Compare commits

...

19 Commits

Author SHA1 Message Date
182b52a887 Add states as result in Proposal methods 2023-08-12 16:16:17 +02:00
405887f833 Solved Ld poor results 2023-08-12 11:49:18 +02:00
3a85481a5a Redo pass states to Network Fit needed in crossval
fix mistake in headerline (report)
2023-08-12 11:10:53 +02:00
0ad5505c16 Spodeld working with poor accuracy 2023-08-10 02:06:18 +02:00
323444b74a const functions 2023-08-08 01:53:41 +02:00
ef1bffcac3 Fixed normal classifiers 2023-08-07 13:50:11 +02:00
06db8f51ce Refactor library and models to lighten data stored
Refactro Ensemble to inherit from Classifier insted of BaseClassifier
2023-08-07 12:49:37 +02:00
e74565ba01 update clang-tidy 2023-08-07 00:44:12 +02:00
2da0fb5d8f Merge branch 'main' into TANNew 2023-08-06 11:40:10 +02:00
14ea51648a Complete AODELd 2023-08-06 11:31:44 +02:00
9e94f4e140 Rename suffix of proposal classifier to Ld 2023-08-05 23:23:31 +02:00
1d0fd629c9 Add SPODENew to models 2023-08-05 23:11:36 +02:00
506ef34c6f Add report output to main 2023-08-05 20:29:05 +02:00
7f45495837 Refactor New classifiers to extract predict 2023-08-05 18:39:48 +02:00
1a09ccca4c Add KDBNew fix computeCPT error 2023-08-05 14:40:42 +02:00
a1c6ab18f3 TANNew restructured with poor results 2023-08-04 20:11:22 +02:00
64ac8fb4f2 TANNew as a TAN variant working 2023-08-04 19:42:18 +02:00
c568ba111d Add Proposal class 2023-08-04 13:05:12 +02:00
a9ba21560d Add environment platform to experiment result 2023-08-01 10:55:53 +02:00
48 changed files with 767 additions and 446 deletions

View File

@@ -13,5 +13,4 @@ HeaderFilterRegex: 'src/*'
AnalyzeTemporaryDtors: false
WarningsAsErrors: ''
FormatStyle: file
FormatStyleOptions: ''
...

4
.vscode/launch.json vendored
View File

@@ -25,14 +25,14 @@
"program": "${workspaceFolder}/build/src/Platform/main",
"args": [
"-m",
"TANNew",
"SPODELd",
"-p",
"/Users/rmontanana/Code/discretizbench/datasets",
"--stratified",
"-d",
"iris"
],
"cwd": "${workspaceFolder}/build/src/Platform",
"cwd": "/Users/rmontanana/Code/discretizbench",
},
{
"name": "Build & debug active file",

View File

@@ -14,6 +14,14 @@ setup: ## Install dependencies for tests and coverage
dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
cd build && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
build: ## Build the main and BayesNetSample
cmake --build build -t main -t BayesNetSample -j 32
clean: ## Clean the debug info
@echo ">>> Cleaning Debug BayesNet ...";
find . -name "*.gcda" -print0 | xargs -0 rm
@echo ">>> Done";
debug: ## Build a debug version of the project
@echo ">>> Building Debug BayesNet ...";
@if [ -d ./build ]; then rm -rf ./build; fi

View File

@@ -178,61 +178,59 @@ int main(int argc, char** argv)
cout << "end." << endl;
auto score = clf->score(Xd, y);
cout << "Score: " << score << endl;
auto graph = clf->graph();
auto dot_file = model_name + "_" + file_name;
ofstream file(dot_file + ".dot");
file << graph;
file.close();
cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
string stratified_string = stratified ? " Stratified" : "";
cout << nFolds << " Folds" << stratified_string << " Cross validation" << endl;
cout << "==========================================" << endl;
torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
torch::Tensor yt = torch::tensor(y, torch::kInt32);
for (int i = 0; i < features.size(); ++i) {
Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
}
float total_score = 0, total_score_train = 0, score_train, score_test;
Fold* fold;
if (stratified)
fold = new StratifiedKFold(nFolds, y, seed);
else
fold = new KFold(nFolds, y.size(), seed);
for (auto i = 0; i < nFolds; ++i) {
auto [train, test] = fold->getFold(i);
cout << "Fold: " << i + 1 << endl;
if (tensors) {
auto ttrain = torch::tensor(train, torch::kInt64);
auto ttest = torch::tensor(test, torch::kInt64);
torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
torch::Tensor ytraint = yt.index({ ttrain });
torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
torch::Tensor ytestt = yt.index({ ttest });
clf->fit(Xtraint, ytraint, features, className, states);
auto temp = clf->predict(Xtraint);
score_train = clf->score(Xtraint, ytraint);
score_test = clf->score(Xtestt, ytestt);
} else {
auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
auto [Xtest, ytest] = extract_indices(test, Xd, y);
clf->fit(Xtrain, ytrain, features, className, states);
score_train = clf->score(Xtrain, ytrain);
score_test = clf->score(Xtest, ytest);
}
if (dump_cpt) {
cout << "--- CPT Tables ---" << endl;
clf->dump_cpt();
}
total_score_train += score_train;
total_score += score_test;
cout << "Score Train: " << score_train << endl;
cout << "Score Test : " << score_test << endl;
cout << "-------------------------------------------------------------------------------" << endl;
}
cout << "**********************************************************************************" << endl;
cout << "Average Score Train: " << total_score_train / nFolds << endl;
cout << "Average Score Test : " << total_score / nFolds << endl;
return 0;
// auto graph = clf->graph();
// auto dot_file = model_name + "_" + file_name;
// ofstream file(dot_file + ".dot");
// file << graph;
// file.close();
// cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
// cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
// string stratified_string = stratified ? " Stratified" : "";
// cout << nFolds << " Folds" << stratified_string << " Cross validation" << endl;
// cout << "==========================================" << endl;
// torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
// torch::Tensor yt = torch::tensor(y, torch::kInt32);
// for (int i = 0; i < features.size(); ++i) {
// Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
// }
// float total_score = 0, total_score_train = 0, score_train, score_test;
// Fold* fold;
// if (stratified)
// fold = new StratifiedKFold(nFolds, y, seed);
// else
// fold = new KFold(nFolds, y.size(), seed);
// for (auto i = 0; i < nFolds; ++i) {
// auto [train, test] = fold->getFold(i);
// cout << "Fold: " << i + 1 << endl;
// if (tensors) {
// auto ttrain = torch::tensor(train, torch::kInt64);
// auto ttest = torch::tensor(test, torch::kInt64);
// torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
// torch::Tensor ytraint = yt.index({ ttrain });
// torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
// torch::Tensor ytestt = yt.index({ ttest });
// clf->fit(Xtraint, ytraint, features, className, states);
// auto temp = clf->predict(Xtraint);
// score_train = clf->score(Xtraint, ytraint);
// score_test = clf->score(Xtestt, ytestt);
// } else {
// auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
// auto [Xtest, ytest] = extract_indices(test, Xd, y);
// clf->fit(Xtrain, ytrain, features, className, states);
// score_train = clf->score(Xtrain, ytrain);
// score_test = clf->score(Xtest, ytest);
// }
// if (dump_cpt) {
// cout << "--- CPT Tables ---" << endl;
// clf->dump_cpt();
// }
// total_score_train += score_train;
// total_score += score_test;
// cout << "Score Train: " << score_train << endl;
// cout << "Score Test : " << score_test << endl;
// cout << "-------------------------------------------------------------------------------" << endl;
// }
// cout << "**********************************************************************************" << endl;
// cout << "Average Score Train: " << total_score_train / nFolds << endl;
// cout << "Average Score Test : " << total_score / nFolds << endl;return 0;
}

View File

@@ -2,14 +2,14 @@
namespace bayesnet {
AODE::AODE() : Ensemble() {}
void AODE::train()
void AODE::buildModel()
{
models.clear();
for (int i = 0; i < features.size(); ++i) {
models.push_back(std::make_unique<SPODE>(i));
}
}
vector<string> AODE::graph(const string& title)
vector<string> AODE::graph(const string& title) const
{
return Ensemble::graph(title);
}

View File

@@ -5,11 +5,11 @@
namespace bayesnet {
class AODE : public Ensemble {
protected:
void train() override;
void buildModel() override;
public:
AODE();
virtual ~AODE() {};
vector<string> graph(const string& title = "AODE") override;
vector<string> graph(const string& title = "AODE") const override;
};
}
#endif

40
src/BayesNet/AODELd.cc Normal file
View File

@@ -0,0 +1,40 @@
#include "AODELd.h"
#include "Models.h"
namespace bayesnet {
using namespace std;
AODELd::AODELd() : Ensemble(), Proposal(dataset, features, className) {}
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
Ensemble::fit(dataset, features, className, states);
return *this;
}
void AODELd::buildModel()
{
models.clear();
for (int i = 0; i < features.size(); ++i) {
models.push_back(std::make_unique<SPODELd>(i));
}
n_models = models.size();
}
void AODELd::trainModel()
{
for (const auto& model : models) {
model->fit(Xf, y, features, className, states);
}
}
vector<string> AODELd::graph(const string& name) const
{
return Ensemble::graph(name);
}
}

21
src/BayesNet/AODELd.h Normal file
View File

@@ -0,0 +1,21 @@
#ifndef AODELD_H
#define AODELD_H
#include "Ensemble.h"
#include "Proposal.h"
#include "SPODELd.h"
namespace bayesnet {
using namespace std;
class AODELd : public Ensemble, public Proposal {
protected:
void trainModel() override;
void buildModel() override;
public:
AODELd();
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_) override;
virtual ~AODELd() = default;
vector<string> graph(const string& name = "AODE") const override;
static inline string version() { return "0.0.1"; };
};
}
#endif // !AODELD_H

View File

@@ -5,24 +5,27 @@
namespace bayesnet {
using namespace std;
class BaseClassifier {
protected:
virtual void trainModel() = 0;
public:
// X is nxm vector, y is nx1 vector
virtual BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
// X is nxm tensor, y is nx1 tensor
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
virtual BaseClassifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
virtual ~BaseClassifier() = default;
torch::Tensor virtual predict(torch::Tensor& X) = 0;
vector<int> virtual predict(vector<vector<int>>& X) = 0;
float virtual score(vector<vector<int>>& X, vector<int>& y) = 0;
float virtual score(torch::Tensor& X, torch::Tensor& y) = 0;
int virtual getNumberOfNodes() = 0;
int virtual getNumberOfEdges() = 0;
int virtual getNumberOfStates() = 0;
vector<string> virtual show() = 0;
vector<string> virtual graph(const string& title = "") = 0;
virtual ~BaseClassifier() = default;
int virtual getNumberOfNodes()const = 0;
int virtual getNumberOfEdges()const = 0;
int virtual getNumberOfStates() const = 0;
vector<string> virtual show() const = 0;
vector<string> virtual graph(const string& title = "") const = 0;
const string inline getVersion() const { return "0.1.0"; };
vector<string> virtual topological_order() = 0;
void virtual dump_cpt() = 0;
void virtual dump_cpt()const = 0;
};
}
#endif

View File

@@ -2,7 +2,7 @@
#include "Mst.h"
namespace bayesnet {
//samples is nxm tensor used to fit the model
Metrics::Metrics(torch::Tensor& samples, vector<string>& features, string& className, int classNumStates)
Metrics::Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates)
: samples(samples)
, features(features)
, className(className)
@@ -76,7 +76,7 @@ namespace bayesnet {
std::vector<float> v(matrix.data_ptr<float>(), matrix.data_ptr<float>() + matrix.numel());
return v;
}
double Metrics::entropy(torch::Tensor& feature)
double Metrics::entropy(const torch::Tensor& feature)
{
torch::Tensor counts = feature.bincount();
int totalWeight = counts.sum().item<int>();
@@ -86,7 +86,7 @@ namespace bayesnet {
return entropy.nansum().item<double>();
}
// H(Y|X) = sum_{x in X} p(x) H(Y|X=x)
double Metrics::conditionalEntropy(torch::Tensor& firstFeature, torch::Tensor& secondFeature)
double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature)
{
int numSamples = firstFeature.sizes()[0];
torch::Tensor featureCounts = secondFeature.bincount();
@@ -115,7 +115,7 @@ namespace bayesnet {
return entropyValue;
}
// I(X;Y) = H(Y) - H(Y|X)
double Metrics::mutualInformation(torch::Tensor& firstFeature, torch::Tensor& secondFeature)
double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature)
{
return entropy(firstFeature) - conditionalEntropy(firstFeature, secondFeature);
}
@@ -124,7 +124,7 @@ namespace bayesnet {
and the indices of the weights as nodes of this square matrix using
Kruskal algorithm
*/
vector<pair<int, int>> Metrics::maximumSpanningTree(vector<string> features, Tensor& weights, int root)
vector<pair<int, int>> Metrics::maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root)
{
auto mst = MST(features, weights, root);
return mst.maximumSpanningTree();

View File

@@ -14,15 +14,15 @@ namespace bayesnet {
int classNumStates = 0;
public:
Metrics() = default;
Metrics(Tensor&, vector<string>&, string&, int);
Metrics(const Tensor&, const vector<string>&, const string&, const int);
Metrics(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&, const int);
double entropy(Tensor&);
double conditionalEntropy(Tensor&, Tensor&);
double mutualInformation(Tensor&, Tensor&);
double entropy(const Tensor&);
double conditionalEntropy(const Tensor&, const Tensor&);
double mutualInformation(const Tensor&, const Tensor&);
vector<float> conditionalEdgeWeights(); // To use in Python
Tensor conditionalEdge();
vector<pair<string, string>> doCombinations(const vector<string>&);
vector<pair<int, int>> maximumSpanningTree(vector<string> features, Tensor& weights, int root);
vector<pair<int, int>> maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root);
};
}
#endif

View File

@@ -1,4 +1,7 @@
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANNew.cc Mst.cc)
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc
KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc Mst.cc Proposal.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
target_link_libraries(BayesNet mdlp ArffFiles "${TORCH_LIBRARIES}")

View File

@@ -1,6 +1,5 @@
#include "Classifier.h"
#include "bayesnetUtils.h"
#include "ArffFiles.h"
namespace bayesnet {
using namespace torch;
@@ -8,58 +7,65 @@ namespace bayesnet {
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
Classifier& Classifier::build(vector<string>& features, string className, map<string, vector<int>>& states)
{
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
samples = torch::cat({ X, ytmp }, 0);
this->features = features;
this->className = className;
this->states = states;
m = dataset.size(1);
n = dataset.size(0) - 1;
checkFitParameters();
auto n_classes = states[className].size();
metrics = Metrics(samples, features, className, n_classes);
metrics = Metrics(dataset, features, className, n_classes);
model.initialize();
train();
if (Xv.empty()) {
// fit with tensors
model.fit(X, y, features, className);
} else {
// fit with vectors
model.fit(Xv, yv, features, className);
}
buildModel();
trainModel();
fitted = true;
return *this;
}
void Classifier::buildDataset(Tensor& ytmp)
{
try {
auto yresized = torch::transpose(ytmp.view({ ytmp.size(0), 1 }), 0, 1);
dataset = torch::cat({ dataset, yresized }, 0);
}
catch (const std::exception& e) {
std::cerr << e.what() << '\n';
cout << "X dimensions: " << dataset.sizes() << "\n";
cout << "y dimensions: " << ytmp.sizes() << "\n";
exit(1);
}
}
void Classifier::trainModel()
{
model.fit(dataset, features, className, states);
}
// X is nxm where n is the number of features and m the number of samples
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
{
this->X = X;
this->y = y;
Xv = vector<vector<int>>();
yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
dataset = X;
buildDataset(y);
return build(features, className, states);
}
// X is nxm where n is the number of features and m the number of samples
Classifier& Classifier::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
{
this->X = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, kInt32);
Xv = X;
dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, kInt32);
for (int i = 0; i < X.size(); ++i) {
this->X.index_put_({ i, "..." }, torch::tensor(X[i], kInt32));
dataset.index_put_({ i, "..." }, torch::tensor(X[i], kInt32));
}
this->y = torch::tensor(y, kInt32);
yv = y;
auto ytmp = torch::tensor(y, kInt32);
buildDataset(ytmp);
return build(features, className, states);
}
Classifier& Classifier::fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states)
{
this->dataset = dataset;
return build(features, className, states);
}
void Classifier::checkFitParameters()
{
auto sizes = X.sizes();
m = sizes[1];
n = sizes[0];
if (m != y.size(0)) {
throw invalid_argument("X and y must have the same number of samples");
}
if (n != features.size()) {
throw invalid_argument("X and features must have the same number of features");
throw invalid_argument("X " + to_string(n) + " and features " + to_string(features.size()) + " must have the same number of features");
}
if (states.find(className) == states.end()) {
throw invalid_argument("className not found in states");
@@ -106,7 +112,7 @@ namespace bayesnet {
}
return model.score(X, y);
}
vector<string> Classifier::show()
vector<string> Classifier::show() const
{
return model.show();
}
@@ -114,22 +120,20 @@ namespace bayesnet {
{
// Add all nodes to the network
for (const auto& feature : features) {
model.addNode(feature, states[feature].size());
cout << "-Adding node " << feature << " with " << states[feature].size() << " states" << endl;
model.addNode(feature);
}
model.addNode(className, states[className].size());
cout << "*Adding class " << className << " with " << states[className].size() << " states" << endl;
model.addNode(className);
}
int Classifier::getNumberOfNodes()
int Classifier::getNumberOfNodes() const
{
// Features does not include class
return fitted ? model.getFeatures().size() + 1 : 0;
}
int Classifier::getNumberOfEdges()
int Classifier::getNumberOfEdges() const
{
return fitted ? model.getEdges().size() : 0;
return fitted ? model.getNumEdges() : 0;
}
int Classifier::getNumberOfStates()
int Classifier::getNumberOfStates() const
{
return fitted ? model.getStates() : 0;
}
@@ -137,61 +141,8 @@ namespace bayesnet {
{
return model.topological_sort();
}
void Classifier::dump_cpt()
void Classifier::dump_cpt() const
{
model.dump_cpt();
}
void Classifier::localDiscretizationProposal(map<string, mdlp::CPPFImdlp*>& discretizers, Tensor& Xf)
{
// order of local discretization is important. no good 0, 1, 2...
auto order = model.topological_sort();
auto& nodes = model.getNodes();
vector<int> indicesToReDiscretize;
auto n_samples = Xf.size(1);
bool upgrade = false; // Flag to check if we need to upgrade the model
for (auto feature : order) {
auto nodeParents = nodes[feature]->getParents();
int index = find(features.begin(), features.end(), feature) - features.begin();
vector<string> parents;
transform(nodeParents.begin(), nodeParents.end(), back_inserter(parents), [](const auto& p) {return p->getName(); });
if (parents.size() == 1) continue; // Only has class as parent
upgrade = true;
// Remove class as parent as it will be added later
parents.erase(remove(parents.begin(), parents.end(), className), parents.end());
// Get the indices of the parents
vector<int> indices;
transform(parents.begin(), parents.end(), back_inserter(indices), [&](const auto& p) {return find(features.begin(), features.end(), p) - features.begin(); });
// Now we fit the discretizer of the feature conditioned on its parents and the class i.e. discretizer.fit(X[index], X[indices] + y)
vector<string> yJoinParents;
transform(yv.begin(), yv.end(), back_inserter(yJoinParents), [&](const auto& p) {return to_string(p); });
for (auto idx : indices) {
for (int i = 0; i < n_samples; ++i) {
yJoinParents[i] += to_string(Xv[idx][i]);
}
}
auto arff = ArffFiles();
auto yxv = arff.factorize(yJoinParents);
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
auto xvf = vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
discretizers[feature]->fit(xvf, yxv);
indicesToReDiscretize.push_back(index);
}
if (upgrade) {
// Discretize again X (only the affected indices) with the new fitted discretizers
for (auto index : indicesToReDiscretize) {
auto Xt_ptr = Xf.index({ index }).data_ptr<float>();
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
Xv[index] = discretizers[features[index]]->transform(Xt);
auto xStates = vector<int>(discretizers[features[index]]->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0);
states[features[index]] = xStates;
}
// Now we fit the model again with the new values
cout << "Classifier: Upgrading model" << endl;
// To update the nodes states
addNodes();
model.fit(Xv, yv, features, className);
cout << "Classifier: Model upgraded" << endl;
}
}
}

View File

@@ -4,46 +4,43 @@
#include "BaseClassifier.h"
#include "Network.h"
#include "BayesMetrics.h"
#include "CPPFImdlp.h"
using namespace std;
using namespace torch;
namespace bayesnet {
class Classifier : public BaseClassifier {
private:
bool fitted;
void buildDataset(torch::Tensor& y);
Classifier& build(vector<string>& features, string className, map<string, vector<int>>& states);
protected:
bool fitted;
Network model;
int m, n; // m: number of samples, n: number of features
Tensor X; // nxm tensor
vector<vector<int>> Xv; // nxm vector
Tensor y;
vector<int> yv;
Tensor samples; // (n+1)xm tensor
Tensor dataset; // (n+1)xm tensor
Metrics metrics;
vector<string> features;
string className;
map<string, vector<int>> states;
void checkFitParameters();
virtual void train() = 0;
void localDiscretizationProposal(map<string, mdlp::CPPFImdlp*>& discretizers, Tensor& Xf);
virtual void buildModel() = 0;
void trainModel() override;
public:
Classifier(Network model);
virtual ~Classifier() = default;
Classifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
Classifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
Classifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override;
void addNodes();
int getNumberOfNodes() override;
int getNumberOfEdges() override;
int getNumberOfStates() override;
int getNumberOfNodes() const override;
int getNumberOfEdges() const override;
int getNumberOfStates() const override;
Tensor predict(Tensor& X) override;
vector<int> predict(vector<vector<int>>& X) override;
float score(Tensor& X, Tensor& y) override;
float score(vector<vector<int>>& X, vector<int>& y) override;
vector<string> show() override;
vector<string> topological_order() override;
void dump_cpt() override;
vector<string> show() const override;
vector<string> topological_order() override;
void dump_cpt() const override;
};
}
#endif

View File

@@ -3,60 +3,26 @@
namespace bayesnet {
using namespace torch;
Ensemble::Ensemble() : m(0), n(0), n_models(0), metrics(Metrics()), fitted(false) {}
Ensemble& Ensemble::build(vector<string>& features, string className, map<string, vector<int>>& states)
Ensemble::Ensemble() : Classifier(Network()) {}
void Ensemble::trainModel()
{
dataset = cat({ X, y.view({y.size(0), 1}) }, 1);
this->features = features;
this->className = className;
this->states = states;
auto n_classes = states[className].size();
metrics = Metrics(dataset, features, className, n_classes);
// Build models
train();
// Train models
n_models = models.size();
auto Xt = torch::transpose(X, 0, 1);
for (auto i = 0; i < n_models; ++i) {
if (Xv == vector<vector<int>>()) {
// fit with tensors
models[i]->fit(Xt, y, features, className, states);
} else {
// fit with vectors
models[i]->fit(Xv, yv, features, className, states);
}
// fit with vectors
models[i]->fit(dataset, features, className, states);
}
fitted = true;
return *this;
}
Ensemble& Ensemble::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
{
this->X = torch::transpose(X, 0, 1);
this->y = y;
Xv = vector<vector<int>>();
yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
return build(features, className, states);
}
Ensemble& Ensemble::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
{
this->X = torch::zeros({ static_cast<int>(X[0].size()), static_cast<int>(X.size()) }, kInt32);
Xv = X;
for (int i = 0; i < X.size(); ++i) {
this->X.index_put_({ "...", i }, torch::tensor(X[i], kInt32));
}
this->y = torch::tensor(y, kInt32);
yv = y;
return build(features, className, states);
}
vector<int> Ensemble::voting(Tensor& y_pred)
{
auto y_pred_ = y_pred.accessor<int, 2>();
vector<int> y_pred_final;
for (int i = 0; i < y_pred.size(0); ++i) {
vector<float> votes(states[className].size(), 0);
vector<float> votes(y_pred.size(1), 0);
for (int j = 0; j < y_pred.size(1); ++j) {
votes[y_pred_[i][j]] += 1;
}
// argsort in descending order
auto indices = argsort(votes);
y_pred_final.push_back(indices[0]);
}
@@ -70,13 +36,12 @@ namespace bayesnet {
Tensor y_pred = torch::zeros({ X.size(1), n_models }, kInt32);
//Create a threadpool
auto threads{ vector<thread>() };
auto lock = mutex();
mutex mtx;
for (auto i = 0; i < n_models; ++i) {
threads.push_back(thread([&, i]() {
auto ypredict = models[i]->predict(X);
lock.lock();
lock_guard<mutex> lock(mtx);
y_pred.index_put_({ "...", i }, ypredict);
lock.unlock();
}));
}
for (auto& thread : threads) {
@@ -128,9 +93,8 @@ namespace bayesnet {
}
}
return (double)correct / y_pred.size();
}
vector<string> Ensemble::show()
vector<string> Ensemble::show() const
{
auto result = vector<string>();
for (auto i = 0; i < n_models; ++i) {
@@ -139,7 +103,7 @@ namespace bayesnet {
}
return result;
}
vector<string> Ensemble::graph(const string& title)
vector<string> Ensemble::graph(const string& title) const
{
auto result = vector<string>();
for (auto i = 0; i < n_models; ++i) {
@@ -148,7 +112,7 @@ namespace bayesnet {
}
return result;
}
int Ensemble::getNumberOfNodes()
int Ensemble::getNumberOfNodes() const
{
int nodes = 0;
for (auto i = 0; i < n_models; ++i) {
@@ -156,7 +120,7 @@ namespace bayesnet {
}
return nodes;
}
int Ensemble::getNumberOfEdges()
int Ensemble::getNumberOfEdges() const
{
int edges = 0;
for (auto i = 0; i < n_models; ++i) {
@@ -164,7 +128,7 @@ namespace bayesnet {
}
return edges;
}
int Ensemble::getNumberOfStates()
int Ensemble::getNumberOfStates() const
{
int nstates = 0;
for (auto i = 0; i < n_models; ++i) {

View File

@@ -8,44 +8,31 @@ using namespace std;
using namespace torch;
namespace bayesnet {
class Ensemble : public BaseClassifier {
class Ensemble : public Classifier {
private:
bool fitted;
long n_models;
Ensemble& build(vector<string>& features, string className, map<string, vector<int>>& states);
protected:
unsigned n_models;
vector<unique_ptr<Classifier>> models;
int m, n; // m: number of samples, n: number of features
Tensor X;
vector<vector<int>> Xv;
Tensor y;
vector<int> yv;
Tensor dataset;
Metrics metrics;
vector<string> features;
string className;
map<string, vector<int>> states;
void virtual train() = 0;
void trainModel() override;
vector<int> voting(Tensor& y_pred);
public:
Ensemble();
virtual ~Ensemble() = default;
Ensemble& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
Ensemble& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
Tensor predict(Tensor& X) override;
vector<int> predict(vector<vector<int>>& X) override;
float score(Tensor& X, Tensor& y) override;
float score(vector<vector<int>>& X, vector<int>& y) override;
int getNumberOfNodes() override;
int getNumberOfEdges() override;
int getNumberOfStates() override;
vector<string> show() override;
vector<string> graph(const string& title) override;
vector<string> topological_order() override
int getNumberOfNodes() const override;
int getNumberOfEdges() const override;
int getNumberOfStates() const override;
vector<string> show() const override;
vector<string> graph(const string& title) const override;
vector<string> topological_order() override
{
return vector<string>();
}
void dump_cpt() override
void dump_cpt() const override
{
}
};

View File

@@ -4,7 +4,7 @@ namespace bayesnet {
using namespace torch;
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {}
void KDB::train()
void KDB::buildModel()
{
/*
1. For each feature Xi, compute mutual information, I(X;C),
@@ -28,9 +28,10 @@ namespace bayesnet {
// 1. For each feature Xi, compute mutual information, I(X;C),
// where C is the class.
addNodes();
const Tensor& y = dataset.index({ -1, "..." });
vector <float> mi;
for (auto i = 0; i < features.size(); i++) {
Tensor firstFeature = X.index({ i, "..." });
Tensor firstFeature = dataset.index({ i, "..." });
mi.push_back(metrics.mutualInformation(firstFeature, y));
}
// 2. Compute class conditional mutual information I(Xi;XjIC), f or each
@@ -78,7 +79,7 @@ namespace bayesnet {
exit_cond = num == n_edges || candidates.size(0) == 0;
}
}
vector<string> KDB::graph(const string& title)
vector<string> KDB::graph(const string& title) const
{
string header{ title };
if (title == "KDB") {

View File

@@ -11,11 +11,11 @@ namespace bayesnet {
float theta;
void add_m_edges(int idx, vector<int>& S, Tensor& weights);
protected:
void train() override;
void buildModel() override;
public:
explicit KDB(int k, float theta = 0.03);
virtual ~KDB() {};
vector<string> graph(const string& name = "KDB") override;
vector<string> graph(const string& name = "KDB") const override;
};
}
#endif

30
src/BayesNet/KDBLd.cc Normal file
View File

@@ -0,0 +1,30 @@
#include "KDBLd.h"
namespace bayesnet {
using namespace std;
KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {}
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network
KDB::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
}
Tensor KDBLd::predict(Tensor& X)
{
auto Xt = prepareX(X);
return KDB::predict(Xt);
}
vector<string> KDBLd::graph(const string& name) const
{
return KDB::graph(name);
}
}

19
src/BayesNet/KDBLd.h Normal file
View File

@@ -0,0 +1,19 @@
#ifndef KDBLD_H
#define KDBLD_H
#include "KDB.h"
#include "Proposal.h"
namespace bayesnet {
using namespace std;
class KDBLd : public KDB, public Proposal {
private:
public:
explicit KDBLd(int k);
virtual ~KDBLd() = default;
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "KDB") const override;
Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; };
};
}
#endif // !KDBLD_H

View File

@@ -94,7 +94,7 @@ namespace bayesnet {
return result;
}
MST::MST(vector<string>& features, Tensor& weights, int root) : features(features), weights(weights), root(root) {}
MST::MST(const vector<string>& features, const Tensor& weights, const int root) : features(features), weights(weights), root(root) {}
vector<pair<int, int>> MST::maximumSpanningTree()
{
auto num_features = features.size();

View File

@@ -13,7 +13,7 @@ namespace bayesnet {
int root = 0;
public:
MST() = default;
MST(vector<string>& features, Tensor& weights, int root);
MST(const vector<string>& features, const Tensor& weights, const int root);
vector<pair<int, int>> maximumSpanningTree();
};
class Graph {

View File

@@ -20,7 +20,6 @@ namespace bayesnet {
classNumStates = 0;
fitted = false;
nodes.clear();
dataset.clear();
samples = torch::Tensor();
}
float Network::getmaxThreads()
@@ -31,31 +30,28 @@ namespace bayesnet {
{
return samples;
}
void Network::addNode(const string& name, int numStates)
void Network::addNode(const string& name)
{
if (name == "") {
throw invalid_argument("Node name cannot be empty");
}
if (nodes.find(name) != nodes.end()) {
return;
}
if (find(features.begin(), features.end(), name) == features.end()) {
features.push_back(name);
}
if (nodes.find(name) != nodes.end()) {
// if node exists update its number of states and remove parents, children and CPT
nodes[name]->clear();
nodes[name]->setNumStates(numStates);
return;
}
nodes[name] = std::make_unique<Node>(name, numStates);
nodes[name] = std::make_unique<Node>(name);
}
vector<string> Network::getFeatures()
vector<string> Network::getFeatures() const
{
return features;
}
int Network::getClassNumStates()
int Network::getClassNumStates() const
{
return classNumStates;
}
int Network::getStates()
int Network::getStates() const
{
int result = 0;
for (auto& node : nodes) {
@@ -63,7 +59,7 @@ namespace bayesnet {
}
return result;
}
string Network::getClassName()
string Network::getClassName() const
{
return className;
}
@@ -108,7 +104,7 @@ namespace bayesnet {
{
return nodes;
}
void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector<string>& featureNames, const string& className)
void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{
if (n_samples != n_samples_y) {
throw invalid_argument("X and y must have the same number of samples in Network::fit (" + to_string(n_samples) + " != " + to_string(n_samples_y) + ")");
@@ -126,45 +122,54 @@ namespace bayesnet {
if (find(features.begin(), features.end(), feature) == features.end()) {
throw invalid_argument("Feature " + feature + " not found in Network::features");
}
if (states.find(feature) == states.end()) {
throw invalid_argument("Feature " + feature + " not found in states");
}
}
}
// X comes in nxm, where n is the number of features and m the number of samples
void Network::fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& featureNames, const string& className)
void Network::setStates(const map<string, vector<int>>& states)
{
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className);
// Set states to every Node in the network
for (int i = 0; i < features.size(); ++i) {
nodes[features[i]]->setNumStates(states.at(features[i]).size());
}
classNumStates = nodes[className]->getNumStates();
}
// X comes in nxm, where n is the number of features and m the number of samples
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states);
this->className = className;
dataset.clear();
// Specific part
classNumStates = torch::max(y).item<int>() + 1;
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
samples = torch::cat({ X , ytmp }, 0);
for (int i = 0; i < featureNames.size(); ++i) {
auto row_feature = X.index({ i, "..." });
dataset[featureNames[i]] = vector<int>(row_feature.data_ptr<int>(), row_feature.data_ptr<int>() + row_feature.size(0));;
}
dataset[className] = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
completeFit();
completeFit(states);
}
void Network::fit(const torch::Tensor& samples, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{
checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states);
this->className = className;
this->samples = samples;
completeFit(states);
}
// input_data comes in nxm, where n is the number of features and m the number of samples
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<string>& featureNames, const string& className)
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className);
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states);
this->className = className;
dataset.clear();
// Specific part
classNumStates = *max_element(labels.begin(), labels.end()) + 1;
// Build dataset & tensor of samples (nxm) (n+1 because of the class)
// Build tensor of samples (nxm) (n+1 because of the class)
samples = torch::zeros({ static_cast<int>(input_data.size() + 1), static_cast<int>(input_data[0].size()) }, torch::kInt32);
for (int i = 0; i < featureNames.size(); ++i) {
dataset[featureNames[i]] = input_data[i];
samples.index_put_({ i, "..." }, torch::tensor(input_data[i], torch::kInt32));
}
dataset[className] = labels;
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
completeFit();
completeFit(states);
}
void Network::completeFit()
void Network::completeFit(const map<string, vector<int>>& states)
{
setStates(states);
int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads);
if (maxThreadsRunning < 1) {
maxThreadsRunning = 1;
@@ -186,7 +191,7 @@ namespace bayesnet {
auto& pair = *std::next(nodes.begin(), nextNodeIndex);
++nextNodeIndex;
lock.unlock();
pair.second->computeCPT(dataset, laplaceSmoothing);
pair.second->computeCPT(samples, features, laplaceSmoothing);
lock.lock();
nodes[pair.first] = std::move(pair.second);
lock.unlock();
@@ -210,8 +215,11 @@ namespace bayesnet {
torch::Tensor result;
result = torch::zeros({ samples.size(1), classNumStates }, torch::kFloat64);
for (int i = 0; i < samples.size(1); ++i) {
auto sample = samples.index({ "...", i });
result.index_put_({ i, "..." }, torch::tensor(predict_sample(sample), torch::kFloat64));
const Tensor sample = samples.index({ "...", i });
auto psample = predict_sample(sample);
auto temp = torch::tensor(psample, torch::kFloat64);
// result.index_put_({ i, "..." }, torch::tensor(predict_sample(sample), torch::kFloat64));
result.index_put_({ i, "..." }, temp);
}
if (proba)
return result;
@@ -333,13 +341,12 @@ namespace bayesnet {
for (auto& thread : threads) {
thread.join();
}
// Normalize result
double sum = accumulate(result.begin(), result.end(), 0.0);
transform(result.begin(), result.end(), result.begin(), [sum](double& value) { return value / sum; });
return result;
}
vector<string> Network::show()
vector<string> Network::show() const
{
vector<string> result;
// Draw the network
@@ -352,7 +359,7 @@ namespace bayesnet {
}
return result;
}
vector<string> Network::graph(const string& title)
vector<string> Network::graph(const string& title) const
{
auto output = vector<string>();
auto prefix = "digraph BayesNet {\nlabel=<BayesNet ";
@@ -366,7 +373,7 @@ namespace bayesnet {
output.push_back("}\n");
return output;
}
vector<pair<string, string>> Network::getEdges()
vector<pair<string, string>> Network::getEdges() const
{
auto edges = vector<pair<string, string>>();
for (const auto& node : nodes) {
@@ -378,6 +385,10 @@ namespace bayesnet {
}
return edges;
}
int Network::getNumEdges() const
{
return getEdges().size();
}
vector<string> Network::topological_sort()
{
/* Check if al the fathers of every node are before the node */
@@ -416,10 +427,10 @@ namespace bayesnet {
}
return result;
}
void Network::dump_cpt()
void Network::dump_cpt() const
{
for (auto& node : nodes) {
cout << "* " << node.first << ": " << node.second->getCPT() << endl;
cout << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << endl;
}
}
}

View File

@@ -8,11 +8,10 @@ namespace bayesnet {
class Network {
private:
map<string, unique_ptr<Node>> nodes;
map<string, vector<int>> dataset;
bool fitted;
float maxThreads = 0.95;
int classNumStates;
vector<string> features; // Including class
vector<string> features; // Including classname
string className;
int laplaceSmoothing = 1;
torch::Tensor samples; // nxm tensor used to fit the model
@@ -21,12 +20,9 @@ namespace bayesnet {
vector<double> predict_sample(const torch::Tensor&);
vector<double> exactInference(map<string, int>&);
double computeFactor(map<string, int>&);
double mutual_info(torch::Tensor&, torch::Tensor&);
double entropy(torch::Tensor&);
double conditionalEntropy(torch::Tensor&, torch::Tensor&);
double mutualInformation(torch::Tensor&, torch::Tensor&);
void completeFit();
void checkFitData(int n_features, int n_samples, int n_samples_y, const vector<string>& featureNames, const string& className);
void completeFit(const map<string, vector<int>>&);
void checkFitData(int n_features, int n_samples, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>&);
void setStates(const map<string, vector<int>>&);
public:
Network();
explicit Network(float, int);
@@ -34,29 +30,29 @@ namespace bayesnet {
explicit Network(Network&);
torch::Tensor& getSamples();
float getmaxThreads();
void addNode(const string&, int);
void addNode(const string&);
void addEdge(const string&, const string&);
map<string, std::unique_ptr<Node>>& getNodes();
vector<string> getFeatures();
int getStates();
vector<pair<string, string>> getEdges();
int getClassNumStates();
string getClassName();
void fit(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&);
void fit(torch::Tensor&, torch::Tensor&, const vector<string>&, const string&);
vector<string> getFeatures() const;
int getStates() const;
vector<pair<string, string>> getEdges() const;
int getNumEdges() const;
int getClassNumStates() const;
string getClassName() const;
void fit(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&, const map<string, vector<int>>&);
void fit(const torch::Tensor&, const torch::Tensor&, const vector<string>&, const string&, const map<string, vector<int>>&);
void fit(const torch::Tensor&, const vector<string>&, const string&, const map<string, vector<int>>&);
vector<int> predict(const vector<vector<int>>&); // Return mx1 vector of predictions
torch::Tensor predict(const torch::Tensor&); // Return mx1 tensor of predictions
//Computes the conditional edge weight of variable index u and v conditioned on class_node
torch::Tensor conditionalEdgeWeight();
torch::Tensor predict_tensor(const torch::Tensor& samples, const bool proba);
vector<vector<double>> predict_proba(const vector<vector<int>>&); // Return mxn vector of probabilities
torch::Tensor predict_proba(const torch::Tensor&); // Return mxn tensor of probabilities
double score(const vector<vector<int>>&, const vector<int>&);
vector<string> topological_sort();
vector<string> show();
vector<string> graph(const string& title); // Returns a vector of strings representing the graph in graphviz format
vector<string> show() const;
vector<string> graph(const string& title) const; // Returns a vector of strings representing the graph in graphviz format
void initialize();
void dump_cpt();
void dump_cpt() const;
inline string version() { return "0.1.0"; }
};
}

View File

@@ -2,8 +2,8 @@
namespace bayesnet {
Node::Node(const std::string& name, int numStates)
: name(name), numStates(numStates), cpTable(torch::Tensor()), parents(vector<Node*>()), children(vector<Node*>())
Node::Node(const std::string& name)
: name(name), numStates(0), cpTable(torch::Tensor()), parents(vector<Node*>()), children(vector<Node*>())
{
}
void Node::clear()
@@ -84,8 +84,9 @@ namespace bayesnet {
}
return result;
}
void Node::computeCPT(map<string, vector<int>>& dataset, const int laplaceSmoothing)
void Node::computeCPT(const torch::Tensor& dataset, const vector<string>& features, const int laplaceSmoothing)
{
dimensions.clear();
// Get dimensions of the CPT
dimensions.push_back(numStates);
transform(parents.begin(), parents.end(), back_inserter(dimensions), [](const auto& parent) { return parent->getNumStates(); });
@@ -93,10 +94,22 @@ namespace bayesnet {
// Create a tensor of zeros with the dimensions of the CPT
cpTable = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing;
// Fill table with counts
for (int n_sample = 0; n_sample < dataset[name].size(); ++n_sample) {
auto pos = find(features.begin(), features.end(), name);
if (pos == features.end()) {
throw logic_error("Feature " + name + " not found in dataset");
}
int name_index = pos - features.begin();
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
torch::List<c10::optional<torch::Tensor>> coordinates;
coordinates.push_back(torch::tensor(dataset[name][n_sample]));
transform(parents.begin(), parents.end(), back_inserter(coordinates), [&dataset, &n_sample](const auto& parent) { return torch::tensor(dataset[parent->getName()][n_sample]); });
coordinates.push_back(dataset.index({ name_index, n_sample }));
for (auto parent : parents) {
pos = find(features.begin(), features.end(), parent->getName());
if (pos == features.end()) {
throw logic_error("Feature parent " + parent->getName() + " not found in dataset");
}
int parent_index = pos - features.begin();
coordinates.push_back(dataset.index({ parent_index, n_sample }));
}
// Increment the count of the corresponding coordinate
cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + 1);
}

View File

@@ -16,7 +16,7 @@ namespace bayesnet {
vector<int64_t> dimensions; // dimensions of the cpTable
public:
vector<pair<string, string>> combinations(const vector<string>&);
Node(const string&, int);
explicit Node(const string&);
void clear();
void addParent(Node*);
void addChild(Node*);
@@ -26,7 +26,7 @@ namespace bayesnet {
vector<Node*>& getParents();
vector<Node*>& getChildren();
torch::Tensor& getCPT();
void computeCPT(map<string, vector<int>>&, const int);
void computeCPT(const torch::Tensor&, const vector<string>&, const int);
int getNumStates() const;
void setNumStates(int);
unsigned minFill();

109
src/BayesNet/Proposal.cc Normal file
View File

@@ -0,0 +1,109 @@
#include "Proposal.h"
#include "ArffFiles.h"
namespace bayesnet {
Proposal::Proposal(torch::Tensor& dataset_, vector<string>& features_, string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_) {}
Proposal::~Proposal()
{
for (auto& [key, value] : discretizers) {
delete value;
}
}
map<string, vector<int>> Proposal::localDiscretizationProposal(const map<string, vector<int>>& oldStates, Network& model)
{
// order of local discretization is important. no good 0, 1, 2...
// although we rediscretize features after the local discretization of every feature
auto order = model.topological_sort();
auto& nodes = model.getNodes();
map<string, vector<int>> states = oldStates;
vector<int> indicesToReDiscretize;
bool upgrade = false; // Flag to check if we need to upgrade the model
for (auto feature : order) {
auto nodeParents = nodes[feature]->getParents();
if (nodeParents.size() < 2) continue; // Only has class as parent
upgrade = true;
int index = find(pFeatures.begin(), pFeatures.end(), feature) - pFeatures.begin();
indicesToReDiscretize.push_back(index); // We need to re-discretize this feature
vector<string> parents;
transform(nodeParents.begin(), nodeParents.end(), back_inserter(parents), [](const auto& p) { return p->getName(); });
// Remove class as parent as it will be added later
parents.erase(remove(parents.begin(), parents.end(), pClassName), parents.end());
// Get the indices of the parents
vector<int> indices;
indices.push_back(-1); // Add class index
transform(parents.begin(), parents.end(), back_inserter(indices), [&](const auto& p) {return find(pFeatures.begin(), pFeatures.end(), p) - pFeatures.begin(); });
// Now we fit the discretizer of the feature, conditioned on its parents and the class i.e. discretizer.fit(X[index], X[indices] + y)
vector<string> yJoinParents(Xf.size(1));
for (auto idx : indices) {
for (int i = 0; i < Xf.size(1); ++i) {
yJoinParents[i] += to_string(pDataset.index({ idx, i }).item<int>());
}
}
auto arff = ArffFiles();
auto yxv = arff.factorize(yJoinParents);
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
auto xvf = vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
discretizers[feature]->fit(xvf, yxv);
//
//
//
// auto tmp = discretizers[feature]->transform(xvf);
// Xv[index] = tmp;
// auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
// iota(xStates.begin(), xStates.end(), 0);
// //Update new states of the feature/node
// states[feature] = xStates;
}
if (upgrade) {
// Discretize again X (only the affected indices) with the new fitted discretizers
for (auto index : indicesToReDiscretize) {
auto Xt_ptr = Xf.index({ index }).data_ptr<float>();
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
pDataset.index_put_({ index, "..." }, torch::tensor(discretizers[pFeatures[index]]->transform(Xt)));
auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0);
//Update new states of the feature/node
states[pFeatures[index]] = xStates;
}
model.fit(pDataset, pFeatures, pClassName, states);
}
return states;
}
map<string, vector<int>> Proposal::fit_local_discretization(const torch::Tensor& y)
{
// Discretize the continuous input data and build pDataset (Classifier::dataset)
int m = Xf.size(1);
int n = Xf.size(0);
map<string, vector<int>> states;
pDataset = torch::zeros({ n + 1, m }, kInt32);
auto yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
// discretize input data by feature(row)
for (auto i = 0; i < pFeatures.size(); ++i) {
auto* discretizer = new mdlp::CPPFImdlp();
auto Xt_ptr = Xf.index({ i }).data_ptr<float>();
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
discretizer->fit(Xt, yv);
pDataset.index_put_({ i, "..." }, torch::tensor(discretizer->transform(Xt)));
auto xStates = vector<int>(discretizer->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0);
states[pFeatures[i]] = xStates;
discretizers[pFeatures[i]] = discretizer;
}
int n_classes = torch::max(y).item<int>() + 1;
auto yStates = vector<int>(n_classes);
iota(yStates.begin(), yStates.end(), 0);
states[pClassName] = yStates;
pDataset.index_put_({ n, "..." }, y);
return states;
}
torch::Tensor Proposal::prepareX(torch::Tensor& X)
{
auto Xtd = torch::zeros_like(X, torch::kInt32);
for (int i = 0; i < X.size(0); ++i) {
auto Xt = vector<float>(X[i].data_ptr<float>(), X[i].data_ptr<float>() + X.size(1));
auto Xd = discretizers[pFeatures[i]]->transform(Xt);
Xtd.index_put_({ i }, torch::tensor(Xd, torch::kInt32));
}
return Xtd;
}
}

29
src/BayesNet/Proposal.h Normal file
View File

@@ -0,0 +1,29 @@
#ifndef PROPOSAL_H
#define PROPOSAL_H
#include <string>
#include <map>
#include <torch/torch.h>
#include "Network.h"
#include "CPPFImdlp.h"
#include "Classifier.h"
namespace bayesnet {
class Proposal {
public:
Proposal(torch::Tensor& pDataset, vector<string>& features_, string& className_);
virtual ~Proposal();
protected:
torch::Tensor prepareX(torch::Tensor& X);
map<string, vector<int>> localDiscretizationProposal(const map<string, vector<int>>& states, Network& model);
map<string, vector<int>> fit_local_discretization(const torch::Tensor& y);
torch::Tensor Xf; // X continuous nxm tensor
torch::Tensor y; // y discrete nx1 tensor
map<string, mdlp::CPPFImdlp*> discretizers;
private:
torch::Tensor& pDataset; // (n+1)xm tensor
vector<string>& pFeatures;
string& pClassName;
};
}
#endif

View File

@@ -4,7 +4,7 @@ namespace bayesnet {
SPODE::SPODE(int root) : Classifier(Network()), root(root) {}
void SPODE::train()
void SPODE::buildModel()
{
// 0. Add all nodes to the model
addNodes();
@@ -17,7 +17,7 @@ namespace bayesnet {
}
}
}
vector<string> SPODE::graph(const string& name)
vector<string> SPODE::graph(const string& name) const
{
return model.graph(name);
}

View File

@@ -7,11 +7,11 @@ namespace bayesnet {
private:
int root;
protected:
void train() override;
void buildModel() override;
public:
explicit SPODE(int root);
virtual ~SPODE() {};
vector<string> graph(const string& name = "SPODE") override;
vector<string> graph(const string& name = "SPODE") const override;
};
}
#endif

47
src/BayesNet/SPODELd.cc Normal file
View File

@@ -0,0 +1,47 @@
#include "SPODELd.h"
namespace bayesnet {
using namespace std;
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
SPODE::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
}
SPODELd& SPODELd::fit(torch::Tensor& dataset, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
cout << "Xf " << Xf.sizes() << " dtype: " << Xf.dtype() << endl;
y = dataset.index({ -1, "..." }).clone();
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_;
className = className_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
SPODE::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
}
Tensor SPODELd::predict(Tensor& X)
{
auto Xt = prepareX(X);
return SPODE::predict(Xt);
}
vector<string> SPODELd::graph(const string& name) const
{
return SPODE::graph(name);
}
}

19
src/BayesNet/SPODELd.h Normal file
View File

@@ -0,0 +1,19 @@
#ifndef SPODELD_H
#define SPODELD_H
#include "SPODE.h"
#include "Proposal.h"
namespace bayesnet {
using namespace std;
class SPODELd : public SPODE, public Proposal {
public:
explicit SPODELd(int root);
virtual ~SPODELd() = default;
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
SPODELd& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "SPODE") const override;
Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; };
};
}
#endif // !SPODELD_H

View File

@@ -5,16 +5,16 @@ namespace bayesnet {
TAN::TAN() : Classifier(Network()) {}
void TAN::train()
void TAN::buildModel()
{
// 0. Add all nodes to the model
addNodes();
// 1. Compute mutual information between each feature and the class and set the root node
// as the highest mutual information with the class
auto mi = vector <pair<int, float >>();
Tensor class_dataset = samples.index({ -1, "..." });
Tensor class_dataset = dataset.index({ -1, "..." });
for (int i = 0; i < static_cast<int>(features.size()); ++i) {
Tensor feature_dataset = samples.index({ i, "..." });
Tensor feature_dataset = dataset.index({ i, "..." });
auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset);
mi.push_back({ i, mi_value });
}
@@ -34,7 +34,7 @@ namespace bayesnet {
model.addEdge(className, feature);
}
}
vector<string> TAN::graph(const string& title)
vector<string> TAN::graph(const string& title) const
{
return model.graph(title);
}

View File

@@ -7,11 +7,11 @@ namespace bayesnet {
class TAN : public Classifier {
private:
protected:
void train() override;
void buildModel() override;
public:
TAN();
virtual ~TAN() {};
vector<string> graph(const string& name = "TAN") override;
vector<string> graph(const string& name = "TAN") const override;
};
}
#endif

31
src/BayesNet/TANLd.cc Normal file
View File

@@ -0,0 +1,31 @@
#include "TANLd.h"
namespace bayesnet {
using namespace std;
TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {}
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
TAN::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
}
Tensor TANLd::predict(Tensor& X)
{
auto Xt = prepareX(X);
return TAN::predict(Xt);
}
vector<string> TANLd::graph(const string& name) const
{
return TAN::graph(name);
}
}

19
src/BayesNet/TANLd.h Normal file
View File

@@ -0,0 +1,19 @@
#ifndef TANLD_H
#define TANLD_H
#include "TAN.h"
#include "Proposal.h"
namespace bayesnet {
using namespace std;
class TANLd : public TAN, public Proposal {
private:
public:
TANLd();
virtual ~TANLd() = default;
TANLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "TAN") const override;
Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; };
};
}
#endif // !TANLD_H

View File

@@ -1,55 +0,0 @@
#include "TANNew.h"
namespace bayesnet {
using namespace std;
TANNew::TANNew() : TAN() {}
TANNew::~TANNew() {}
TANNew& TANNew::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
Xf = X_;
y = y_;
features = features_;
className = className_;
Xv = vector<vector<int>>();
yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
// discretize input data by feature(row)
for (int i = 0; i < features.size(); ++i) {
auto* discretizer = new mdlp::CPPFImdlp();
auto Xt_ptr = Xf.index({ i }).data_ptr<float>();
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
discretizer->fit(Xt, yv);
Xv.push_back(discretizer->transform(Xt));
auto xStates = vector<int>(discretizer->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0);
states[features[i]] = xStates;
discretizers[features[i]] = discretizer;
}
int n_classes = torch::max(y).item<int>() + 1;
auto yStates = vector<int>(n_classes);
iota(yStates.begin(), yStates.end(), 0);
states[className] = yStates;
// Now we have standard TAN and now we implement the proposal
// 1st we need to fit the model to build the TAN structure
cout << "TANNew: Fitting model" << endl;
TAN::fit(Xv, yv, features, className, states);
cout << "TANNew: Model fitted" << endl;
localDiscretizationProposal(discretizers, Xf);
return *this;
}
Tensor TANNew::predict(Tensor& X)
{
auto Xtd = torch::zeros_like(X, torch::kInt32);
for (int i = 0; i < X.size(0); ++i) {
auto Xt = vector<float>(X[i].data_ptr<float>(), X[i].data_ptr<float>() + X.size(1));
auto Xd = discretizers[features[i]]->transform(Xt);
Xtd.index_put_({ i }, torch::tensor(Xd, torch::kInt32));
}
cout << "TANNew Xtd: " << Xtd.sizes() << endl;
return TAN::predict(Xtd);
}
vector<string> TANNew::graph(const string& name)
{
return TAN::graph(name);
}
}

View File

@@ -1,21 +0,0 @@
#ifndef TANNEW_H
#define TANNEW_H
#include "TAN.h"
#include "CPPFImdlp.h"
namespace bayesnet {
using namespace std;
class TANNew : public TAN {
private:
map<string, mdlp::CPPFImdlp*> discretizers;
torch::Tensor Xf; // X continuous nxm tensor
public:
TANNew();
virtual ~TANNew();
TANNew& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "TAN") override;
Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; };
};
}
#endif // !TANNEW_H

View File

@@ -3,6 +3,7 @@
namespace bayesnet {
using namespace std;
using namespace torch;
// Return the indices in descending order
vector<int> argsort(vector<float>& nums)
{
int n = nums.size();

View File

@@ -4,5 +4,5 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc)
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc Report.cc)
target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")

View File

@@ -1,6 +1,7 @@
#include "Experiment.h"
#include "Datasets.h"
#include "Models.h"
#include "Report.h"
namespace platform {
using json = nlohmann::json;
@@ -86,6 +87,13 @@ namespace platform {
file.close();
}
void Experiment::report()
{
json data = build_json();
Report report(data);
report.show();
}
void Experiment::show()
{
json data = build_json();

View File

@@ -108,6 +108,7 @@ namespace platform {
void cross_validation(const string& path, const string& fileName);
void go(vector<string> filesToProcess, const string& path);
void show();
void report();
};
}
#endif

View File

@@ -6,7 +6,10 @@
#include "TAN.h"
#include "KDB.h"
#include "SPODE.h"
#include "TANNew.h"
#include "TANLd.h"
#include "KDBLd.h"
#include "SPODELd.h"
#include "AODELd.h"
namespace platform {
class Models {
private:

67
src/Platform/Report.cc Normal file
View File

@@ -0,0 +1,67 @@
#include "Report.h"
namespace platform {
string headerLine(const string& text)
{
int n = MAXL - text.length() - 3;
n = n < 0 ? 0 : n;
return "* " + text + string(n, ' ') + "*\n";
}
string Report::fromVector(const string& key)
{
string result = "";
for (auto& item : data[key]) {
result += to_string(item) + ", ";
}
return "[" + result.substr(0, result.size() - 2) + "]";
}
string fVector(const json& data)
{
string result = "";
for (const auto& item : data) {
result += to_string(item) + ", ";
}
return "[" + result.substr(0, result.size() - 2) + "]";
}
void Report::show()
{
header();
body();
}
void Report::header()
{
cout << string(MAXL, '*') << endl;
cout << headerLine("Report " + data["model"].get<string>() + " ver. " + data["version"].get<string>() + " with " + to_string(data["folds"].get<int>()) + " Folds cross validation and " + to_string(data["seeds"].size()) + " random seeds. " + data["date"].get<string>() + " " + data["time"].get<string>());
cout << headerLine(data["title"].get<string>());
cout << headerLine("Random seeds: " + fromVector("seeds") + " Stratified: " + (data["stratified"].get<bool>() ? "True" : "False"));
cout << headerLine("Execution took " + to_string(data["duration"].get<float>()) + " seconds, " + to_string(data["duration"].get<float>() / 3600) + " hours, on " + data["platform"].get<string>());
cout << headerLine("Score is " + data["score_name"].get<string>());
cout << string(MAXL, '*') << endl;
cout << endl;
}
void Report::body()
{
cout << "Dataset Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << endl;
cout << "============================== ====== ===== === ======= ======= ======= =============== ================= ===============" << endl;
for (const auto& r : data["results"]) {
cout << setw(30) << left << r["dataset"].get<string>() << " ";
cout << setw(6) << right << r["samples"].get<int>() << " ";
cout << setw(5) << right << r["features"].get<int>() << " ";
cout << setw(3) << right << r["classes"].get<int>() << " ";
cout << setw(7) << setprecision(2) << fixed << r["nodes"].get<float>() << " ";
cout << setw(7) << setprecision(2) << fixed << r["leaves"].get<float>() << " ";
cout << setw(7) << setprecision(2) << fixed << r["depth"].get<float>() << " ";
cout << setw(8) << right << setprecision(6) << fixed << r["score_test"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["score_test_std"].get<double>() << " ";
cout << setw(10) << right << setprecision(6) << fixed << r["test_time"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["test_time_std"].get<double>() << " ";
cout << " " << r["hyperparameters"].get<string>();
cout << endl;
cout << string(MAXL, '*') << endl;
cout << headerLine("Train scores: " + fVector(r["scores_train"]));
cout << headerLine("Test scores: " + fVector(r["scores_test"]));
cout << headerLine("Train times: " + fVector(r["times_train"]));
cout << headerLine("Test times: " + fVector(r["times_test"]));
cout << string(MAXL, '*') << endl;
}
}
}

23
src/Platform/Report.h Normal file
View File

@@ -0,0 +1,23 @@
#ifndef REPORT_H
#define REPORT_H
#include <string>
#include <iostream>
#include <nlohmann/json.hpp>
using json = nlohmann::json;
const int MAXL = 121;
namespace platform {
using namespace std;
class Report {
public:
explicit Report(json data_) { data = data_; };
virtual ~Report() = default;
void show();
private:
void header();
void body();
string fromVector(const string& key);
json data;
};
};
#endif

View File

@@ -102,9 +102,10 @@ int main(int argc, char** argv)
/*
* Begin Processing
*/
auto env = platform::DotEnv();
auto experiment = platform::Experiment();
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("1.0.0");
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform("BayesNet");
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform(env.get("platform"));
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy");
for (auto seed : seeds) {
experiment.addRandomSeed(seed);
@@ -116,7 +117,7 @@ int main(int argc, char** argv)
if (saveResults)
experiment.save(PATH_RESULTS);
else
experiment.show();
experiment.report();
cout << "Done!" << endl;
return 0;
}

View File

@@ -2,12 +2,18 @@
#define MODEL_REGISTER_H
static platform::Registrar registrarT("TAN",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TAN();});
static platform::Registrar registrarTN("TANNew",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TANNew();});
static platform::Registrar registrarTLD("TANLd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TANLd();});
static platform::Registrar registrarS("SPODE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODE(2);});
static platform::Registrar registrarSLD("SPODELd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODELd(2);});
static platform::Registrar registrarK("KDB",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDB(2);});
static platform::Registrar registrarKLD("KDBLd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDBLd(2);});
static platform::Registrar registrarA("AODE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODE();});
static platform::Registrar registrarALD("AODELd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODELd();});
#endif

View File

@@ -9,29 +9,21 @@ TEST_CASE("Test Bayesian Network")
{
auto [Xd, y, features, className, states] = loadFile("iris");
SECTION("Test Update Nodes")
{
auto net = bayesnet::Network();
net.addNode("A", 3);
REQUIRE(net.getStates() == 3);
net.addNode("A", 5);
REQUIRE(net.getStates() == 5);
}
SECTION("Test get features")
{
auto net = bayesnet::Network();
net.addNode("A", 3);
net.addNode("B", 5);
net.addNode("A");
net.addNode("B");
REQUIRE(net.getFeatures() == vector<string>{"A", "B"});
net.addNode("C", 2);
net.addNode("C");
REQUIRE(net.getFeatures() == vector<string>{"A", "B", "C"});
}
SECTION("Test get edges")
{
auto net = bayesnet::Network();
net.addNode("A", 3);
net.addNode("B", 5);
net.addNode("C", 2);
net.addNode("A");
net.addNode("B");
net.addNode("C");
net.addEdge("A", "B");
net.addEdge("B", "C");
REQUIRE(net.getEdges() == vector<pair<string, string>>{ {"A", "B"}, { "B", "C" } });