnet { namespace bayesnet {
using namespace std;
using namespace torch; using namespace torch;
TAN::TAN() : BaseClassifier(Network()) {} TAN::TAN() : Classifier(Network()) {}
void TAN::train() void TAN::buildModel(const torch::Tensor& weights)
{ {
// 0. Add all nodes to the model // 0. Add all nodes to the model
addNodes(); addNodes();
// 1. Compute mutual information between each feature and the class and set the root node // 1. Compute mutual information between each feature and the class and set the root node
// as the highest mutual information with the class // as the highest mutual information with the class
auto mi = vector <pair<int, float >>(); auto mi = vector <pair<int, float >>();
Tensor class_dataset = dataset.index({ "...", -1 }); Tensor class_dataset = dataset.index({ -1, "..." });
for (int i = 0; i < static_cast<int>(features.size()); ++i) { for (int i = 0; i < static_cast<int>(features.size()); ++i) {
Tensor feature_dataset = dataset.index({ "...", i }); Tensor feature_dataset = dataset.index({ i, "..." });
auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset); auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset, weights);
mi.push_back({ i, mi_value }); mi.push_back({ i, mi_value });
} }
sort(mi.begin(), mi.end(), [](auto& left, auto& right) {return left.second < right.second;}); sort(mi.begin(), mi.end(), [](const auto& left, const auto& right) {return left.second < right.second;});
auto root = mi[mi.size() - 1].first; auto root = mi[mi.size() - 1].first;
// 2. Compute mutual information between each feature and the class // 2. Compute mutual information between each feature and the class
auto weights = metrics.conditionalEdge(); auto weights_matrix = metrics.conditionalEdge(weights);
// 3. Compute the maximum spanning tree // 3. Compute the maximum spanning tree
auto mst = metrics.maximumSpanningTree(features, weights, root); auto mst = metrics.maximumSpanningTree(features, weights_matrix, root);
// 4. Add edges from the maximum spanning tree to the model // 4. Add edges from the maximum spanning tree to the model
for (auto i = 0; i < mst.size(); ++i) { for (auto i = 0; i < mst.size(); ++i) {
auto [from, to] = mst[i]; auto [from, to] = mst[i];
@@ -35,7 +34,7 @@ namespace bayesnet {
model.addEdge(className, feature); model.addEdge(className, feature);
} }
} }
vector<string> TAN::graph(string title) vector<string> TAN::graph(const string& title) const
{ {
return model.graph(title); return model.graph(title);
} }

View File

@@ -1,16 +1,17 @@
#ifndef TAN_H #ifndef TAN_H
#define TAN_H #define TAN_H
#include "BaseClassifier.h" #include "Classifier.h"
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
using namespace torch; class TAN : public Classifier {
class TAN : public BaseClassifier {
private: private:
protected: protected:
void train() override; void buildModel(const torch::Tensor& weights) override;
public: public:
TAN(); TAN();
vector<string> graph(string name = "TAN") override; virtual ~TAN() {};
vector<string> graph(const string& name = "TAN") const override;
void setHyperparameters(nlohmann::json& hyperparameters) override {};
}; };
} }
#endif #endif

31
src/BayesNet/TANLd.cc Normal file
View File

@@ -0,0 +1,31 @@
#include "TANLd.h"
namespace bayesnet {
using namespace std;
TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {}
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
TAN::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
}
Tensor TANLd::predict(Tensor& X)
{
auto Xt = prepareX(X);
return TAN::predict(Xt);
}
vector<string> TANLd::graph(const string& name) const
{
return TAN::graph(name);
}
}

20
src/BayesNet/TANLd.h Normal file
View File

@@ -0,0 +1,20 @@
#ifndef TANLD_H
#define TANLD_H
#include "TAN.h"
#include "Proposal.h"
namespace bayesnet {
using namespace std;
class TANLd : public TAN, public Proposal {
private:
public:
TANLd();
virtual ~TANLd() = default;
TANLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "TAN") const override;
Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; };
void setHyperparameters(nlohmann::json& hyperparameters) override {};
};
}
#endif // !TANLD_H

View File

@@ -3,7 +3,8 @@
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
using namespace torch; using namespace torch;
vector<int> argsort(vector<float>& nums) // Return the indices in descending order
vector<int> argsort(vector<double>& nums)
{ {
int n = nums.size(); int n = nums.size();
vector<int> indices(n); vector<int> indices(n);
@@ -11,21 +12,16 @@ namespace bayesnet {
sort(indices.begin(), indices.end(), [&nums](int i, int j) {return nums[i] > nums[j];}); sort(indices.begin(), indices.end(), [&nums](int i, int j) {return nums[i] > nums[j];});
return indices; return indices;
} }
vector<vector<int>> tensorToVector(const Tensor& tensor) vector<vector<int>> tensorToVector(Tensor& tensor)
{ {
// convert mxn tensor to nxm vector // convert mxn tensor to nxm vector
vector<vector<int>> result; vector<vector<int>> result;
auto tensor_accessor = tensor.accessor<int, 2>(); // Iterate over cols
for (int i = 0; i < tensor.size(1); ++i) {
// Iterate over columns and rows of the tensor auto col_tensor = tensor.index({ "...", i });
for (int j = 0; j < tensor.size(1); ++j) { auto col = vector<int>(col_tensor.data_ptr<int>(), col_tensor.data_ptr<int>() + tensor.size(0));
vector<int> column; result.push_back(col);
for (int i = 0; i < tensor.size(0); ++i) {
column.push_back(tensor_accessor[i][j]);
}
result.push_back(column);
} }
return result; return result;
} }
} }

View File

@@ -5,7 +5,7 @@
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
using namespace torch; using namespace torch;
vector<int> argsort(vector<float>& nums); vector<int> argsort(vector<double>& nums);
vector<vector<int>> tensorToVector(const Tensor& tensor); vector<vector<int>> tensorToVector(Tensor& tensor);
} }
#endif //BAYESNET_UTILS_H #endif //BAYESNET_UTILS_H

10
src/Platform/BestResult.h Normal file
View File

@@ -0,0 +1,10 @@
#ifndef BESTRESULT_H
#define BESTRESULT_H
#include <string>
class BestResult {
public:
static std::string title() { return "STree_default (linear-ovo)"; }
static double score() { return 22.109799; }
static std::string scoreName() { return "accuracy"; }
};
#endif

View File

@@ -1,4 +1,12 @@
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet) include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
include_directories(${BayesNet_SOURCE_DIR}/src/Platform) include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
add_executable(main Experiment.cc ArffFiles.cc CPPFImdlp.cpp Metrics.cpp platformUtils.cc) include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
target_link_libraries(main BayesNet "${TORCH_LIBRARIES}") include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc ReportConsole.cc ReportBase.cc)
add_executable(manage manage.cc Results.cc ReportConsole.cc ReportExcel.cc ReportBase.cc)
add_executable(list list.cc platformUtils Datasets.cc)
target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
target_link_libraries(manage "${TORCH_LIBRARIES}" OpenXLSX::OpenXLSX)
target_link_libraries(list ArffFiles mdlp "${TORCH_LIBRARIES}")

View File

@@ -1,221 +0,0 @@
#include <numeric>
#include <algorithm>
#include <set>
#include <cmath>
#include "CPPFImdlp.h"
#include "Metrics.h"
namespace mdlp {
CPPFImdlp::CPPFImdlp(size_t min_length_, int max_depth_, float proposed) : min_length(min_length_),
max_depth(max_depth_),
proposed_cuts(proposed)
{
}
CPPFImdlp::CPPFImdlp() = default;
CPPFImdlp::~CPPFImdlp() = default;
size_t CPPFImdlp::compute_max_num_cut_points() const
{
// Set the actual maximum number of cut points as a number or as a percentage of the number of samples
if (proposed_cuts == 0) {
return numeric_limits<size_t>::max();
}
if (proposed_cuts < 0 || proposed_cuts > static_cast<float>(X.size())) {
throw invalid_argument("wrong proposed num_cuts value");
}
if (proposed_cuts < 1)
return static_cast<size_t>(round(static_cast<float>(X.size()) * proposed_cuts));
return static_cast<size_t>(proposed_cuts);
}
void CPPFImdlp::fit(samples_t& X_, labels_t& y_)
{
X = X_;
y = y_;
num_cut_points = compute_max_num_cut_points();
depth = 0;
discretizedData.clear();
cutPoints.clear();
if (X.size() != y.size()) {
throw invalid_argument("X and y must have the same size");
}
if (X.empty() || y.empty()) {
throw invalid_argument("X and y must have at least one element");
}
if (min_length < 3) {
throw invalid_argument("min_length must be greater than 2");
}
if (max_depth < 1) {
throw invalid_argument("max_depth must be greater than 0");
}
indices = sortIndices(X_, y_);
metrics.setData(y, indices);
computeCutPoints(0, X.size(), 1);
sort(cutPoints.begin(), cutPoints.end());
if (num_cut_points > 0) {
// Select the best (with lower entropy) cut points
while (cutPoints.size() > num_cut_points) {
resizeCutPoints();
}
}
}
pair<precision_t, size_t> CPPFImdlp::valueCutPoint(size_t start, size_t cut, size_t end)
{
size_t n;
size_t m;
size_t idxPrev = cut - 1 >= start ? cut - 1 : cut;
size_t idxNext = cut + 1 < end ? cut + 1 : cut;
bool backWall; // true if duplicates reach beginning of the interval
precision_t previous;
precision_t actual;
precision_t next;
previous = X[indices[idxPrev]];
actual = X[indices[cut]];
next = X[indices[idxNext]];
// definition 2 of the paper => X[t-1] < X[t]
// get the first equal value of X in the interval
while (idxPrev > start && actual == previous) {
previous = X[indices[--idxPrev]];
}
backWall = idxPrev == start && actual == previous;
// get the last equal value of X in the interval
while (idxNext < end - 1 && actual == next) {
next = X[indices[++idxNext]];
}
// # of duplicates before cutpoint
n = cut - 1 - idxPrev;
// # of duplicates after cutpoint
m = idxNext - cut - 1;
// Decide which values to use
cut = cut + (backWall ? m + 1 : -n);
actual = X[indices[cut]];
return { (actual + previous) / 2, cut };
}
void CPPFImdlp::computeCutPoints(size_t start, size_t end, int depth_)
{
size_t cut;
pair<precision_t, size_t> result;
// Check if the interval length and the depth are Ok
if (end - start < min_length || depth_ > max_depth)
return;
depth = depth_ > depth ? depth_ : depth;
cut = getCandidate(start, end);
if (cut == numeric_limits<size_t>::max())
return;
if (mdlp(start, cut, end)) {
result = valueCutPoint(start, cut, end);
cut = result.second;
cutPoints.push_back(result.first);
computeCutPoints(start, cut, depth_ + 1);
computeCutPoints(cut, end, depth_ + 1);
}
}
size_t CPPFImdlp::getCandidate(size_t start, size_t end)
{
/* Definition 1: A binary discretization for A is determined by selecting the cut point TA for which
E(A, TA; S) is minimal amongst all the candidate cut points. */
size_t candidate = numeric_limits<size_t>::max();
size_t elements = end - start;
bool sameValues = true;
precision_t entropy_left;
precision_t entropy_right;
precision_t minEntropy;
// Check if all the values of the variable in the interval are the same
for (size_t idx = start + 1; idx < end; idx++) {
if (X[indices[idx]] != X[indices[start]]) {
sameValues = false;
break;
}
}
if (sameValues)
return candidate;
minEntropy = metrics.entropy(start, end);
for (size_t idx = start + 1; idx < end; idx++) {
// Cutpoints are always on boundaries (definition 2)
if (y[indices[idx]] == y[indices[idx - 1]])
continue;
entropy_left = precision_t(idx - start) / static_cast<precision_t>(elements) * metrics.entropy(start, idx);
entropy_right = precision_t(end - idx) / static_cast<precision_t>(elements) * metrics.entropy(idx, end);
if (entropy_left + entropy_right < minEntropy) {
minEntropy = entropy_left + entropy_right;
candidate = idx;
}
}
return candidate;
}
bool CPPFImdlp::mdlp(size_t start, size_t cut, size_t end)
{
int k;
int k1;
int k2;
precision_t ig;
precision_t delta;
precision_t ent;
precision_t ent1;
precision_t ent2;
auto N = precision_t(end - start);
k = metrics.computeNumClasses(start, end);
k1 = metrics.computeNumClasses(start, cut);
k2 = metrics.computeNumClasses(cut, end);
ent = metrics.entropy(start, end);
ent1 = metrics.entropy(start, cut);
ent2 = metrics.entropy(cut, end);
ig = metrics.informationGain(start, cut, end);
delta = static_cast<precision_t>(log2(pow(3, precision_t(k)) - 2) -
(precision_t(k) * ent - precision_t(k1) * ent1 - precision_t(k2) * ent2));
precision_t term = 1 / N * (log2(N - 1) + delta);
return ig > term;
}
// Argsort from https://stackoverflow.com/questions/1577475/c-sorting-and-keeping-track-of-indexes
indices_t CPPFImdlp::sortIndices(samples_t& X_, labels_t& y_)
{
indices_t idx(X_.size());
iota(idx.begin(), idx.end(), 0);
stable_sort(idx.begin(), idx.end(), [&X_, &y_](size_t i1, size_t i2) {
if (X_[i1] == X_[i2])
return y_[i1] < y_[i2];
else
return X_[i1] < X_[i2];
});
return idx;
}
void CPPFImdlp::resizeCutPoints()
{
//Compute entropy of each of the whole cutpoint set and discards the biggest value
precision_t maxEntropy = 0;
precision_t entropy;
size_t maxEntropyIdx = 0;
size_t begin = 0;
size_t end;
for (size_t idx = 0; idx < cutPoints.size(); idx++) {
end = begin;
while (X[indices[end]] < cutPoints[idx] && end < X.size())
end++;
entropy = metrics.entropy(begin, end);
if (entropy > maxEntropy) {
maxEntropy = entropy;
maxEntropyIdx = idx;
}
begin = end;
}
cutPoints.erase(cutPoints.begin() + static_cast<long>(maxEntropyIdx));
}
labels_t& CPPFImdlp::transform(const samples_t& data)
{
discretizedData.reserve(data.size());
for (const precision_t& item : data) {
auto upper = upper_bound(cutPoints.begin(), cutPoints.end(), item);
discretizedData.push_back(upper - cutPoints.begin());
}
return discretizedData;
}
}

View File

@@ -1,45 +0,0 @@
#ifndef CPPFIMDLP_H
#define CPPFIMDLP_H
#include "typesFImdlp.h"
#include "Metrics.h"
#include <limits>
#include <utility>
#include <string>
namespace mdlp {
class CPPFImdlp {
protected:
size_t min_length = 3;
int depth = 0;
int max_depth = numeric_limits<int>::max();
float proposed_cuts = 0;
indices_t indices = indices_t();
samples_t X = samples_t();
labels_t y = labels_t();
Metrics metrics = Metrics(y, indices);
cutPoints_t cutPoints;
size_t num_cut_points = numeric_limits<size_t>::max();
labels_t discretizedData = labels_t();
static indices_t sortIndices(samples_t&, labels_t&);
void computeCutPoints(size_t, size_t, int);
void resizeCutPoints();
bool mdlp(size_t, size_t, size_t);
size_t getCandidate(size_t, size_t);
size_t compute_max_num_cut_points() const;
pair<precision_t, size_t> valueCutPoint(size_t, size_t, size_t);
public:
CPPFImdlp();
CPPFImdlp(size_t, int, float);
~CPPFImdlp();
void fit(samples_t&, labels_t&);
inline cutPoints_t getCutPoints() const { return cutPoints; };
labels_t& transform(const samples_t&);
inline int get_depth() const { return depth; };
static inline string version() { return "1.1.2"; };
};
}
#endif

14
src/Platform/Colors.h Normal file
View File

@@ -0,0 +1,14 @@
#ifndef COLORS_H
#define COLORS_H
class Colors {
public:
static std::string MAGENTA() { return "\033[1;35m"; }
static std::string BLUE() { return "\033[1;34m"; }
static std::string CYAN() { return "\033[1;36m"; }
static std::string GREEN() { return "\033[1;32m"; }
static std::string YELLOW() { return "\033[1;33m"; }
static std::string RED() { return "\033[1;31m"; }
static std::string WHITE() { return "\033[1;37m"; }
static std::string RESET() { return "\033[0m"; }
};
#endif // COLORS_H

266
src/Platform/Datasets.cc Normal file
View File

@@ -0,0 +1,266 @@
#include "Datasets.h"
#include "platformUtils.h"
#include "ArffFiles.h"
namespace platform {
void Datasets::load()
{
ifstream catalog(path + "/all.txt");
if (catalog.is_open()) {
string line;
while (getline(catalog, line)) {
vector<string> tokens = split(line, ',');
string name = tokens[0];
string className = tokens[1];
datasets[name] = make_unique<Dataset>(path, name, className, discretize, fileType);
}
catalog.close();
} else {
throw invalid_argument("Unable to open catalog file. [" + path + "/all.txt" + "]");
}
}
vector<string> Datasets::getNames()
{
vector<string> result;
transform(datasets.begin(), datasets.end(), back_inserter(result), [](const auto& d) { return d.first; });
return result;
}
vector<string> Datasets::getFeatures(const string& name) const
{
if (datasets.at(name)->isLoaded()) {
return datasets.at(name)->getFeatures();
} else {
throw invalid_argument("Dataset not loaded.");
}
}
map<string, vector<int>> Datasets::getStates(const string& name) const
{
if (datasets.at(name)->isLoaded()) {
return datasets.at(name)->getStates();
} else {
throw invalid_argument("Dataset not loaded.");
}
}
void Datasets::loadDataset(const string& name) const
{
if (datasets.at(name)->isLoaded()) {
return;
} else {
datasets.at(name)->load();
}
}
string Datasets::getClassName(const string& name) const
{
if (datasets.at(name)->isLoaded()) {
return datasets.at(name)->getClassName();
} else {
throw invalid_argument("Dataset not loaded.");
}
}
int Datasets::getNSamples(const string& name) const
{
if (datasets.at(name)->isLoaded()) {
return datasets.at(name)->getNSamples();
} else {
throw invalid_argument("Dataset not loaded.");
}
}
int Datasets::getNClasses(const string& name)
{
if (datasets.at(name)->isLoaded()) {
auto className = datasets.at(name)->getClassName();
if (discretize) {
auto states = getStates(name);
return states.at(className).size();
}
auto [Xv, yv] = getVectors(name);
return *max_element(yv.begin(), yv.end()) + 1;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
vector<int> Datasets::getClassesCounts(const string& name) const
{
if (datasets.at(name)->isLoaded()) {
auto [Xv, yv] = datasets.at(name)->getVectors();
vector<int> counts(*max_element(yv.begin(), yv.end()) + 1);
for (auto y : yv) {
counts[y]++;
}
return counts;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
pair<vector<vector<float>>&, vector<int>&> Datasets::getVectors(const string& name)
{
if (!datasets[name]->isLoaded()) {
datasets[name]->load();
}
return datasets[name]->getVectors();
}
pair<vector<vector<int>>&, vector<int>&> Datasets::getVectorsDiscretized(const string& name)
{
if (!datasets[name]->isLoaded()) {
datasets[name]->load();
}
return datasets[name]->getVectorsDiscretized();
}
pair<torch::Tensor&, torch::Tensor&> Datasets::getTensors(const string& name)
{
if (!datasets[name]->isLoaded()) {
datasets[name]->load();
}
return datasets[name]->getTensors();
}
bool Datasets::isDataset(const string& name) const
{
return datasets.find(name) != datasets.end();
}
Dataset::Dataset(const Dataset& dataset) : path(dataset.path), name(dataset.name), className(dataset.className), n_samples(dataset.n_samples), n_features(dataset.n_features), features(dataset.features), states(dataset.states), loaded(dataset.loaded), discretize(dataset.discretize), X(dataset.X), y(dataset.y), Xv(dataset.Xv), Xd(dataset.Xd), yv(dataset.yv), fileType(dataset.fileType)
{
}
string Dataset::getName() const
{
return name;
}
string Dataset::getClassName() const
{
return className;
}
vector<string> Dataset::getFeatures() const
{
if (loaded) {
return features;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
int Dataset::getNFeatures() const
{
if (loaded) {
return n_features;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
int Dataset::getNSamples() const
{
if (loaded) {
return n_samples;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
map<string, vector<int>> Dataset::getStates() const
{
if (loaded) {
return states;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
pair<vector<vector<float>>&, vector<int>&> Dataset::getVectors()
{
if (loaded) {
return { Xv, yv };
} else {
throw invalid_argument("Dataset not loaded.");
}
}
pair<vector<vector<int>>&, vector<int>&> Dataset::getVectorsDiscretized()
{
if (loaded) {
return { Xd, yv };
} else {
throw invalid_argument("Dataset not loaded.");
}
}
pair<torch::Tensor&, torch::Tensor&> Dataset::getTensors()
{
if (loaded) {
buildTensors();
return { X, y };
} else {
throw invalid_argument("Dataset not loaded.");
}
}
void Dataset::load_csv()
{
ifstream file(path + "/" + name + ".csv");
if (file.is_open()) {
string line;
getline(file, line);
vector<string> tokens = split(line, ',');
features = vector<string>(tokens.begin(), tokens.end() - 1);
className = tokens.back();
for (auto i = 0; i < features.size(); ++i) {
Xv.push_back(vector<float>());
}
while (getline(file, line)) {
tokens = split(line, ',');
for (auto i = 0; i < features.size(); ++i) {
Xv[i].push_back(stof(tokens[i]));
}
yv.push_back(stoi(tokens.back()));
}
file.close();
} else {
throw invalid_argument("Unable to open dataset file.");
}
}
void Dataset::computeStates()
{
for (int i = 0; i < features.size(); ++i) {
states[features[i]] = vector<int>(*max_element(Xd[i].begin(), Xd[i].end()) + 1);
iota(begin(states[features[i]]), end(states[features[i]]), 0);
}
states[className] = vector<int>(*max_element(yv.begin(), yv.end()) + 1);
iota(begin(states[className]), end(states[className]), 0);
}
void Dataset::load_arff()
{
auto arff = ArffFiles();
arff.load(path + "/" + name + ".arff", className);
// Get Dataset X, y
Xv = arff.getX();
yv = arff.getY();
// Get className & Features
className = arff.getClassName();
auto attributes = arff.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& attribute) { return attribute.first; });
}
void Dataset::load()
{
if (loaded) {
return;
}
if (fileType == CSV) {
load_csv();
} else if (fileType == ARFF) {
load_arff();
}
if (discretize) {
Xd = discretizeDataset(Xv, yv);
computeStates();
}
n_samples = Xv[0].size();
n_features = Xv.size();
loaded = true;
}
void Dataset::buildTensors()
{
if (discretize) {
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kInt32);
} else {
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kFloat32);
}
for (int i = 0; i < features.size(); ++i) {
if (discretize) {
X.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
} else {
X.index_put_({ i, "..." }, torch::tensor(Xv[i], torch::kFloat32));
}
}
y = torch::tensor(yv, torch::kInt32);
}
}

68
src/Platform/Datasets.h Normal file
View File

@@ -0,0 +1,68 @@
#ifndef DATASETS_H
#define DATASETS_H
#include <torch/torch.h>
#include <map>
#include <vector>
#include <string>
namespace platform {
using namespace std;
enum fileType_t { CSV, ARFF };
class Dataset {
private:
string path;
string name;
fileType_t fileType;
string className;
int n_samples{ 0 }, n_features{ 0 };
vector<string> features;
map<string, vector<int>> states;
bool loaded;
bool discretize;
torch::Tensor X, y;
vector<vector<float>> Xv;
vector<vector<int>> Xd;
vector<int> yv;
void buildTensors();
void load_csv();
void load_arff();
void computeStates();
public:
Dataset(const string& path, const string& name, const string& className, bool discretize, fileType_t fileType) : path(path), name(name), className(className), discretize(discretize), loaded(false), fileType(fileType) {};
explicit Dataset(const Dataset&);
string getName() const;
string getClassName() const;
vector<string> getFeatures() const;
map<string, vector<int>> getStates() const;
pair<vector<vector<float>>&, vector<int>&> getVectors();
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized();
pair<torch::Tensor&, torch::Tensor&> getTensors();
int getNFeatures() const;
int getNSamples() const;
void load();
const bool inline isLoaded() const { return loaded; };
};
class Datasets {
private:
string path;
fileType_t fileType;
map<string, unique_ptr<Dataset>> datasets;
bool discretize;
void load(); // Loads the list of datasets
public:
explicit Datasets(const string& path, bool discretize = false, fileType_t fileType = ARFF) : path(path), discretize(discretize), fileType(fileType) { load(); };
vector<string> getNames();
vector<string> getFeatures(const string& name) const;
int getNSamples(const string& name) const;
string getClassName(const string& name) const;
int getNClasses(const string& name);
vector<int> getClassesCounts(const string& name) const;
map<string, vector<int>> getStates(const string& name) const;
pair<vector<vector<float>>&, vector<int>&> getVectors(const string& name);
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized(const string& name);
pair<torch::Tensor&, torch::Tensor&> getTensors(const string& name);
bool isDataset(const string& name) const;
void loadDataset(const string& name) const;
};
};
#endif

62
src/Platform/DotEnv.h Normal file
View File

@@ -0,0 +1,62 @@
#ifndef DOTENV_H
#define DOTENV_H
#include <string>
#include <map>
#include <fstream>
#include <sstream>
#include "platformUtils.h"
namespace platform {
class DotEnv {
private:
std::map<std::string, std::string> env;
std::string trim(const std::string& str)
{
std::string result = str;
result.erase(result.begin(), std::find_if(result.begin(), result.end(), [](int ch) {
return !std::isspace(ch);
}));
result.erase(std::find_if(result.rbegin(), result.rend(), [](int ch) {
return !std::isspace(ch);
}).base(), result.end());
return result;
}
public:
DotEnv()
{
std::ifstream file(".env");
if (!file.is_open()) {
std::cerr << "File .env not found" << std::endl;
exit(1);
}
std::string line;
while (std::getline(file, line)) {
line = trim(line);
if (line.empty() || line[0] == '#') {
continue;
}
std::istringstream iss(line);
std::string key, value;
if (std::getline(iss, key, '=') && std::getline(iss, value)) {
env[key] = value;
}
}
}
std::string get(const std::string& key)
{
return env[key];
}
std::vector<int> getSeeds()
{
auto seeds = std::vector<int>();
auto seeds_str = env["seeds"];
seeds_str = trim(seeds_str);
seeds_str = seeds_str.substr(1, seeds_str.size() - 2);
auto seeds_str_split = split(seeds_str, ',');
transform(seeds_str_split.begin(), seeds_str_split.end(), back_inserter(seeds), [](const std::string& str) {
return stoi(str);
});
return seeds;
}
};
}
#endif

View File

@@ -1,201 +1,193 @@
#include <iostream> #include "Experiment.h"
#include <string> #include "Datasets.h"
#include <torch/torch.h> #include "Models.h"
#include <thread> #include "ReportConsole.h"
#include <getopt.h>
#include "ArffFiles.h"
#include "Network.h"
#include "Metrics.hpp"
#include "CPPFImdlp.h"
#include "KDB.h"
#include "SPODE.h"
#include "AODE.h"
#include "TAN.h"
#include "platformUtils.h"
namespace platform {
using json = nlohmann::json;
string get_date()
{
time_t rawtime;
tm* timeinfo;
time(&rawtime);
timeinfo = std::localtime(&rawtime);
std::ostringstream oss;
oss << std::put_time(timeinfo, "%Y-%m-%d");
return oss.str();
}
string get_time()
{
time_t rawtime;
tm* timeinfo;
time(&rawtime);
timeinfo = std::localtime(&rawtime);
std::ostringstream oss;
oss << std::put_time(timeinfo, "%H:%M:%S");
return oss.str();
}
Experiment::Experiment() : hyperparameters(json::parse("{}")) {}
string Experiment::get_file_name()
{
string result = "results_" + score_name + "_" + model + "_" + platform + "_" + get_date() + "_" + get_time() + "_" + (stratified ? "1" : "0") + ".json";
return result;
}
using namespace std; json Experiment::build_json()
{
json result;
result["title"] = title;
result["date"] = get_date();
result["time"] = get_time();
result["model"] = model;
result["version"] = model_version;
result["platform"] = platform;
result["score_name"] = score_name;
result["language"] = language;
result["language_version"] = language_version;
result["discretized"] = discretized;
result["stratified"] = stratified;
result["folds"] = nfolds;
result["seeds"] = randomSeeds;
result["duration"] = duration;
result["results"] = json::array();
for (const auto& r : results) {
json j;
j["dataset"] = r.getDataset();
j["hyperparameters"] = r.getHyperparameters();
j["samples"] = r.getSamples();
j["features"] = r.getFeatures();
j["classes"] = r.getClasses();
j["score_train"] = r.getScoreTrain();
j["score_test"] = r.getScoreTest();
j["score"] = r.getScoreTest();
j["score_std"] = r.getScoreTestStd();
j["score_train_std"] = r.getScoreTrainStd();
j["score_test_std"] = r.getScoreTestStd();
j["train_time"] = r.getTrainTime();
j["train_time_std"] = r.getTrainTimeStd();
j["test_time"] = r.getTestTime();
j["test_time_std"] = r.getTestTimeStd();
j["time"] = r.getTestTime() + r.getTrainTime();
j["time_std"] = r.getTestTimeStd() + r.getTrainTimeStd();
j["scores_train"] = r.getScoresTrain();
j["scores_test"] = r.getScoresTest();
j["times_train"] = r.getTimesTrain();
j["times_test"] = r.getTimesTest();
j["nodes"] = r.getNodes();
j["leaves"] = r.getLeaves();
j["depth"] = r.getDepth();
result["results"].push_back(j);
}
return result;
}
void Experiment::save(const string& path)
{
json data = build_json();
ofstream file(path + "/" + get_file_name());
file << data;
file.close();
}
/* print a description of all supported options */ void Experiment::report()
void usage(const char* path) {
{ json data = build_json();
/* take only the last portion of the path */ ReportConsole report(data);
const char* basename = strrchr(path, '/'); report.show();
basename = basename ? basename + 1 : path; }
cout << "usage: " << basename << "[OPTION]" << endl; void Experiment::show()
cout << " -h, --help\t\t Print this help and exit." << endl; {
cout json data = build_json();
<< " -f, --file[=FILENAME]\t {diabetes, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}." cout << data.dump(4) << endl;
<< endl; }
cout << " -p, --path[=FILENAME]\t folder where the data files are located, default " << PATH << endl;
cout << " -m, --model={AODE, KDB, SPODE, TAN}\t " << endl;
}
tuple<string, string, string> parse_arguments(int argc, char** argv) void Experiment::go(vector<string> filesToProcess, const string& path)
{ {
string file_name; cout << "*** Starting experiment: " << title << " ***" << endl;
string model_name; for (auto fileName : filesToProcess) {
string path = PATH; cout << "- " << setw(20) << left << fileName << " " << right << flush;
const vector<struct option> long_options = { cross_validation(path, fileName);
{"help", no_argument, nullptr, 'h'}, cout << endl;
{"file", required_argument, nullptr, 'f'},
{"path", required_argument, nullptr, 'p'},
{"model", required_argument, nullptr, 'm'},
{nullptr, no_argument, nullptr, 0}
};
while (true) {
const auto c = getopt_long(argc, argv, "hf:p:m:", long_options.data(), nullptr);
if (c == -1)
break;
switch (c) {
case 'h':
usage(argv[0]);
exit(0);
case 'f':
file_name = string(optarg);
break;
case 'm':
model_name = string(optarg);
break;
case 'p':
path = optarg;
if (path.back() != '/')
path += '/';
break;
case '?':
usage(argv[0]);
exit(1);
default:
abort();
} }
} }
if (file_name.empty()) {
usage(argv[0]); void Experiment::cross_validation(const string& path, const string& fileName)
exit(1); {
auto datasets = platform::Datasets(path, discretized, platform::ARFF);
// Get dataset
auto [X, y] = datasets.getTensors(fileName);
auto states = datasets.getStates(fileName);
auto features = datasets.getFeatures(fileName);
auto samples = datasets.getNSamples(fileName);
auto className = datasets.getClassName(fileName);
cout << " (" << setw(5) << samples << "," << setw(3) << features.size() << ") " << flush;
// Prepare Result
auto result = Result();
auto [values, counts] = at::_unique(y);
result.setSamples(X.size(1)).setFeatures(X.size(0)).setClasses(values.size(0));
result.setHyperparameters(hyperparameters);
// Initialize results vectors
int nResults = nfolds * static_cast<int>(randomSeeds.size());
auto accuracy_test = torch::zeros({ nResults }, torch::kFloat64);
auto accuracy_train = torch::zeros({ nResults }, torch::kFloat64);
auto train_time = torch::zeros({ nResults }, torch::kFloat64);
auto test_time = torch::zeros({ nResults }, torch::kFloat64);
auto nodes = torch::zeros({ nResults }, torch::kFloat64);
auto edges = torch::zeros({ nResults }, torch::kFloat64);
auto num_states = torch::zeros({ nResults }, torch::kFloat64);
Timer train_timer, test_timer;
int item = 0;
for (auto seed : randomSeeds) {
cout << "(" << seed << ") doing Fold: " << flush;
Fold* fold;
if (stratified)
fold = new StratifiedKFold(nfolds, y, seed);
else
fold = new KFold(nfolds, y.size(0), seed);
for (int nfold = 0; nfold < nfolds; nfold++) {
auto clf = Models::instance()->create(model);
setModelVersion(clf->getVersion());
if (hyperparameters.size() != 0) {
clf->setHyperparameters(hyperparameters);
}
// Split train - test dataset
train_timer.start();
auto [train, test] = fold->getFold(nfold);
auto train_t = torch::tensor(train);
auto test_t = torch::tensor(test);
auto X_train = X.index({ "...", train_t });
auto y_train = y.index({ train_t });
auto X_test = X.index({ "...", test_t });
auto y_test = y.index({ test_t });
cout << nfold + 1 << ", " << flush;
// Train model
clf->fit(X_train, y_train, features, className, states);
nodes[item] = clf->getNumberOfNodes();
edges[item] = clf->getNumberOfEdges();
num_states[item] = clf->getNumberOfStates();
train_time[item] = train_timer.getDuration();
auto accuracy_train_value = clf->score(X_train, y_train);
// Test model
test_timer.start();
auto accuracy_test_value = clf->score(X_test, y_test);
test_time[item] = test_timer.getDuration();
accuracy_train[item] = accuracy_train_value;
accuracy_test[item] = accuracy_test_value;
// Store results and times in vector
result.addScoreTrain(accuracy_train_value);
result.addScoreTest(accuracy_test_value);
result.addTimeTrain(train_time[item].item<double>());
result.addTimeTest(test_time[item].item<double>());
item++;
}
cout << "end. " << flush;
}
result.setScoreTest(torch::mean(accuracy_test).item<double>()).setScoreTrain(torch::mean(accuracy_train).item<double>());
result.setScoreTestStd(torch::std(accuracy_test).item<double>()).setScoreTrainStd(torch::std(accuracy_train).item<double>());
result.setTrainTime(torch::mean(train_time).item<double>()).setTestTime(torch::mean(test_time).item<double>());
result.setTestTimeStd(torch::std(test_time).item<double>()).setTrainTimeStd(torch::std(train_time).item<double>());
result.setNodes(torch::mean(nodes).item<double>()).setLeaves(torch::mean(edges).item<double>()).setDepth(torch::mean(num_states).item<double>());
result.setDataset(fileName);
addResult(result);
} }
return make_tuple(file_name, path, model_name);
}
inline constexpr auto hash_conv(const std::string_view sv)
{
unsigned long hash{ 5381 };
for (unsigned char c : sv) {
hash = ((hash << 5) + hash) ^ c;
}
return hash;
}
inline constexpr auto operator"" _sh(const char* str, size_t len)
{
return hash_conv(std::string_view{ str, len });
}
tuple<string, string, string> get_options(int argc, char** argv)
{
map<string, bool> datasets = {
{"diabetes", true},
{"ecoli", true},
{"glass", true},
{"iris", true},
{"kdd_JapaneseVowels", false},
{"letter", true},
{"liver-disorders", true},
{"mfeat-factors", true},
};
vector <string> models = { "AODE", "KDB", "SPODE", "TAN" };
string file_name;
string path;
string model_name;
tie(file_name, path, model_name) = parse_arguments(argc, argv);
if (datasets.find(file_name) == datasets.end()) {
cout << "Invalid file name: " << file_name << endl;
usage(argv[0]);
exit(1);
}
if (!file_exists(path + file_name + ".arff")) {
cout << "Data File " << path + file_name + ".arff" << " does not exist" << endl;
usage(argv[0]);
exit(1);
}
if (find(models.begin(), models.end(), model_name) == models.end()) {
cout << "Invalid model name: " << model_name << endl;
usage(argv[0]);
exit(1);
}
return { file_name, path, model_name };
}
int main(int argc, char** argv)
{
string file_name, path, model_name;
tie(file_name, path, model_name) = get_options(argc, argv);
auto handler = ArffFiles();
handler.load(path + file_name + ".arff");
// Get Dataset X, y
vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();
// Get className & Features
auto className = handler.getClassName();
vector<string> features;
for (auto feature : handler.getAttributes()) {
features.push_back(feature.first);
}
// Discretize Dataset
vector<mdlp::labels_t> Xd;
map<string, int> maxes;
tie(Xd, maxes) = discretize(X, y, features);
maxes[className] = *max_element(y.begin(), y.end()) + 1;
map<string, vector<int>> states;
for (auto feature : features) {
states[feature] = vector<int>(maxes[feature]);
}
states[className] = vector<int>(
maxes[className]);
double score;
vector<string> lines;
vector<string> graph;
auto kdb = bayesnet::KDB(2);
auto aode = bayesnet::AODE();
auto spode = bayesnet::SPODE(2);
auto tan = bayesnet::TAN();
switch (hash_conv(model_name)) {
case "AODE"_sh:
aode.fit(Xd, y, features, className, states);
lines = aode.show();
score = aode.score(Xd, y);
graph = aode.graph();
break;
case "KDB"_sh:
kdb.fit(Xd, y, features, className, states);
lines = kdb.show();
score = kdb.score(Xd, y);
graph = kdb.graph();
break;
case "SPODE"_sh:
spode.fit(Xd, y, features, className, states);
lines = spode.show();
score = spode.score(Xd, y);
graph = spode.graph();
break;
case "TAN"_sh:
tan.fit(Xd, y, features, className, states);
lines = tan.show();
score = tan.score(Xd, y);
graph = tan.graph();
break;
}
for (auto line : lines) {
cout << line << endl;
}
cout << "Score: " << score << endl;
auto dot_file = model_name + "_" + file_name;
ofstream file(dot_file + ".dot");
file << graph;
file.close();
cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
return 0;
} }

View File

@@ -0,0 +1,117 @@
#ifndef EXPERIMENT_H
#define EXPERIMENT_H
#include <torch/torch.h>
#include <nlohmann/json.hpp>
#include <string>
#include <chrono>
#include "Folding.h"
#include "BaseClassifier.h"
#include "TAN.h"
#include "KDB.h"
#include "AODE.h"
using namespace std;
namespace platform {
using json = nlohmann::json;
class Timer {
private:
chrono::high_resolution_clock::time_point begin;
public:
Timer() = default;
~Timer() = default;
void start() { begin = chrono::high_resolution_clock::now(); }
double getDuration()
{
chrono::high_resolution_clock::time_point end = chrono::high_resolution_clock::now();
chrono::duration<double> time_span = chrono::duration_cast<chrono::duration<double>>(end - begin);
return time_span.count();
}
};
class Result {
private:
string dataset, model_version;
json hyperparameters;
int samples{ 0 }, features{ 0 }, classes{ 0 };
double score_train{ 0 }, score_test{ 0 }, score_train_std{ 0 }, score_test_std{ 0 }, train_time{ 0 }, train_time_std{ 0 }, test_time{ 0 }, test_time_std{ 0 };
float nodes{ 0 }, leaves{ 0 }, depth{ 0 };
vector<double> scores_train, scores_test, times_train, times_test;
public:
Result() = default;
Result& setDataset(const string& dataset) { this->dataset = dataset; return *this; }
Result& setHyperparameters(const json& hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
Result& setSamples(int samples) { this->samples = samples; return *this; }
Result& setFeatures(int features) { this->features = features; return *this; }
Result& setClasses(int classes) { this->classes = classes; return *this; }
Result& setScoreTrain(double score) { this->score_train = score; return *this; }
Result& setScoreTest(double score) { this->score_test = score; return *this; }
Result& setScoreTrainStd(double score_std) { this->score_train_std = score_std; return *this; }
Result& setScoreTestStd(double score_std) { this->score_test_std = score_std; return *this; }
Result& setTrainTime(double train_time) { this->train_time = train_time; return *this; }
Result& setTrainTimeStd(double train_time_std) { this->train_time_std = train_time_std; return *this; }
Result& setTestTime(double test_time) { this->test_time = test_time; return *this; }
Result& setTestTimeStd(double test_time_std) { this->test_time_std = test_time_std; return *this; }
Result& setNodes(float nodes) { this->nodes = nodes; return *this; }
Result& setLeaves(float leaves) { this->leaves = leaves; return *this; }
Result& setDepth(float depth) { this->depth = depth; return *this; }
Result& addScoreTrain(double score) { scores_train.push_back(score); return *this; }
Result& addScoreTest(double score) { scores_test.push_back(score); return *this; }
Result& addTimeTrain(double time) { times_train.push_back(time); return *this; }
Result& addTimeTest(double time) { times_test.push_back(time); return *this; }
const float get_score_train() const { return score_train; }
float get_score_test() { return score_test; }
const string& getDataset() const { return dataset; }
const json& getHyperparameters() const { return hyperparameters; }
const int getSamples() const { return samples; }
const int getFeatures() const { return features; }
const int getClasses() const { return classes; }
const double getScoreTrain() const { return score_train; }
const double getScoreTest() const { return score_test; }
const double getScoreTrainStd() const { return score_train_std; }
const double getScoreTestStd() const { return score_test_std; }
const double getTrainTime() const { return train_time; }
const double getTrainTimeStd() const { return train_time_std; }
const double getTestTime() const { return test_time; }
const double getTestTimeStd() const { return test_time_std; }
const float getNodes() const { return nodes; }
const float getLeaves() const { return leaves; }
const float getDepth() const { return depth; }
const vector<double>& getScoresTrain() const { return scores_train; }
const vector<double>& getScoresTest() const { return scores_test; }
const vector<double>& getTimesTrain() const { return times_train; }
const vector<double>& getTimesTest() const { return times_test; }
};
class Experiment {
private:
string title, model, platform, score_name, model_version, language_version, language;
bool discretized{ false }, stratified{ false };
vector<Result> results;
vector<int> randomSeeds;
json hyperparameters = "{}";
int nfolds{ 0 };
float duration{ 0 };
json build_json();
public:
Experiment();
Experiment& setTitle(const string& title) { this->title = title; return *this; }
Experiment& setModel(const string& model) { this->model = model; return *this; }
Experiment& setPlatform(const string& platform) { this->platform = platform; return *this; }
Experiment& setScoreName(const string& score_name) { this->score_name = score_name; return *this; }
Experiment& setModelVersion(const string& model_version) { this->model_version = model_version; return *this; }
Experiment& setLanguage(const string& language) { this->language = language; return *this; }
Experiment& setLanguageVersion(const string& language_version) { this->language_version = language_version; return *this; }
Experiment& setDiscretized(bool discretized) { this->discretized = discretized; return *this; }
Experiment& setStratified(bool stratified) { this->stratified = stratified; return *this; }
Experiment& setNFolds(int nfolds) { this->nfolds = nfolds; return *this; }
Experiment& addResult(Result result) { results.push_back(result); return *this; }
Experiment& addRandomSeed(int randomSeed) { randomSeeds.push_back(randomSeed); return *this; }
Experiment& setDuration(float duration) { this->duration = duration; return *this; }
Experiment& setHyperparameters(const json& hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
string get_file_name();
void save(const string& path);
void cross_validation(const string& path, const string& fileName);
void go(vector<string> filesToProcess, const string& path);
void show();
void report();
};
}
#endif

95
src/Platform/Folding.cc Normal file
View File

@@ -0,0 +1,95 @@
#include "Folding.h"
#include <algorithm>
#include <map>
Fold::Fold(int k, int n, int seed) : k(k), n(n), seed(seed)
{
random_device rd;
random_seed = default_random_engine(seed == -1 ? rd() : seed);
srand(seed == -1 ? time(0) : seed);
}
KFold::KFold(int k, int n, int seed) : Fold(k, n, seed), indices(vector<int>(n))
{
iota(begin(indices), end(indices), 0); // fill with 0, 1, ..., n - 1
shuffle(indices.begin(), indices.end(), random_seed);
}
pair<vector<int>, vector<int>> KFold::getFold(int nFold)
{
if (nFold >= k || nFold < 0) {
throw out_of_range("nFold (" + to_string(nFold) + ") must be less than k (" + to_string(k) + ")");
}
int nTest = n / k;
auto train = vector<int>();
auto test = vector<int>();
for (int i = 0; i < n; i++) {
if (i >= nTest * nFold && i < nTest * (nFold + 1)) {
test.push_back(indices[i]);
} else {
train.push_back(indices[i]);
}
}
return { train, test };
}
StratifiedKFold::StratifiedKFold(int k, torch::Tensor& y, int seed) : Fold(k, y.numel(), seed)
{
n = y.numel();
this->y = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + n);
build();
}
StratifiedKFold::StratifiedKFold(int k, const vector<int>& y, int seed)
: Fold(k, y.size(), seed)
{
this->y = y;
n = y.size();
build();
}
void StratifiedKFold::build()
{
stratified_indices = vector<vector<int>>(k);
int fold_size = n / k;
// Compute class counts and indices
auto class_indices = map<int, vector<int>>();
vector<int> class_counts(*max_element(y.begin(), y.end()) + 1, 0);
for (auto i = 0; i < n; ++i) {
class_counts[y[i]]++;
class_indices[y[i]].push_back(i);
}
// Shuffle class indices
for (auto& [cls, indices] : class_indices) {
shuffle(indices.begin(), indices.end(), random_seed);
}
// Assign indices to folds
for (auto label = 0; label < class_counts.size(); ++label) {
auto num_samples_to_take = class_counts[label] / k;
if (num_samples_to_take == 0)
continue;
auto remainder_samples_to_take = class_counts[label] % k;
for (auto fold = 0; fold < k; ++fold) {
auto it = next(class_indices[label].begin(), num_samples_to_take);
move(class_indices[label].begin(), it, back_inserter(stratified_indices[fold])); // ##
class_indices[label].erase(class_indices[label].begin(), it);
}
while (remainder_samples_to_take > 0) {
int fold = (rand() % static_cast<int>(k));
if (stratified_indices[fold].size() == fold_size + 1) {
continue;
}
auto it = next(class_indices[label].begin(), 1);
stratified_indices[fold].push_back(*class_indices[label].begin());
class_indices[label].erase(class_indices[label].begin(), it);
remainder_samples_to_take--;
}
}
}
pair<vector<int>, vector<int>> StratifiedKFold::getFold(int nFold)
{
if (nFold >= k || nFold < 0) {
throw out_of_range("nFold (" + to_string(nFold) + ") must be less than k (" + to_string(k) + ")");
}
vector<int> test_indices = stratified_indices[nFold];
vector<int> train_indices;
for (int i = 0; i < k; ++i) {
if (i == nFold) continue;
train_indices.insert(train_indices.end(), stratified_indices[i].begin(), stratified_indices[i].end());
}
return { train_indices, test_indices };
}

37
src/Platform/Folding.h Normal file
View File

@@ -0,0 +1,37 @@
#ifndef FOLDING_H
#define FOLDING_H
#include <torch/torch.h>
#include <vector>
#include <random>
using namespace std;
class Fold {
protected:
int k;
int n;
int seed;
default_random_engine random_seed;
public:
Fold(int k, int n, int seed = -1);
virtual pair<vector<int>, vector<int>> getFold(int nFold) = 0;
virtual ~Fold() = default;
int getNumberOfFolds() { return k; }
};
class KFold : public Fold {
private:
vector<int> indices;
public:
KFold(int k, int n, int seed = -1);
pair<vector<int>, vector<int>> getFold(int nFold) override;
};
class StratifiedKFold : public Fold {
private:
vector<int> y;
vector<vector<int>> stratified_indices;
void build();
public:
StratifiedKFold(int k, const vector<int>& y, int seed = -1);
StratifiedKFold(int k, torch::Tensor& y, int seed = -1);
pair<vector<int>, vector<int>> getFold(int nFold) override;
};
#endif

View File

@@ -1,78 +0,0 @@
#include "Metrics.h"
#include <set>
#include <cmath>
using namespace std;
namespace mdlp {
Metrics::Metrics(labels_t& y_, indices_t& indices_): y(y_), indices(indices_),
numClasses(computeNumClasses(0, indices.size()))
{
}
int Metrics::computeNumClasses(size_t start, size_t end)
{
set<int> nClasses;
for (auto i = start; i < end; ++i) {
nClasses.insert(y[indices[i]]);
}
return static_cast<int>(nClasses.size());
}
void Metrics::setData(const labels_t& y_, const indices_t& indices_)
{
indices = indices_;
y = y_;
numClasses = computeNumClasses(0, indices.size());
entropyCache.clear();
igCache.clear();
}
precision_t Metrics::entropy(size_t start, size_t end)
{
precision_t p;
precision_t ventropy = 0;
int nElements = 0;
labels_t counts(numClasses + 1, 0);
if (end - start < 2)
return 0;
if (entropyCache.find({ start, end }) != entropyCache.end()) {
return entropyCache[{start, end}];
}
for (auto i = &indices[start]; i != &indices[end]; ++i) {
counts[y[*i]]++;
nElements++;
}
for (auto count : counts) {
if (count > 0) {
p = static_cast<precision_t>(count) / static_cast<precision_t>(nElements);
ventropy -= p * log2(p);
}
}
entropyCache[{start, end}] = ventropy;
return ventropy;
}
precision_t Metrics::informationGain(size_t start, size_t cut, size_t end)
{
precision_t iGain;
precision_t entropyInterval;
precision_t entropyLeft;
precision_t entropyRight;
size_t nElementsLeft = cut - start;
size_t nElementsRight = end - cut;
size_t nElements = end - start;
if (igCache.find(make_tuple(start, cut, end)) != igCache.end()) {
return igCache[make_tuple(start, cut, end)];
}
entropyInterval = entropy(start, end);
entropyLeft = entropy(start, cut);
entropyRight = entropy(cut, end);
iGain = entropyInterval -
(static_cast<precision_t>(nElementsLeft) * entropyLeft +
static_cast<precision_t>(nElementsRight) * entropyRight) /
static_cast<precision_t>(nElements);
igCache[make_tuple(start, cut, end)] = iGain;
return iGain;
}
}

View File

@@ -1,22 +0,0 @@
#ifndef CCMETRICS_H
#define CCMETRICS_H
#include "typesFImdlp.h"
namespace mdlp {
class Metrics {
protected:
labels_t& y;
indices_t& indices;
int numClasses;
cacheEnt_t entropyCache = cacheEnt_t();
cacheIg_t igCache = cacheIg_t();
public:
Metrics(labels_t&, indices_t&);
void setData(const labels_t&, const indices_t&);
int computeNumClasses(size_t, size_t);
precision_t entropy(size_t, size_t);
precision_t informationGain(size_t, size_t, size_t);
};
}
#endif

54
src/Platform/Models.cc Normal file
View File

@@ -0,0 +1,54 @@
#include "Models.h"
namespace platform {
using namespace std;
// Idea from: https://www.codeproject.com/Articles/567242/AplusC-2b-2bplusObjectplusFactory
Models* Models::factory = nullptr;;
Models* Models::instance()
{
//manages singleton
if (factory == nullptr)
factory = new Models();
return factory;
}
void Models::registerFactoryFunction(const string& name,
function<bayesnet::BaseClassifier* (void)> classFactoryFunction)
{
// register the class factory function
functionRegistry[name] = classFactoryFunction;
}
shared_ptr<bayesnet::BaseClassifier> Models::create(const string& name)
{
bayesnet::BaseClassifier* instance = nullptr;
// find name in the registry and call factory method.
auto it = functionRegistry.find(name);
if (it != functionRegistry.end())
instance = it->second();
// wrap instance in a shared ptr and return
if (instance != nullptr)
return shared_ptr<bayesnet::BaseClassifier>(instance);
else
return nullptr;
}
vector<string> Models::getNames()
{
vector<string> names;
transform(functionRegistry.begin(), functionRegistry.end(), back_inserter(names),
[](const pair<string, function<bayesnet::BaseClassifier* (void)>>& pair) { return pair.first; });
return names;
}
string Models::toString()
{
string result = "";
for (const auto& pair : functionRegistry) {
result += pair.first + ", ";
}
return "{" + result.substr(0, result.size() - 2) + "}";
}
Registrar::Registrar(const string& name, function<bayesnet::BaseClassifier* (void)> classFactoryFunction)
{
// register the class factory function
Models::instance()->registerFactoryFunction(name, classFactoryFunction);
}
}

37
src/Platform/Models.h Normal file
View File

@@ -0,0 +1,37 @@
#ifndef MODELS_H
#define MODELS_H
#include <map>
#include "BaseClassifier.h"
#include "AODE.h"
#include "TAN.h"
#include "KDB.h"
#include "SPODE.h"
#include "TANLd.h"
#include "KDBLd.h"
#include "SPODELd.h"
#include "AODELd.h"
#include "BoostAODE.h"
namespace platform {
class Models {
private:
map<string, function<bayesnet::BaseClassifier* (void)>> functionRegistry;
static Models* factory; //singleton
Models() {};
public:
Models(Models&) = delete;
void operator=(const Models&) = delete;
// Idea from: https://www.codeproject.com/Articles/567242/AplusC-2b-2bplusObjectplusFactory
static Models* instance();
shared_ptr<bayesnet::BaseClassifier> create(const string& name);
void registerFactoryFunction(const string& name,
function<bayesnet::BaseClassifier* (void)> classFactoryFunction);
vector<string> getNames();
string toString();
};
class Registrar {
public:
Registrar(const string& className, function<bayesnet::BaseClassifier* (void)> classFactoryFunction);
};
}
#endif

12
src/Platform/Paths.h Normal file
View File

@@ -0,0 +1,12 @@
#ifndef PATHS_H
#define PATHS_H
#include <string>
namespace platform {
class Paths {
public:
static std::string datasets() { return "datasets/"; }
static std::string results() { return "results/"; }
static std::string excel() { return "excel/"; }
};
}
#endif

View File

@@ -0,0 +1,37 @@
#include <sstream>
#include <locale>
#include "ReportBase.h"
#include "BestResult.h"
namespace platform {
string ReportBase::fromVector(const string& key)
{
stringstream oss;
string sep = "";
oss << "[";
for (auto& item : data[key]) {
oss << sep << item.get<double>();
sep = ", ";
}
oss << "]";
return oss.str();
}
string ReportBase::fVector(const string& title, const json& data, const int width, const int precision)
{
stringstream oss;
string sep = "";
oss << title << "[";
for (const auto& item : data) {
oss << sep << fixed << setw(width) << setprecision(precision) << item.get<double>();
sep = ", ";
}
oss << "]";
return oss.str();
}
void ReportBase::show()
{
header();
body();
}
}

23
src/Platform/ReportBase.h Normal file
View File

@@ -0,0 +1,23 @@
#ifndef REPORTBASE_H
#define REPORTBASE_H
#include <string>
#include <iostream>
#include <nlohmann/json.hpp>
using json = nlohmann::json;
namespace platform {
using namespace std;
class ReportBase {
public:
explicit ReportBase(json data_) { data = data_; };
virtual ~ReportBase() = default;
void show();
protected:
json data;
string fromVector(const string& key);
string fVector(const string& title, const json& data, const int width, const int precision);
virtual void header() = 0;
virtual void body() = 0;
};
};
#endif

View File

@@ -0,0 +1,88 @@
#include <sstream>
#include <locale>
#include "ReportConsole.h"
#include "BestResult.h"
namespace platform {
struct separated : numpunct<char> {
char do_decimal_point() const { return ','; }
char do_thousands_sep() const { return '.'; }
string do_grouping() const { return "\03"; }
};
string ReportConsole::headerLine(const string& text)
{
int n = MAXL - text.length() - 3;
n = n < 0 ? 0 : n;
return "* " + text + string(n, ' ') + "*\n";
}
void ReportConsole::header()
{
locale mylocale(cout.getloc(), new separated);
locale::global(mylocale);
cout.imbue(mylocale);
stringstream oss;
cout << Colors::MAGENTA() << string(MAXL, '*') << endl;
cout << headerLine("Report " + data["model"].get<string>() + " ver. " + data["version"].get<string>() + " with " + to_string(data["folds"].get<int>()) + " Folds cross validation and " + to_string(data["seeds"].size()) + " random seeds. " + data["date"].get<string>() + " " + data["time"].get<string>());
cout << headerLine(data["title"].get<string>());
cout << headerLine("Random seeds: " + fromVector("seeds") + " Stratified: " + (data["stratified"].get<bool>() ? "True" : "False"));
oss << "Execution took " << setprecision(2) << fixed << data["duration"].get<float>() << " seconds, " << data["duration"].get<float>() / 3600 << " hours, on " << data["platform"].get<string>();
cout << headerLine(oss.str());
cout << headerLine("Score is " + data["score_name"].get<string>());
cout << string(MAXL, '*') << endl;
cout << endl;
}
void ReportConsole::body()
{
cout << Colors::GREEN() << "Dataset Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << endl;
cout << "============================== ====== ===== === ========= ========= ========= =============== ================== ===============" << endl;
json lastResult;
double totalScore = 0.0;
bool odd = true;
for (const auto& r : data["results"]) {
auto color = odd ? Colors::CYAN() : Colors::BLUE();
cout << color << setw(30) << left << r["dataset"].get<string>() << " ";
cout << setw(6) << right << r["samples"].get<int>() << " ";
cout << setw(5) << right << r["features"].get<int>() << " ";
cout << setw(3) << right << r["classes"].get<int>() << " ";
cout << setw(9) << setprecision(2) << fixed << r["nodes"].get<float>() << " ";
cout << setw(9) << setprecision(2) << fixed << r["leaves"].get<float>() << " ";
cout << setw(9) << setprecision(2) << fixed << r["depth"].get<float>() << " ";
cout << setw(8) << right << setprecision(6) << fixed << r["score"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["score_std"].get<double>() << " ";
cout << setw(11) << right << setprecision(6) << fixed << r["time"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["time_std"].get<double>() << " ";
try {
cout << r["hyperparameters"].get<string>();
}
catch (const exception& err) {
cout << r["hyperparameters"];
}
cout << endl;
lastResult = r;
totalScore += r["score"].get<double>();
odd = !odd;
}
if (data["results"].size() == 1) {
cout << string(MAXL, '*') << endl;
cout << headerLine(fVector("Train scores: ", lastResult["scores_train"], 14, 12));
cout << headerLine(fVector("Test scores: ", lastResult["scores_test"], 14, 12));
cout << headerLine(fVector("Train times: ", lastResult["times_train"], 10, 3));
cout << headerLine(fVector("Test times: ", lastResult["times_test"], 10, 3));
cout << string(MAXL, '*') << endl;
} else {
footer(totalScore);
}
}
void ReportConsole::footer(double totalScore)
{
cout << Colors::MAGENTA() << string(MAXL, '*') << endl;
auto score = data["score_name"].get<string>();
if (score == BestResult::scoreName()) {
stringstream oss;
oss << score << " compared to " << BestResult::title() << " .: " << totalScore / BestResult::score();
cout << headerLine(oss.str());
}
cout << string(MAXL, '*') << endl << Colors::RESET();
}
}

View File

@@ -0,0 +1,22 @@
#ifndef REPORTCONSOLE_H
#define REPORTCONSOLE_H
#include <string>
#include <iostream>
#include "ReportBase.h"
#include "Colors.h"
namespace platform {
using namespace std;
const int MAXL = 128;
class ReportConsole : public ReportBase{
public:
explicit ReportConsole(json data_) : ReportBase(data_) {};
virtual ~ReportConsole() = default;
private:
string headerLine(const string& text);
void header() override;
void body() override;
void footer(double totalScore);
};
};
#endif

109
src/Platform/ReportExcel.cc Normal file
View File

@@ -0,0 +1,109 @@
#include <sstream>
#include <locale>
#include "ReportExcel.h"
#include "BestResult.h"
namespace platform {
struct separated : numpunct<char> {
char do_decimal_point() const { return ','; }
char do_thousands_sep() const { return '.'; }
string do_grouping() const { return "\03"; }
};
void ReportExcel::createFile()
{
doc.create(Paths::excel() + "some_results.xlsx");
wks = doc.workbook().worksheet("Sheet1");
wks.setName(data["model"].get<string>());
}
void ReportExcel::closeFile()
{
doc.save();
doc.close();
}
void ReportExcel::header()
{
locale mylocale(cout.getloc(), new separated);
locale::global(mylocale);
cout.imbue(mylocale);
stringstream oss;
wks.cell("A1").value().set(
"Report " + data["model"].get<string>() + " ver. " + data["version"].get<string>() + " with " +
to_string(data["folds"].get<int>()) + " Folds cross validation and " + to_string(data["seeds"].size()) +
" random seeds. " + data["date"].get<string>() + " " + data["time"].get<string>());
wks.cell("A2").value() = data["title"].get<string>();
wks.cell("A3").value() = "Random seeds: " + fromVector("seeds") + " Stratified: " +
(data["stratified"].get<bool>() ? "True" : "False");
oss << "Execution took " << setprecision(2) << fixed << data["duration"].get<float>() << " seconds, "
<< data["duration"].get<float>() / 3600 << " hours, on " << data["platform"].get<string>();
wks.cell("A4").value() = oss.str();
wks.cell("A5").value() = "Score is " + data["score_name"].get<string>();
}
void ReportExcel::body()
{
auto header = vector<string>(
{ "Dataset", "Samples", "Features", "Classes", "Nodes", "Edges", "States", "Score", "Score Std.", "Time",
"Time Std.", "Hyperparameters" });
int col = 1;
for (const auto& item : header) {
wks.cell(8, col++).value() = item;
}
int row = 9;
col = 1;
json lastResult;
double totalScore = 0.0;
string hyperparameters;
for (const auto& r : data["results"]) {
wks.cell(row, col).value() = r["dataset"].get<string>();
wks.cell(row, col + 1).value() = r["samples"].get<int>();
wks.cell(row, col + 2).value() = r["features"].get<int>();
wks.cell(row, col + 3).value() = r["classes"].get<int>();
wks.cell(row, col + 4).value() = r["nodes"].get<float>();
wks.cell(row, col + 5).value() = r["leaves"].get<float>();
wks.cell(row, col + 6).value() = r["depth"].get<float>();
wks.cell(row, col + 7).value() = r["score"].get<double>();
wks.cell(row, col + 8).value() = r["score_std"].get<double>();
wks.cell(row, col + 9).value() = r["time"].get<double>();
wks.cell(row, col + 10).value() = r["time_std"].get<double>();
try {
hyperparameters = r["hyperparameters"].get<string>();
}
catch (const exception& err) {
stringstream oss;
oss << r["hyperparameters"];
hyperparameters = oss.str();
}
wks.cell(row, col + 11).value() = hyperparameters;
lastResult = r;
totalScore += r["score"].get<double>();
row++;
}
if (data["results"].size() == 1) {
for (const string& group : { "scores_train", "scores_test", "times_train", "times_test" }) {
row++;
col = 1;
wks.cell(row, col).value() = group;
for (double item : lastResult[group]) {
wks.cell(row, ++col).value() = item;
}
}
} else {
footer(totalScore, row);
}
}
void ReportExcel::footer(double totalScore, int row)
{
auto score = data["score_name"].get<string>();
if (score == BestResult::scoreName()) {
wks.cell(row + 2, 1).value() = score + " compared to " + BestResult::title() + " .: ";
wks.cell(row + 2, 5).value() = totalScore / BestResult::score();
}
}
}

View File

@@ -0,0 +1,25 @@
#ifndef REPORTEXCEL_H
#define REPORTEXCEL_H
#include <OpenXLSX.hpp>
#include "ReportBase.h"
#include "Paths.h"
#include "Colors.h"
namespace platform {
using namespace std;
using namespace OpenXLSX;
const int MAXLL = 128;
class ReportExcel : public ReportBase{
public:
explicit ReportExcel(json data_) : ReportBase(data_) {createFile();};
virtual ~ReportExcel() {closeFile();};
private:
void createFile();
void closeFile();
XLDocument doc;
XLWorksheet wks;
void header() override;
void body() override;
void footer(double totalScore, int row);
};
};
#endif // !REPORTEXCEL_H

254
src/Platform/Results.cc Normal file
View File

@@ -0,0 +1,254 @@
#include <filesystem>
#include "platformUtils.h"
#include "Results.h"
#include "ReportConsole.h"
#include "ReportExcel.h"
#include "BestResult.h"
#include "Colors.h"
namespace platform {
Result::Result(const string& path, const string& filename)
: path(path)
, filename(filename)
{
auto data = load();
date = data["date"];
score = 0;
for (const auto& result : data["results"]) {
score += result["score"].get<double>();
}
scoreName = data["score_name"];
if (scoreName == BestResult::scoreName()) {
score /= BestResult::score();
}
title = data["title"];
duration = data["duration"];
model = data["model"];
}
json Result::load() const
{
ifstream resultData(path + "/" + filename);
if (resultData.is_open()) {
json data = json::parse(resultData);
return data;
}
throw invalid_argument("Unable to open result file. [" + path + "/" + filename + "]");
}
void Results::load()
{
using std::filesystem::directory_iterator;
for (const auto& file : directory_iterator(path)) {
auto filename = file.path().filename().string();
if (filename.find(".json") != string::npos && filename.find("results_") == 0) {
auto result = Result(path, filename);
bool addResult = true;
if (model != "any" && result.getModel() != model || scoreName != "any" && scoreName != result.getScoreName())
addResult = false;
if (addResult)
files.push_back(result);
}
}
}
string Result::to_string() const
{
stringstream oss;
oss << date << " ";
oss << setw(12) << left << model << " ";
oss << setw(11) << left << scoreName << " ";
oss << right << setw(11) << setprecision(7) << fixed << score << " ";
oss << setw(9) << setprecision(3) << fixed << duration << " ";
oss << setw(50) << left << title << " ";
return oss.str();
}
void Results::show() const
{
cout << Colors::GREEN() << "Results found: " << files.size() << endl;
cout << "-------------------" << endl;
auto i = 0;
cout << " # Date Model Score Name Score Duration Title" << endl;
cout << "=== ========== ============ =========== =========== ========= =============================================================" << endl;
bool odd = true;
for (const auto& result : files) {
auto color = odd ? Colors::BLUE() : Colors::CYAN();
cout << color << setw(3) << fixed << right << i++ << " ";
cout << result.to_string() << endl;
if (i == max && max != 0) {
break;
}
odd = !odd;
}
}
int Results::getIndex(const string& intent) const
{
string color;
if (intent == "delete") {
color = Colors::RED();
} else {
color = Colors::YELLOW();
}
cout << color << "Choose result to " << intent << " (cancel=-1): ";
string line;
getline(cin, line);
int index = stoi(line);
if (index >= -1 && index < static_cast<int>(files.size())) {
return index;
}
cout << "Invalid index" << endl;
return -1;
}
void Results::report(const int index, const bool excelReport) const
{
cout << Colors::YELLOW() << "Reporting " << files.at(index).getFilename() << endl;
auto data = files.at(index).load();
if (excelReport) {
ReportExcel report(data);
report.show();
} else {
ReportConsole report(data);
report.show();
}
}
void Results::menu()
{
char option;
int index;
bool finished = false;
string filename, line, options = "qldhsre";
while (!finished) {
cout << Colors::RESET() << "Choose option (quit='q', list='l', delete='d', hide='h', sort='s', report='r', excel='e'): ";
getline(cin, line);
if (line.size() == 0)
continue;
if (options.find(line[0]) != string::npos) {
if (line.size() > 1) {
cout << "Invalid option" << endl;
continue;
}
option = line[0];
} else {
if (all_of(line.begin(), line.end(), ::isdigit)) {
index = stoi(line);
if (index >= 0 && index < files.size()) {
report(index, false);
continue;
}
}
cout << "Invalid option" << endl;
continue;
}
switch (option) {
case 'q':
finished = true;
break;
case 'l':
show();
break;
case 'd':
index = getIndex("delete");
if (index == -1)
break;
filename = files[index].getFilename();
cout << "Deleting " << filename << endl;
remove((path + "/" + filename).c_str());
files.erase(files.begin() + index);
cout << "File: " + filename + " deleted!" << endl;
show();
break;
case 'h':
index = getIndex("hide");
if (index == -1)
break;
filename = files[index].getFilename();
cout << "Hiding " << filename << endl;
rename((path + "/" + filename).c_str(), (path + "/." + filename).c_str());
files.erase(files.begin() + index);
show();
menu();
break;
case 's':
sortList();
show();
break;
case 'r':
index = getIndex("report");
if (index == -1)
break;
report(index, false);
break;
case 'e':
index = getIndex("excel");
if (index == -1)
break;
report(index, true);
break;
default:
cout << "Invalid option" << endl;
}
}
}
void Results::sortList()
{
cout << Colors::YELLOW() << "Choose sorting field (date='d', score='s', duration='u', model='m'): ";
string line;
char option;
getline(cin, line);
if (line.size() == 0)
return;
if (line.size() > 1) {
cout << "Invalid option" << endl;
return;
}
option = line[0];
switch (option) {
case 'd':
sortDate();
break;
case 's':
sortScore();
break;
case 'u':
sortDuration();
break;
case 'm':
sortModel();
break;
default:
cout << "Invalid option" << endl;
}
}
void Results::sortDate()
{
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
return a.getDate() > b.getDate();
});
}
void Results::sortModel()
{
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
return a.getModel() > b.getModel();
});
}
void Results::sortDuration()
{
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
return a.getDuration() > b.getDuration();
});
}
void Results::sortScore()
{
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
return a.getScore() > b.getScore();
});
}
void Results::manage()
{
if (files.size() == 0) {
cout << "No results found!" << endl;
exit(0);
}
sortDate();
show();
menu();
cout << "Done!" << endl;
}
}

56
src/Platform/Results.h Normal file
View File

@@ -0,0 +1,56 @@
#ifndef RESULTS_H
#define RESULTS_H
#include <map>
#include <vector>
#include <string>
#include <nlohmann/json.hpp>
namespace platform {
using namespace std;
using json = nlohmann::json;
class Result {
public:
Result(const string& path, const string& filename);
json load() const;
string to_string() const;
string getFilename() const { return filename; };
string getDate() const { return date; };
double getScore() const { return score; };
string getTitle() const { return title; };
double getDuration() const { return duration; };
string getModel() const { return model; };
string getScoreName() const { return scoreName; };
private:
string path;
string filename;
string date;
double score;
string title;
double duration;
string model;
string scoreName;
};
class Results {
public:
Results(const string& path, const int max, const string& model, const string& score) : path(path), max(max), model(model), scoreName(score) { load(); };
void manage();
private:
string path;
int max;
string model;
string scoreName;
vector<Result> files;
void load(); // Loads the list of results
void show() const;
void report(const int index, const bool excelReport) const;
int getIndex(const string& intent) const;
void menu();
void sortList();
void sortDate();
void sortScore();
void sortModel();
void sortDuration();
};
};
#endif

57
src/Platform/list.cc Normal file
View File

@@ -0,0 +1,57 @@
#include <iostream>
#include <locale>
#include "Paths.h"
#include "Colors.h"
#include "Datasets.h"
using namespace std;
const int BALANCE_LENGTH = 75;
struct separated : numpunct<char> {
char do_decimal_point() const { return ','; }
char do_thousands_sep() const { return '.'; }
string do_grouping() const { return "\03"; }
};
void outputBalance(const string& balance)
{
auto temp = string(balance);
while (temp.size() > BALANCE_LENGTH - 1) {
auto part = temp.substr(0, BALANCE_LENGTH);
cout << part << endl;
cout << setw(48) << " ";
temp = temp.substr(BALANCE_LENGTH);
}
cout << temp << endl;
}
int main(int argc, char** argv)
{
auto data = platform::Datasets(platform::Paths().datasets(), false);
locale mylocale(cout.getloc(), new separated);
locale::global(mylocale);
cout.imbue(mylocale);
cout << Colors::GREEN() << "Dataset Sampl. Feat. Cls. Balance" << endl;
string balanceBars = string(BALANCE_LENGTH, '=');
cout << "============================== ====== ===== === " << balanceBars << endl;
bool odd = true;
for (const auto& dataset : data.getNames()) {
auto color = odd ? Colors::CYAN() : Colors::BLUE();
cout << color << setw(30) << left << dataset << " ";
data.loadDataset(dataset);
auto nSamples = data.getNSamples(dataset);
cout << setw(6) << right << nSamples << " ";
cout << setw(5) << right << data.getFeatures(dataset).size() << " ";
cout << setw(3) << right << data.getNClasses(dataset) << " ";
stringstream oss;
string sep = "";
for (auto number : data.getClassesCounts(dataset)) {
oss << sep << setprecision(2) << fixed << (float)number / nSamples * 100.0 << "% (" << number << ")";
sep = " / ";
}
outputBalance(oss.str());
odd = !odd;
}
cout << Colors::RESET() << endl;
return 0;
}

130
src/Platform/main.cc Normal file
View File

@@ -0,0 +1,130 @@
#include <iostream>
#include <argparse/argparse.hpp>
#include <nlohmann/json.hpp>
#include "platformUtils.h"
#include "Experiment.h"
#include "Datasets.h"
#include "DotEnv.h"
#include "Models.h"
#include "modelRegister.h"
#include "Paths.h"
using namespace std;
using json = nlohmann::json;
argparse::ArgumentParser manageArguments(int argc, char** argv)
{
auto env = platform::DotEnv();
argparse::ArgumentParser program("main");
program.add_argument("-d", "--dataset").default_value("").help("Dataset file name");
program.add_argument("--hyperparameters").default_value("{}").help("Hyperparamters passed to the model in Experiment");
program.add_argument("-p", "--path")
.help("folder where the data files are located, default")
.default_value(string{ platform::Paths::datasets() });
program.add_argument("-m", "--model")
.help("Model to use " + platform::Models::instance()->toString())
.action([](const std::string& value) {
static const vector<string> choices = platform::Models::instance()->getNames();
if (find(choices.begin(), choices.end(), value) != choices.end()) {
return value;
}
throw runtime_error("Model must be one of " + platform::Models::instance()->toString());
}
);
program.add_argument("--title").default_value("").help("Experiment title");
program.add_argument("--discretize").help("Discretize input dataset").default_value((bool)stoi(env.get("discretize"))).implicit_value(true);
program.add_argument("--save").help("Save result (always save if no dataset is supplied)").default_value(false).implicit_value(true);
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value((bool)stoi(env.get("stratified"))).implicit_value(true);
program.add_argument("-f", "--folds").help("Number of folds").default_value(stoi(env.get("n_folds"))).scan<'i', int>().action([](const string& value) {
try {
auto k = stoi(value);
if (k < 2) {
throw runtime_error("Number of folds must be greater than 1");
}
return k;
}
catch (const runtime_error& err) {
throw runtime_error(err.what());
}
catch (...) {
throw runtime_error("Number of folds must be an integer");
}});
auto seed_values = env.getSeeds();
program.add_argument("-s", "--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
try {
program.parse_args(argc, argv);
auto file_name = program.get<string>("dataset");
auto path = program.get<string>("path");
auto model_name = program.get<string>("model");
auto discretize_dataset = program.get<bool>("discretize");
auto stratified = program.get<bool>("stratified");
auto n_folds = program.get<int>("folds");
auto seeds = program.get<vector<int>>("seeds");
auto complete_file_name = path + file_name + ".arff";
auto title = program.get<string>("title");
auto hyperparameters = program.get<string>("hyperparameters");
auto saveResults = program.get<bool>("save");
if (title == "" && file_name == "") {
throw runtime_error("title is mandatory if dataset is not provided");
}
}
catch (const exception& err) {
cerr << err.what() << endl;
cerr << program;
exit(1);
}
return program;
}
int main(int argc, char** argv)
{
auto program = manageArguments(argc, argv);
auto file_name = program.get<string>("dataset");
auto path = program.get<string>("path");
auto model_name = program.get<string>("model");
auto discretize_dataset = program.get<bool>("discretize");
auto stratified = program.get<bool>("stratified");
auto n_folds = program.get<int>("folds");
auto seeds = program.get<vector<int>>("seeds");
auto hyperparameters =program.get<string>("hyperparameters");
vector<string> filesToTest;
auto datasets = platform::Datasets(path, true, platform::ARFF);
auto title = program.get<string>("title");
auto saveResults = program.get<bool>("save");
if (file_name != "") {
if (!datasets.isDataset(file_name)) {
cerr << "Dataset " << file_name << " not found" << endl;
exit(1);
}
if (title == "") {
title = "Test " + file_name + " " + model_name + " " + to_string(n_folds) + " folds";
}
filesToTest.push_back(file_name);
} else {
filesToTest = platform::Datasets(path, true, platform::ARFF).getNames();
saveResults = true;
}
/*
* Begin Processing
*/
auto env = platform::DotEnv();
auto experiment = platform::Experiment();
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("14.0.3");
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform(env.get("platform"));
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy");
experiment.setHyperparameters(json::parse(hyperparameters));
for (auto seed : seeds) {
experiment.addRandomSeed(seed);
}
platform::Timer timer;
timer.start();
experiment.go(filesToTest, path);
experiment.setDuration(timer.getDuration());
if (saveResults) {
experiment.save(platform::Paths::results());
}
experiment.report();
cout << "Done!" << endl;
return 0;
}

41
src/Platform/manage.cc Normal file
View File

@@ -0,0 +1,41 @@
#include <iostream>
#include <argparse/argparse.hpp>
#include "platformUtils.h"
#include "Paths.h"
#include "Results.h"
using namespace std;
argparse::ArgumentParser manageArguments(int argc, char** argv)
{
argparse::ArgumentParser program("manage");
program.add_argument("-n", "--number").default_value(0).help("Number of results to show (0 = all)").scan<'i', int>();
program.add_argument("-m", "--model").default_value("any").help("Filter results of the selected model)");
program.add_argument("-s", "--score").default_value("any").help("Filter results of the score name supplied");
try {
program.parse_args(argc, argv);
auto number = program.get<int>("number");
if (number < 0) {
throw runtime_error("Number of results must be greater than or equal to 0");
}
auto model = program.get<string>("model");
auto score = program.get<string>("score");
}
catch (const exception& err) {
cerr << err.what() << endl;
cerr << program;
exit(1);
}
return program;
}
int main(int argc, char** argv)
{
auto program = manageArguments(argc, argv);
auto number = program.get<int>("number");
auto model = program.get<string>("model");
auto score = program.get<string>("score");
auto results = platform::Results(platform::Paths::results(), number, model, score);
results.manage();
return 0;
}

View File

@@ -0,0 +1,21 @@
#ifndef MODEL_REGISTER_H
#define MODEL_REGISTER_H
static platform::Registrar registrarT("TAN",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TAN();});
static platform::Registrar registrarTLD("TANLd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TANLd();});
static platform::Registrar registrarS("SPODE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODE(2);});
static platform::Registrar registrarSLD("SPODELd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODELd(2);});
static platform::Registrar registrarK("KDB",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDB(2);});
static platform::Registrar registrarKLD("KDBLd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDBLd(2);});
static platform::Registrar registrarA("AODE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODE();});
static platform::Registrar registrarALD("AODELd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODELd();});
static platform::Registrar registrarBA("BoostAODE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::BoostAODE();});
#endif

View File

@@ -1,4 +1,18 @@
#include "platformUtils.h" #include "platformUtils.h"
#include "Paths.h"
using namespace torch;
vector<string> split(const string& text, char delimiter)
{
vector<string> result;
stringstream ss(text);
string token;
while (getline(ss, token, delimiter)) {
result.push_back(token);
}
return result;
}
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features) pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features)
{ {
@@ -14,7 +28,19 @@ pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t
return { Xd, maxes }; return { Xd, maxes };
} }
bool file_exists(const std::string& name) vector<mdlp::labels_t> discretizeDataset(vector<mdlp::samples_t>& X, mdlp::labels_t& y)
{
vector<mdlp::labels_t> Xd;
auto fimdlp = mdlp::CPPFImdlp();
for (int i = 0; i < X.size(); i++) {
fimdlp.fit(X[i], y);
mdlp::labels_t& xd = fimdlp.transform(X[i]);
Xd.push_back(xd);
}
return Xd;
}
bool file_exists(const string& name)
{ {
if (FILE* file = fopen(name.c_str(), "r")) { if (FILE* file = fopen(name.c_str(), "r")) {
fclose(file); fclose(file);
@@ -24,19 +50,51 @@ bool file_exists(const std::string& name)
} }
} }
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(string name) tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadDataset(const string& path, const string& name, bool class_last, bool discretize_dataset)
{ {
auto handler = ArffFiles(); auto handler = ArffFiles();
handler.load(PATH + static_cast<string>(name) + ".arff"); handler.load(path + static_cast<string>(name) + ".arff", class_last);
// Get Dataset X, y // Get Dataset X, y
vector<mdlp::samples_t>& X = handler.getX(); vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY(); mdlp::labels_t& y = handler.getY();
// Get className & Features // Get className & Features
auto className = handler.getClassName(); auto className = handler.getClassName();
vector<string> features; vector<string> features;
for (auto feature : handler.getAttributes()) { auto attributes = handler.getAttributes();
features.push_back(feature.first); transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& pair) { return pair.first; });
Tensor Xd;
auto states = map<string, vector<int>>();
if (discretize_dataset) {
auto Xr = discretizeDataset(X, y);
Xd = torch::zeros({ static_cast<int>(Xr[0].size()), static_cast<int>(Xr.size()) }, torch::kInt32);
for (int i = 0; i < features.size(); ++i) {
states[features[i]] = vector<int>(*max_element(Xr[i].begin(), Xr[i].end()) + 1);
iota(begin(states[features[i]]), end(states[features[i]]), 0);
Xd.index_put_({ "...", i }, torch::tensor(Xr[i], torch::kInt32));
}
states[className] = vector<int>(*max_element(y.begin(), y.end()) + 1);
iota(begin(states[className]), end(states[className]), 0);
} else {
Xd = torch::zeros({ static_cast<int>(X[0].size()), static_cast<int>(X.size()) }, torch::kFloat32);
for (int i = 0; i < features.size(); ++i) {
Xd.index_put_({ "...", i }, torch::tensor(X[i]));
}
} }
return { Xd, torch::tensor(y, torch::kInt32), features, className, states };
}
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(const string& name)
{
auto handler = ArffFiles();
handler.load(platform::Paths::datasets() + static_cast<string>(name) + ".arff");
// Get Dataset X, y
vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();
// Get className & Features
auto className = handler.getClassName();
vector<string> features;
auto attributes = handler.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& pair) { return pair.first; });
// Discretize Dataset // Discretize Dataset
vector<mdlp::labels_t> Xd; vector<mdlp::labels_t> Xd;
map<string, int> maxes; map<string, int> maxes;

View File

@@ -1,5 +1,6 @@
#ifndef PLATFORM_UTILS_H #ifndef PLATFORM_UTILS_H
#define PLATFORM_UTILS_H #define PLATFORM_UTILS_H
#include <torch/torch.h>
#include <string> #include <string>
#include <vector> #include <vector>
#include <map> #include <map>
@@ -10,6 +11,11 @@ using namespace std;
const string PATH = "../../data/"; const string PATH = "../../data/";
bool file_exists(const std::string& name); bool file_exists(const std::string& name);
vector<string> split(const string& text, char delimiter);
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features); pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features);
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(string name); vector<mdlp::labels_t> discretizeDataset(vector<mdlp::samples_t>& X, mdlp::labels_t& y);
pair<torch::Tensor, map<string, vector<int>>> discretizeTorch(torch::Tensor& X, torch::Tensor& y, vector<string>& features, const string& className);
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(const string& name);
tuple<torch::Tensor, torch::Tensor, vector<string>, string, map<string, vector<int>>> loadDataset(const string& path, const string& name, bool class_last, bool discretize_dataset);
map<string, vector<int>> get_states(vector<string>& features, string className, map<string, int>& maxes);
#endif //PLATFORM_UTILS_H #endif //PLATFORM_UTILS_H

View File

@@ -1,18 +0,0 @@
#ifndef TYPES_H
#define TYPES_H
#include <vector>
#include <map>
#include <stdexcept>
using namespace std;
namespace mdlp {
typedef float precision_t;
typedef vector<precision_t> samples_t;
typedef vector<int> labels_t;
typedef vector<size_t> indices_t;
typedef vector<precision_t> cutPoints_t;
typedef map<pair<int, int>, precision_t> cacheEnt_t;
typedef map<tuple<int, int, int>, precision_t> cacheIg_t;
}
#endif

View File

@@ -9,29 +9,21 @@ TEST_CASE("Test Bayesian Network")
{ {
auto [Xd, y, features, className, states] = loadFile("iris"); auto [Xd, y, features, className, states] = loadFile("iris");
SECTION("Test Update Nodes")
{
auto net = bayesnet::Network();
net.addNode("A", 3);
REQUIRE(net.getStates() == 3);
net.addNode("A", 5);
REQUIRE(net.getStates() == 5);
}
SECTION("Test get features") SECTION("Test get features")
{ {
auto net = bayesnet::Network(); auto net = bayesnet::Network();
net.addNode("A", 3); net.addNode("A");
net.addNode("B", 5); net.addNode("B");
REQUIRE(net.getFeatures() == vector<string>{"A", "B"}); REQUIRE(net.getFeatures() == vector<string>{"A", "B"});
net.addNode("C", 2); net.addNode("C");
REQUIRE(net.getFeatures() == vector<string>{"A", "B", "C"}); REQUIRE(net.getFeatures() == vector<string>{"A", "B", "C"});
} }
SECTION("Test get edges") SECTION("Test get edges")
{ {
auto net = bayesnet::Network(); auto net = bayesnet::Network();
net.addNode("A", 3); net.addNode("A");
net.addNode("B", 5); net.addNode("B");
net.addNode("C", 2); net.addNode("C");
net.addEdge("A", "B"); net.addEdge("A", "B");
net.addEdge("B", "C"); net.addEdge("B", "C");
REQUIRE(net.getEdges() == vector<pair<string, string>>{ {"A", "B"}, { "B", "C" } }); REQUIRE(net.getEdges() == vector<pair<string, string>>{ {"A", "B"}, { "B", "C" } });

View File

@@ -2,8 +2,10 @@ if(ENABLE_TESTING)
set(TEST_MAIN "unit_tests") set(TEST_MAIN "unit_tests")
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet) include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
include_directories(${BayesNet_SOURCE_DIR}/src/Platform) include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
set(TEST_SOURCES BayesModels.cc BayesNetwork.cc ${BayesNet_SOURCES} ${Platform_SOURCES}) include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
set(TEST_SOURCES BayesModels.cc BayesNetwork.cc ${BayesNet_SOURCE_DIR}/src/Platform/platformUtils.cc ${BayesNet_SOURCES})
add_executable(${TEST_MAIN} ${TEST_SOURCES}) add_executable(${TEST_MAIN} ${TEST_SOURCES})
target_link_libraries(${TEST_MAIN} PUBLIC "${TORCH_LIBRARIES}" Catch2::Catch2WithMain) target_link_libraries(${TEST_MAIN} PUBLIC "${TORCH_LIBRARIES}" ArffFiles mdlp Catch2::Catch2WithMain)
add_test(NAME ${TEST_MAIN} COMMAND ${TEST_MAIN}) add_test(NAME ${TEST_MAIN} COMMAND ${TEST_MAIN})
endif(ENABLE_TESTING) endif(ENABLE_TESTING)