Compare commits

...

11 Commits

35 changed files with 599 additions and 263 deletions

4
.vscode/launch.json vendored
View File

@@ -25,14 +25,14 @@
"program": "${workspaceFolder}/build/src/Platform/main", "program": "${workspaceFolder}/build/src/Platform/main",
"args": [ "args": [
"-m", "-m",
"TANNew", "AODELd",
"-p", "-p",
"/Users/rmontanana/Code/discretizbench/datasets", "/Users/rmontanana/Code/discretizbench/datasets",
"--stratified", "--stratified",
"-d", "-d",
"iris" "iris"
], ],
"cwd": "${workspaceFolder}/build/src/Platform", "cwd": "/Users/rmontanana/Code/discretizbench",
}, },
{ {
"name": "Build & debug active file", "name": "Build & debug active file",

View File

@@ -14,6 +14,14 @@ setup: ## Install dependencies for tests and coverage
dependency: ## Create a dependency graph diagram of the project (build/dependency.png) dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
cd build && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png cd build && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
build: ## Build the main and BayesNetSample
cmake --build build -t main -t BayesNetSample -j 32
clean: ## Clean the debug info
@echo ">>> Cleaning Debug BayesNet ...";
find . -name "*.gcda" -print0 | xargs -0 rm
@echo ">>> Done";
debug: ## Build a debug version of the project debug: ## Build a debug version of the project
@echo ">>> Building Debug BayesNet ..."; @echo ">>> Building Debug BayesNet ...";
@if [ -d ./build ]; then rm -rf ./build; fi @if [ -d ./build ]; then rm -rf ./build; fi

View File

@@ -178,61 +178,59 @@ int main(int argc, char** argv)
cout << "end." << endl; cout << "end." << endl;
auto score = clf->score(Xd, y); auto score = clf->score(Xd, y);
cout << "Score: " << score << endl; cout << "Score: " << score << endl;
auto graph = clf->graph(); // auto graph = clf->graph();
auto dot_file = model_name + "_" + file_name; // auto dot_file = model_name + "_" + file_name;
ofstream file(dot_file + ".dot"); // ofstream file(dot_file + ".dot");
file << graph; // file << graph;
file.close(); // file.close();
cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl; // cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl; // cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
string stratified_string = stratified ? " Stratified" : ""; // string stratified_string = stratified ? " Stratified" : "";
cout << nFolds << " Folds" << stratified_string << " Cross validation" << endl; // cout << nFolds << " Folds" << stratified_string << " Cross validation" << endl;
cout << "==========================================" << endl; // cout << "==========================================" << endl;
torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32); // torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
torch::Tensor yt = torch::tensor(y, torch::kInt32); // torch::Tensor yt = torch::tensor(y, torch::kInt32);
for (int i = 0; i < features.size(); ++i) { // for (int i = 0; i < features.size(); ++i) {
Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32)); // Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
} // }
float total_score = 0, total_score_train = 0, score_train, score_test; // float total_score = 0, total_score_train = 0, score_train, score_test;
Fold* fold; // Fold* fold;
if (stratified) // if (stratified)
fold = new StratifiedKFold(nFolds, y, seed); // fold = new StratifiedKFold(nFolds, y, seed);
else // else
fold = new KFold(nFolds, y.size(), seed); // fold = new KFold(nFolds, y.size(), seed);
for (auto i = 0; i < nFolds; ++i) { // for (auto i = 0; i < nFolds; ++i) {
auto [train, test] = fold->getFold(i); // auto [train, test] = fold->getFold(i);
cout << "Fold: " << i + 1 << endl; // cout << "Fold: " << i + 1 << endl;
if (tensors) { // if (tensors) {
auto ttrain = torch::tensor(train, torch::kInt64); // auto ttrain = torch::tensor(train, torch::kInt64);
auto ttest = torch::tensor(test, torch::kInt64); // auto ttest = torch::tensor(test, torch::kInt64);
torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain); // torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
torch::Tensor ytraint = yt.index({ ttrain }); // torch::Tensor ytraint = yt.index({ ttrain });
torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest); // torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
torch::Tensor ytestt = yt.index({ ttest }); // torch::Tensor ytestt = yt.index({ ttest });
clf->fit(Xtraint, ytraint, features, className, states); // clf->fit(Xtraint, ytraint, features, className, states);
auto temp = clf->predict(Xtraint); // auto temp = clf->predict(Xtraint);
score_train = clf->score(Xtraint, ytraint); // score_train = clf->score(Xtraint, ytraint);
score_test = clf->score(Xtestt, ytestt); // score_test = clf->score(Xtestt, ytestt);
} else { // } else {
auto [Xtrain, ytrain] = extract_indices(train, Xd, y); // auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
auto [Xtest, ytest] = extract_indices(test, Xd, y); // auto [Xtest, ytest] = extract_indices(test, Xd, y);
clf->fit(Xtrain, ytrain, features, className, states); // clf->fit(Xtrain, ytrain, features, className, states);
// score_train = clf->score(Xtrain, ytrain);
score_train = clf->score(Xtrain, ytrain); // score_test = clf->score(Xtest, ytest);
score_test = clf->score(Xtest, ytest); // }
} // if (dump_cpt) {
if (dump_cpt) { // cout << "--- CPT Tables ---" << endl;
cout << "--- CPT Tables ---" << endl; // clf->dump_cpt();
clf->dump_cpt(); // }
} // total_score_train += score_train;
total_score_train += score_train; // total_score += score_test;
total_score += score_test; // cout << "Score Train: " << score_train << endl;
cout << "Score Train: " << score_train << endl; // cout << "Score Test : " << score_test << endl;
cout << "Score Test : " << score_test << endl; // cout << "-------------------------------------------------------------------------------" << endl;
cout << "-------------------------------------------------------------------------------" << endl; // }
} // cout << "**********************************************************************************" << endl;
cout << "**********************************************************************************" << endl; // cout << "Average Score Train: " << total_score_train / nFolds << endl;
cout << "Average Score Train: " << total_score_train / nFolds << endl; // cout << "Average Score Test : " << total_score / nFolds << endl;return 0;
cout << "Average Score Test : " << total_score / nFolds << endl;
return 0;
} }

34
src/BayesNet/AODELd.cc Normal file
View File

@@ -0,0 +1,34 @@
#include "AODELd.h"
namespace bayesnet {
using namespace std;
AODELd::AODELd() : Ensemble(), Proposal(Ensemble::Xv, Ensemble::yv, features, className) {}
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
features = features_;
className = className_;
states = states_;
train();
for (const auto& model : models) {
model->fit(X_, y_, features_, className_, states_);
}
n_models = models.size();
fitted = true;
return *this;
}
void AODELd::train()
{
models.clear();
for (int i = 0; i < features.size(); ++i) {
models.push_back(std::make_unique<SPODELd>(i));
}
}
Tensor AODELd::predict(Tensor& X)
{
return Ensemble::predict(X);
}
vector<string> AODELd::graph(const string& name)
{
return Ensemble::graph(name);
}
}

20
src/BayesNet/AODELd.h Normal file
View File

@@ -0,0 +1,20 @@
#ifndef AODELD_H
#define AODELD_H
#include "Ensemble.h"
#include "Proposal.h"
#include "SPODELd.h"
namespace bayesnet {
using namespace std;
class AODELd : public Ensemble, public Proposal {
public:
AODELd();
virtual ~AODELd() = default;
AODELd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "AODE") override;
Tensor predict(Tensor& X) override;
void train() override;
static inline string version() { return "0.0.1"; };
};
}
#endif // !AODELD_H

View File

@@ -10,6 +10,7 @@ namespace bayesnet {
virtual BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0; virtual BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
// X is nxm tensor, y is nx1 tensor // X is nxm tensor, y is nx1 tensor
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0; virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
virtual ~BaseClassifier() = default;
torch::Tensor virtual predict(torch::Tensor& X) = 0; torch::Tensor virtual predict(torch::Tensor& X) = 0;
vector<int> virtual predict(vector<vector<int>>& X) = 0; vector<int> virtual predict(vector<vector<int>>& X) = 0;
float virtual score(vector<vector<int>>& X, vector<int>& y) = 0; float virtual score(vector<vector<int>>& X, vector<int>& y) = 0;
@@ -19,7 +20,6 @@ namespace bayesnet {
int virtual getNumberOfStates() = 0; int virtual getNumberOfStates() = 0;
vector<string> virtual show() = 0; vector<string> virtual show() = 0;
vector<string> virtual graph(const string& title = "") = 0; vector<string> virtual graph(const string& title = "") = 0;
virtual ~BaseClassifier() = default;
const string inline getVersion() const { return "0.1.0"; }; const string inline getVersion() const { return "0.1.0"; };
vector<string> virtual topological_order() = 0; vector<string> virtual topological_order() = 0;
void virtual dump_cpt() = 0; void virtual dump_cpt() = 0;

View File

@@ -1,4 +1,5 @@
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp) include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/Files) include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANNew.cc Mst.cc) add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc
KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc Mst.cc Proposal.cc)
target_link_libraries(BayesNet mdlp ArffFiles "${TORCH_LIBRARIES}") target_link_libraries(BayesNet mdlp ArffFiles "${TORCH_LIBRARIES}")

View File

@@ -1,6 +1,5 @@
#include "Classifier.h" #include "Classifier.h"
#include "bayesnetUtils.h" #include "bayesnetUtils.h"
#include "ArffFiles.h"
namespace bayesnet { namespace bayesnet {
using namespace torch; using namespace torch;
@@ -37,15 +36,18 @@ namespace bayesnet {
yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0)); yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
return build(features, className, states); return build(features, className, states);
} }
void Classifier::generateTensorXFromVector()
{
X = torch::zeros({ static_cast<int>(Xv.size()), static_cast<int>(Xv[0].size()) }, kInt32);
for (int i = 0; i < Xv.size(); ++i) {
X.index_put_({ i, "..." }, torch::tensor(Xv[i], kInt32));
}
}
// X is nxm where n is the number of features and m the number of samples // X is nxm where n is the number of features and m the number of samples
Classifier& Classifier::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) Classifier& Classifier::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
{ {
this->X = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, kInt32);
Xv = X; Xv = X;
for (int i = 0; i < X.size(); ++i) { generateTensorXFromVector();
this->X.index_put_({ i, "..." }, torch::tensor(X[i], kInt32));
}
this->y = torch::tensor(y, kInt32); this->y = torch::tensor(y, kInt32);
yv = y; yv = y;
return build(features, className, states); return build(features, className, states);
@@ -114,11 +116,9 @@ namespace bayesnet {
{ {
// Add all nodes to the network // Add all nodes to the network
for (const auto& feature : features) { for (const auto& feature : features) {
model.addNode(feature, states[feature].size()); model.addNode(feature);
cout << "-Adding node " << feature << " with " << states[feature].size() << " states" << endl;
} }
model.addNode(className, states[className].size()); model.addNode(className);
cout << "*Adding class " << className << " with " << states[className].size() << " states" << endl;
} }
int Classifier::getNumberOfNodes() int Classifier::getNumberOfNodes()
{ {
@@ -141,57 +141,5 @@ namespace bayesnet {
{ {
model.dump_cpt(); model.dump_cpt();
} }
void Classifier::localDiscretizationProposal(map<string, mdlp::CPPFImdlp*>& discretizers, Tensor& Xf)
{
// order of local discretization is important. no good 0, 1, 2...
auto order = model.topological_sort();
auto& nodes = model.getNodes();
vector<int> indicesToReDiscretize;
auto n_samples = Xf.size(1);
bool upgrade = false; // Flag to check if we need to upgrade the model
for (auto feature : order) {
auto nodeParents = nodes[feature]->getParents();
int index = find(features.begin(), features.end(), feature) - features.begin();
vector<string> parents;
transform(nodeParents.begin(), nodeParents.end(), back_inserter(parents), [](const auto& p) {return p->getName(); });
if (parents.size() == 1) continue; // Only has class as parent
upgrade = true;
// Remove class as parent as it will be added later
parents.erase(remove(parents.begin(), parents.end(), className), parents.end());
// Get the indices of the parents
vector<int> indices;
transform(parents.begin(), parents.end(), back_inserter(indices), [&](const auto& p) {return find(features.begin(), features.end(), p) - features.begin(); });
// Now we fit the discretizer of the feature conditioned on its parents and the class i.e. discretizer.fit(X[index], X[indices] + y)
vector<string> yJoinParents;
transform(yv.begin(), yv.end(), back_inserter(yJoinParents), [&](const auto& p) {return to_string(p); });
for (auto idx : indices) {
for (int i = 0; i < n_samples; ++i) {
yJoinParents[i] += to_string(Xv[idx][i]);
}
}
auto arff = ArffFiles();
auto yxv = arff.factorize(yJoinParents);
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
auto xvf = vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
discretizers[feature]->fit(xvf, yxv);
indicesToReDiscretize.push_back(index);
}
if (upgrade) {
// Discretize again X (only the affected indices) with the new fitted discretizers
for (auto index : indicesToReDiscretize) {
auto Xt_ptr = Xf.index({ index }).data_ptr<float>();
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
Xv[index] = discretizers[features[index]]->transform(Xt);
auto xStates = vector<int>(discretizers[features[index]]->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0);
states[features[index]] = xStates;
}
// Now we fit the model again with the new values
cout << "Classifier: Upgrading model" << endl;
// To update the nodes states
addNodes();
model.fit(Xv, yv, features, className);
cout << "Classifier: Model upgraded" << endl;
}
}
} }

View File

@@ -4,7 +4,6 @@
#include "BaseClassifier.h" #include "BaseClassifier.h"
#include "Network.h" #include "Network.h"
#include "BayesMetrics.h" #include "BayesMetrics.h"
#include "CPPFImdlp.h"
using namespace std; using namespace std;
using namespace torch; using namespace torch;
@@ -26,8 +25,8 @@ namespace bayesnet {
string className; string className;
map<string, vector<int>> states; map<string, vector<int>> states;
void checkFitParameters(); void checkFitParameters();
void generateTensorXFromVector();
virtual void train() = 0; virtual void train() = 0;
void localDiscretizationProposal(map<string, mdlp::CPPFImdlp*>& discretizers, Tensor& Xf);
public: public:
Classifier(Network model); Classifier(Network model);
virtual ~Classifier() = default; virtual ~Classifier() = default;

View File

@@ -3,24 +3,24 @@
namespace bayesnet { namespace bayesnet {
using namespace torch; using namespace torch;
Ensemble::Ensemble() : m(0), n(0), n_models(0), metrics(Metrics()), fitted(false) {} Ensemble::Ensemble() : n_models(0), metrics(Metrics()), fitted(false) {}
Ensemble& Ensemble::build(vector<string>& features, string className, map<string, vector<int>>& states) Ensemble& Ensemble::build(vector<string>& features, string className, map<string, vector<int>>& states)
{ {
dataset = cat({ X, y.view({y.size(0), 1}) }, 1); Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
samples = torch::cat({ X, ytmp }, 0);
this->features = features; this->features = features;
this->className = className; this->className = className;
this->states = states; this->states = states;
auto n_classes = states[className].size(); auto n_classes = states[className].size();
metrics = Metrics(dataset, features, className, n_classes); metrics = Metrics(samples, features, className, n_classes);
// Build models // Build models
train(); train();
// Train models // Train models
n_models = models.size(); n_models = models.size();
auto Xt = torch::transpose(X, 0, 1);
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {
if (Xv == vector<vector<int>>()) { if (Xv.empty()) {
// fit with tensors // fit with tensors
models[i]->fit(Xt, y, features, className, states); models[i]->fit(X, y, features, className, states);
} else { } else {
// fit with vectors // fit with vectors
models[i]->fit(Xv, yv, features, className, states); models[i]->fit(Xv, yv, features, className, states);
@@ -29,9 +29,16 @@ namespace bayesnet {
fitted = true; fitted = true;
return *this; return *this;
} }
void Ensemble::generateTensorXFromVector()
{
X = torch::zeros({ static_cast<int>(Xv.size()), static_cast<int>(Xv[0].size()) }, kInt32);
for (int i = 0; i < Xv.size(); ++i) {
X.index_put_({ i, "..." }, torch::tensor(Xv[i], kInt32));
}
}
Ensemble& Ensemble::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) Ensemble& Ensemble::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
{ {
this->X = torch::transpose(X, 0, 1); this->X = X;
this->y = y; this->y = y;
Xv = vector<vector<int>>(); Xv = vector<vector<int>>();
yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0)); yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
@@ -39,11 +46,8 @@ namespace bayesnet {
} }
Ensemble& Ensemble::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) Ensemble& Ensemble::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
{ {
this->X = torch::zeros({ static_cast<int>(X[0].size()), static_cast<int>(X.size()) }, kInt32);
Xv = X; Xv = X;
for (int i = 0; i < X.size(); ++i) { generateTensorXFromVector();
this->X.index_put_({ "...", i }, torch::tensor(X[i], kInt32));
}
this->y = torch::tensor(y, kInt32); this->y = torch::tensor(y, kInt32);
yv = y; yv = y;
return build(features, className, states); return build(features, className, states);
@@ -53,10 +57,11 @@ namespace bayesnet {
auto y_pred_ = y_pred.accessor<int, 2>(); auto y_pred_ = y_pred.accessor<int, 2>();
vector<int> y_pred_final; vector<int> y_pred_final;
for (int i = 0; i < y_pred.size(0); ++i) { for (int i = 0; i < y_pred.size(0); ++i) {
vector<float> votes(states[className].size(), 0); vector<float> votes(y_pred.size(1), 0);
for (int j = 0; j < y_pred.size(1); ++j) { for (int j = 0; j < y_pred.size(1); ++j) {
votes[y_pred_[i][j]] += 1; votes[y_pred_[i][j]] += 1;
} }
// argsort in descending order
auto indices = argsort(votes); auto indices = argsort(votes);
y_pred_final.push_back(indices[0]); y_pred_final.push_back(indices[0]);
} }
@@ -70,13 +75,12 @@ namespace bayesnet {
Tensor y_pred = torch::zeros({ X.size(1), n_models }, kInt32); Tensor y_pred = torch::zeros({ X.size(1), n_models }, kInt32);
//Create a threadpool //Create a threadpool
auto threads{ vector<thread>() }; auto threads{ vector<thread>() };
auto lock = mutex(); mutex mtx;
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {
threads.push_back(thread([&, i]() { threads.push_back(thread([&, i]() {
auto ypredict = models[i]->predict(X); auto ypredict = models[i]->predict(X);
lock.lock(); lock_guard<mutex> lock(mtx);
y_pred.index_put_({ "...", i }, ypredict); y_pred.index_put_({ "...", i }, ypredict);
lock.unlock();
})); }));
} }
for (auto& thread : threads) { for (auto& thread : threads) {

View File

@@ -10,23 +10,23 @@ using namespace torch;
namespace bayesnet { namespace bayesnet {
class Ensemble : public BaseClassifier { class Ensemble : public BaseClassifier {
private: private:
bool fitted;
long n_models;
Ensemble& build(vector<string>& features, string className, map<string, vector<int>>& states); Ensemble& build(vector<string>& features, string className, map<string, vector<int>>& states);
protected: protected:
unsigned n_models;
bool fitted;
vector<unique_ptr<Classifier>> models; vector<unique_ptr<Classifier>> models;
int m, n; // m: number of samples, n: number of features
Tensor X; Tensor X;
vector<vector<int>> Xv; vector<vector<int>> Xv;
Tensor y; Tensor y;
vector<int> yv; vector<int> yv;
Tensor dataset; Tensor samples;
Metrics metrics; Metrics metrics;
vector<string> features; vector<string> features;
string className; string className;
map<string, vector<int>> states; map<string, vector<int>> states;
void virtual train() = 0; void virtual train() = 0;
vector<int> voting(Tensor& y_pred); vector<int> voting(Tensor& y_pred);
void generateTensorXFromVector();
public: public:
Ensemble(); Ensemble();
virtual ~Ensemble() = default; virtual ~Ensemble() = default;

35
src/BayesNet/KDBLd.cc Normal file
View File

@@ -0,0 +1,35 @@
#include "KDBLd.h"
namespace bayesnet {
using namespace std;
KDBLd::KDBLd(int k) : KDB(k), Proposal(KDB::Xv, KDB::yv, features, className) {}
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
fit_local_discretization(states, y);
generateTensorXFromVector();
// We have discretized the input data
// 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network
KDB::fit(KDB::Xv, KDB::yv, features, className, states);
localDiscretizationProposal(states, model);
generateTensorXFromVector();
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
samples = torch::cat({ X, ytmp }, 0);
model.fit(KDB::Xv, KDB::yv, features, className);
return *this;
}
Tensor KDBLd::predict(Tensor& X)
{
auto Xt = prepareX(X);
return KDB::predict(Xt);
}
vector<string> KDBLd::graph(const string& name)
{
return KDB::graph(name);
}
}

19
src/BayesNet/KDBLd.h Normal file
View File

@@ -0,0 +1,19 @@
#ifndef KDBLD_H
#define KDBLD_H
#include "KDB.h"
#include "Proposal.h"
namespace bayesnet {
using namespace std;
class KDBLd : public KDB, public Proposal {
private:
public:
explicit KDBLd(int k);
virtual ~KDBLd() = default;
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "KDB") override;
Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; };
};
}
#endif // !KDBLD_H

View File

@@ -31,21 +31,18 @@ namespace bayesnet {
{ {
return samples; return samples;
} }
void Network::addNode(const string& name, int numStates) void Network::addNode(const string& name)
{ {
if (name == "") { if (name == "") {
throw invalid_argument("Node name cannot be empty"); throw invalid_argument("Node name cannot be empty");
} }
if (nodes.find(name) != nodes.end()) {
return;
}
if (find(features.begin(), features.end(), name) == features.end()) { if (find(features.begin(), features.end(), name) == features.end()) {
features.push_back(name); features.push_back(name);
} }
if (nodes.find(name) != nodes.end()) { nodes[name] = std::make_unique<Node>(name);
// if node exists update its number of states and remove parents, children and CPT
nodes[name]->clear();
nodes[name]->setNumStates(numStates);
return;
}
nodes[name] = std::make_unique<Node>(name, numStates);
} }
vector<string> Network::getFeatures() vector<string> Network::getFeatures()
{ {
@@ -128,14 +125,20 @@ namespace bayesnet {
} }
} }
} }
void Network::setStates()
{
// Set states to every Node in the network
for (int i = 0; i < features.size(); ++i) {
nodes[features[i]]->setNumStates(static_cast<int>(torch::max(samples.index({ i, "..." })).item<int>()) + 1);
}
classNumStates = nodes[className]->getNumStates();
}
// X comes in nxm, where n is the number of features and m the number of samples // X comes in nxm, where n is the number of features and m the number of samples
void Network::fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& featureNames, const string& className) void Network::fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& featureNames, const string& className)
{ {
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className); checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className);
this->className = className; this->className = className;
dataset.clear(); dataset.clear();
// Specific part
classNumStates = torch::max(y).item<int>() + 1;
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1); Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
samples = torch::cat({ X , ytmp }, 0); samples = torch::cat({ X , ytmp }, 0);
for (int i = 0; i < featureNames.size(); ++i) { for (int i = 0; i < featureNames.size(); ++i) {
@@ -151,8 +154,6 @@ namespace bayesnet {
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className); checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className);
this->className = className; this->className = className;
dataset.clear(); dataset.clear();
// Specific part
classNumStates = *max_element(labels.begin(), labels.end()) + 1;
// Build dataset & tensor of samples (nxm) (n+1 because of the class) // Build dataset & tensor of samples (nxm) (n+1 because of the class)
samples = torch::zeros({ static_cast<int>(input_data.size() + 1), static_cast<int>(input_data[0].size()) }, torch::kInt32); samples = torch::zeros({ static_cast<int>(input_data.size() + 1), static_cast<int>(input_data[0].size()) }, torch::kInt32);
for (int i = 0; i < featureNames.size(); ++i) { for (int i = 0; i < featureNames.size(); ++i) {
@@ -165,6 +166,7 @@ namespace bayesnet {
} }
void Network::completeFit() void Network::completeFit()
{ {
setStates();
int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads); int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads);
if (maxThreadsRunning < 1) { if (maxThreadsRunning < 1) {
maxThreadsRunning = 1; maxThreadsRunning = 1;
@@ -211,7 +213,10 @@ namespace bayesnet {
result = torch::zeros({ samples.size(1), classNumStates }, torch::kFloat64); result = torch::zeros({ samples.size(1), classNumStates }, torch::kFloat64);
for (int i = 0; i < samples.size(1); ++i) { for (int i = 0; i < samples.size(1); ++i) {
auto sample = samples.index({ "...", i }); auto sample = samples.index({ "...", i });
result.index_put_({ i, "..." }, torch::tensor(predict_sample(sample), torch::kFloat64)); auto psample = predict_sample(sample);
auto temp = torch::tensor(psample, torch::kFloat64);
// result.index_put_({ i, "..." }, torch::tensor(predict_sample(sample), torch::kFloat64));
result.index_put_({ i, "..." }, temp);
} }
if (proba) if (proba)
return result; return result;
@@ -323,17 +328,16 @@ namespace bayesnet {
mutex mtx; mutex mtx;
for (int i = 0; i < classNumStates; ++i) { for (int i = 0; i < classNumStates; ++i) {
threads.emplace_back([this, &result, &evidence, i, &mtx]() { threads.emplace_back([this, &result, &evidence, i, &mtx]() {
auto completeEvidence = map<string, int>(evidence); auto completeEvidence = map<string, int>(evidence);
completeEvidence[getClassName()] = i; completeEvidence[getClassName()] = i;
double factor = computeFactor(completeEvidence); double factor = computeFactor(completeEvidence);
lock_guard<mutex> lock(mtx); lock_guard<mutex> lock(mtx);
result[i] = factor; result[i] = factor;
}); });
} }
for (auto& thread : threads) { for (auto& thread : threads) {
thread.join(); thread.join();
} }
// Normalize result // Normalize result
double sum = accumulate(result.begin(), result.end(), 0.0); double sum = accumulate(result.begin(), result.end(), 0.0);
transform(result.begin(), result.end(), result.begin(), [sum](double& value) { return value / sum; }); transform(result.begin(), result.end(), result.begin(), [sum](double& value) { return value / sum; });
@@ -419,7 +423,7 @@ namespace bayesnet {
void Network::dump_cpt() void Network::dump_cpt()
{ {
for (auto& node : nodes) { for (auto& node : nodes) {
cout << "* " << node.first << ": " << node.second->getCPT() << endl; cout << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << endl;
} }
} }
} }

View File

@@ -27,6 +27,7 @@ namespace bayesnet {
double mutualInformation(torch::Tensor&, torch::Tensor&); double mutualInformation(torch::Tensor&, torch::Tensor&);
void completeFit(); void completeFit();
void checkFitData(int n_features, int n_samples, int n_samples_y, const vector<string>& featureNames, const string& className); void checkFitData(int n_features, int n_samples, int n_samples_y, const vector<string>& featureNames, const string& className);
void setStates();
public: public:
Network(); Network();
explicit Network(float, int); explicit Network(float, int);
@@ -34,7 +35,7 @@ namespace bayesnet {
explicit Network(Network&); explicit Network(Network&);
torch::Tensor& getSamples(); torch::Tensor& getSamples();
float getmaxThreads(); float getmaxThreads();
void addNode(const string&, int); void addNode(const string&);
void addEdge(const string&, const string&); void addEdge(const string&, const string&);
map<string, std::unique_ptr<Node>>& getNodes(); map<string, std::unique_ptr<Node>>& getNodes();
vector<string> getFeatures(); vector<string> getFeatures();

View File

@@ -2,8 +2,8 @@
namespace bayesnet { namespace bayesnet {
Node::Node(const std::string& name, int numStates) Node::Node(const std::string& name)
: name(name), numStates(numStates), cpTable(torch::Tensor()), parents(vector<Node*>()), children(vector<Node*>()) : name(name), numStates(0), cpTable(torch::Tensor()), parents(vector<Node*>()), children(vector<Node*>())
{ {
} }
void Node::clear() void Node::clear()
@@ -86,6 +86,7 @@ namespace bayesnet {
} }
void Node::computeCPT(map<string, vector<int>>& dataset, const int laplaceSmoothing) void Node::computeCPT(map<string, vector<int>>& dataset, const int laplaceSmoothing)
{ {
dimensions.clear();
// Get dimensions of the CPT // Get dimensions of the CPT
dimensions.push_back(numStates); dimensions.push_back(numStates);
transform(parents.begin(), parents.end(), back_inserter(dimensions), [](const auto& parent) { return parent->getNumStates(); }); transform(parents.begin(), parents.end(), back_inserter(dimensions), [](const auto& parent) { return parent->getNumStates(); });

View File

@@ -16,7 +16,7 @@ namespace bayesnet {
vector<int64_t> dimensions; // dimensions of the cpTable vector<int64_t> dimensions; // dimensions of the cpTable
public: public:
vector<pair<string, string>> combinations(const vector<string>&); vector<pair<string, string>> combinations(const vector<string>&);
Node(const string&, int); explicit Node(const string&);
void clear(); void clear();
void addParent(Node*); void addParent(Node*);
void addChild(Node*); void addChild(Node*);

102
src/BayesNet/Proposal.cc Normal file
View File

@@ -0,0 +1,102 @@
#include "Proposal.h"
#include "ArffFiles.h"
namespace bayesnet {
Proposal::Proposal(vector<vector<int>>& Xv_, vector<int>& yv_, vector<string>& features_, string& className_) : Xv(Xv_), yv(yv_), pFeatures(features_), pClassName(className_) {}
Proposal::~Proposal()
{
for (auto& [key, value] : discretizers) {
delete value;
}
}
void Proposal::localDiscretizationProposal(map<string, vector<int>>& states, Network& model)
{
// order of local discretization is important. no good 0, 1, 2...
// although we rediscretize features after the local discretization of every feature
auto order = model.topological_sort();
auto& nodes = model.getNodes();
vector<int> indicesToReDiscretize;
auto n_samples = Xf.size(1);
bool upgrade = false; // Flag to check if we need to upgrade the model
for (auto feature : order) {
auto nodeParents = nodes[feature]->getParents();
if (nodeParents.size() < 2) continue; // Only has class as parent
upgrade = true;
int index = find(pFeatures.begin(), pFeatures.end(), feature) - pFeatures.begin();
indicesToReDiscretize.push_back(index); // We need to re-discretize this feature
vector<string> parents;
transform(nodeParents.begin(), nodeParents.end(), back_inserter(parents), [](const auto& p) { return p->getName(); });
// Remove class as parent as it will be added later
parents.erase(remove(parents.begin(), parents.end(), pClassName), parents.end());
// Get the indices of the parents
vector<int> indices;
transform(parents.begin(), parents.end(), back_inserter(indices), [&](const auto& p) {return find(pFeatures.begin(), pFeatures.end(), p) - pFeatures.begin(); });
// Now we fit the discretizer of the feature, conditioned on its parents and the class i.e. discretizer.fit(X[index], X[indices] + y)
vector<string> yJoinParents;
transform(yv.begin(), yv.end(), back_inserter(yJoinParents), [&](const auto& p) {return to_string(p); });
for (auto idx : indices) {
for (int i = 0; i < n_samples; ++i) {
yJoinParents[i] += to_string(Xv[idx][i]);
}
}
auto arff = ArffFiles();
auto yxv = arff.factorize(yJoinParents);
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
auto xvf = vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
discretizers[feature]->fit(xvf, yxv);
//
//
//
// auto tmp = discretizers[feature]->transform(xvf);
// Xv[index] = tmp;
// auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
// iota(xStates.begin(), xStates.end(), 0);
// //Update new states of the feature/node
// states[feature] = xStates;
}
if (upgrade) {
// Discretize again X (only the affected indices) with the new fitted discretizers
for (auto index : indicesToReDiscretize) {
auto Xt_ptr = Xf.index({ index }).data_ptr<float>();
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
Xv[index] = discretizers[pFeatures[index]]->transform(Xt);
auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0);
//Update new states of the feature/node
states[pFeatures[index]] = xStates;
}
}
}
void Proposal::fit_local_discretization(map<string, vector<int>>& states, torch::Tensor& y)
{
// Sharing Xv and yv with Classifier
Xv = vector<vector<int>>();
yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
// discretize input data by feature(row)
for (int i = 0; i < pFeatures.size(); ++i) {
auto* discretizer = new mdlp::CPPFImdlp();
auto Xt_ptr = Xf.index({ i }).data_ptr<float>();
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
discretizer->fit(Xt, yv);
Xv.push_back(discretizer->transform(Xt));
auto xStates = vector<int>(discretizer->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0);
states[pFeatures[i]] = xStates;
discretizers[pFeatures[i]] = discretizer;
}
int n_classes = torch::max(y).item<int>() + 1;
auto yStates = vector<int>(n_classes);
iota(yStates.begin(), yStates.end(), 0);
states[pClassName] = yStates;
}
torch::Tensor Proposal::prepareX(torch::Tensor& X)
{
auto Xtd = torch::zeros_like(X, torch::kInt32);
for (int i = 0; i < X.size(0); ++i) {
auto Xt = vector<float>(X[i].data_ptr<float>(), X[i].data_ptr<float>() + X.size(1));
auto Xd = discretizers[pFeatures[i]]->transform(Xt);
Xtd.index_put_({ i }, torch::tensor(Xd, torch::kInt32));
}
return Xtd;
}
}

29
src/BayesNet/Proposal.h Normal file
View File

@@ -0,0 +1,29 @@
#ifndef PROPOSAL_H
#define PROPOSAL_H
#include <string>
#include <map>
#include <torch/torch.h>
#include "Network.h"
#include "CPPFImdlp.h"
#include "Classifier.h"
namespace bayesnet {
class Proposal {
public:
Proposal(vector<vector<int>>& Xv_, vector<int>& yv_, vector<string>& features_, string& className_);
virtual ~Proposal();
protected:
torch::Tensor prepareX(torch::Tensor& X);
void localDiscretizationProposal(map<string, vector<int>>& states, Network& model);
void fit_local_discretization(map<string, vector<int>>& states, torch::Tensor& y);
torch::Tensor Xf; // X continuous nxm tensor
map<string, mdlp::CPPFImdlp*> discretizers;
private:
vector<string>& pFeatures;
string& pClassName;
vector<vector<int>>& Xv; // X discrete nxm vector
vector<int>& yv;
};
}
#endif

35
src/BayesNet/SPODELd.cc Normal file
View File

@@ -0,0 +1,35 @@
#include "SPODELd.h"
namespace bayesnet {
using namespace std;
SPODELd::SPODELd(int root) : SPODE(root), Proposal(SPODE::Xv, SPODE::yv, features, className) {}
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
fit_local_discretization(states, y);
generateTensorXFromVector();
// We have discretized the input data
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
SPODE::fit(SPODE::Xv, SPODE::yv, features, className, states);
localDiscretizationProposal(states, model);
generateTensorXFromVector();
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
samples = torch::cat({ X, ytmp }, 0);
model.fit(SPODE::Xv, SPODE::yv, features, className);
return *this;
}
Tensor SPODELd::predict(Tensor& X)
{
auto Xt = prepareX(X);
return SPODE::predict(Xt);
}
vector<string> SPODELd::graph(const string& name)
{
return SPODE::graph(name);
}
}

19
src/BayesNet/SPODELd.h Normal file
View File

@@ -0,0 +1,19 @@
#ifndef SPODELD_H
#define SPODELD_H
#include "SPODE.h"
#include "Proposal.h"
namespace bayesnet {
using namespace std;
class SPODELd : public SPODE, public Proposal {
private:
public:
explicit SPODELd(int root);
virtual ~SPODELd() = default;
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "SPODE") override;
Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; };
};
}
#endif // !SPODELD_H

35
src/BayesNet/TANLd.cc Normal file
View File

@@ -0,0 +1,35 @@
#include "TANLd.h"
namespace bayesnet {
using namespace std;
TANLd::TANLd() : TAN(), Proposal(TAN::Xv, TAN::yv, features, className) {}
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
fit_local_discretization(states, y);
generateTensorXFromVector();
// We have discretized the input data
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
TAN::fit(TAN::Xv, TAN::yv, features, className, states);
localDiscretizationProposal(states, model);
generateTensorXFromVector();
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
samples = torch::cat({ X, ytmp }, 0);
model.fit(TAN::Xv, TAN::yv, features, className);
return *this;
}
Tensor TANLd::predict(Tensor& X)
{
auto Xt = prepareX(X);
return TAN::predict(Xt);
}
vector<string> TANLd::graph(const string& name)
{
return TAN::graph(name);
}
}

19
src/BayesNet/TANLd.h Normal file
View File

@@ -0,0 +1,19 @@
#ifndef TANLD_H
#define TANLD_H
#include "TAN.h"
#include "Proposal.h"
namespace bayesnet {
using namespace std;
class TANLd : public TAN, public Proposal {
private:
public:
TANLd();
virtual ~TANLd() = default;
TANLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "TAN") override;
Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; };
};
}
#endif // !TANLD_H

View File

@@ -1,55 +0,0 @@
#include "TANNew.h"
namespace bayesnet {
using namespace std;
TANNew::TANNew() : TAN() {}
TANNew::~TANNew() {}
TANNew& TANNew::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
Xf = X_;
y = y_;
features = features_;
className = className_;
Xv = vector<vector<int>>();
yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
// discretize input data by feature(row)
for (int i = 0; i < features.size(); ++i) {
auto* discretizer = new mdlp::CPPFImdlp();
auto Xt_ptr = Xf.index({ i }).data_ptr<float>();
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
discretizer->fit(Xt, yv);
Xv.push_back(discretizer->transform(Xt));
auto xStates = vector<int>(discretizer->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0);
states[features[i]] = xStates;
discretizers[features[i]] = discretizer;
}
int n_classes = torch::max(y).item<int>() + 1;
auto yStates = vector<int>(n_classes);
iota(yStates.begin(), yStates.end(), 0);
states[className] = yStates;
// Now we have standard TAN and now we implement the proposal
// 1st we need to fit the model to build the TAN structure
cout << "TANNew: Fitting model" << endl;
TAN::fit(Xv, yv, features, className, states);
cout << "TANNew: Model fitted" << endl;
localDiscretizationProposal(discretizers, Xf);
return *this;
}
Tensor TANNew::predict(Tensor& X)
{
auto Xtd = torch::zeros_like(X, torch::kInt32);
for (int i = 0; i < X.size(0); ++i) {
auto Xt = vector<float>(X[i].data_ptr<float>(), X[i].data_ptr<float>() + X.size(1));
auto Xd = discretizers[features[i]]->transform(Xt);
Xtd.index_put_({ i }, torch::tensor(Xd, torch::kInt32));
}
cout << "TANNew Xtd: " << Xtd.sizes() << endl;
return TAN::predict(Xtd);
}
vector<string> TANNew::graph(const string& name)
{
return TAN::graph(name);
}
}

View File

@@ -1,21 +0,0 @@
#ifndef TANNEW_H
#define TANNEW_H
#include "TAN.h"
#include "CPPFImdlp.h"
namespace bayesnet {
using namespace std;
class TANNew : public TAN {
private:
map<string, mdlp::CPPFImdlp*> discretizers;
torch::Tensor Xf; // X continuous nxm tensor
public:
TANNew();
virtual ~TANNew();
TANNew& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "TAN") override;
Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; };
};
}
#endif // !TANNEW_H

View File

@@ -3,6 +3,7 @@
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
using namespace torch; using namespace torch;
// Return the indices in descending order
vector<int> argsort(vector<float>& nums) vector<int> argsort(vector<float>& nums)
{ {
int n = nums.size(); int n = nums.size();

View File

@@ -4,5 +4,5 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp) include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include) include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include) include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc) add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc Report.cc)
target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}") target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")

View File

@@ -1,6 +1,7 @@
#include "Experiment.h" #include "Experiment.h"
#include "Datasets.h" #include "Datasets.h"
#include "Models.h" #include "Models.h"
#include "Report.h"
namespace platform { namespace platform {
using json = nlohmann::json; using json = nlohmann::json;
@@ -86,6 +87,13 @@ namespace platform {
file.close(); file.close();
} }
void Experiment::report()
{
json data = build_json();
Report report(data);
report.show();
}
void Experiment::show() void Experiment::show()
{ {
json data = build_json(); json data = build_json();

View File

@@ -108,6 +108,7 @@ namespace platform {
void cross_validation(const string& path, const string& fileName); void cross_validation(const string& path, const string& fileName);
void go(vector<string> filesToProcess, const string& path); void go(vector<string> filesToProcess, const string& path);
void show(); void show();
void report();
}; };
} }
#endif #endif

View File

@@ -6,7 +6,10 @@
#include "TAN.h" #include "TAN.h"
#include "KDB.h" #include "KDB.h"
#include "SPODE.h" #include "SPODE.h"
#include "TANNew.h" #include "TANLd.h"
#include "KDBLd.h"
#include "SPODELd.h"
#include "AODELd.h"
namespace platform { namespace platform {
class Models { class Models {
private: private:

66
src/Platform/Report.cc Normal file
View File

@@ -0,0 +1,66 @@
#include "Report.h"
namespace platform {
string headerLine(const string& text)
{
int n = MAXL - text.length() - 3;
return "* " + text + string(n, ' ') + "*\n";
}
string Report::fromVector(const string& key)
{
string result = "";
for (auto& item : data[key]) {
result += to_string(item) + ", ";
}
return "[" + result.substr(0, result.length() - 2) + "]";
}
string fVector(const json& data)
{
string result = "";
for (const auto& item : data) {
result += to_string(item) + ", ";
}
return "[" + result.substr(0, result.length() - 2) + "]";
}
void Report::show()
{
header();
body();
}
void Report::header()
{
cout << string(MAXL, '*') << endl;
cout << headerLine("Report " + data["model"].get<string>() + " ver. " + data["version"].get<string>() + " with " + to_string(data["folds"].get<int>()) + " Folds cross validation and " + to_string(data["seeds"].size()) + " random seeds. " + data["date"].get<string>() + " " + data["time"].get<string>());
cout << headerLine(data["title"].get<string>());
cout << headerLine("Random seeds: " + fromVector("seeds") + " Stratified: " + (data["stratified"].get<bool>() ? "True" : "False"));
cout << headerLine("Execution took " + to_string(data["duration"].get<float>()) + " seconds, " + to_string(data["duration"].get<float>() / 3600) + " hours, on " + data["platform"].get<string>());
cout << headerLine("Score is " + data["score_name"].get<string>());
cout << string(MAXL, '*') << endl;
cout << endl;
}
void Report::body()
{
cout << "Dataset Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << endl;
cout << "============================== ====== ===== === ======= ======= ======= =============== ================= ===============" << endl;
for (const auto& r : data["results"]) {
cout << setw(30) << left << r["dataset"].get<string>() << " ";
cout << setw(6) << right << r["samples"].get<int>() << " ";
cout << setw(5) << right << r["features"].get<int>() << " ";
cout << setw(3) << right << r["classes"].get<int>() << " ";
cout << setw(7) << setprecision(2) << fixed << r["nodes"].get<float>() << " ";
cout << setw(7) << setprecision(2) << fixed << r["leaves"].get<float>() << " ";
cout << setw(7) << setprecision(2) << fixed << r["depth"].get<float>() << " ";
cout << setw(8) << right << setprecision(6) << fixed << r["score_test"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["score_test_std"].get<double>() << " ";
cout << setw(10) << right << setprecision(6) << fixed << r["test_time"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["test_time_std"].get<double>() << " ";
cout << " " << r["hyperparameters"].get<string>();
cout << endl;
cout << string(MAXL, '*') << endl;
cout << headerLine("Train scores: " + fVector(r["scores_train"]));
cout << headerLine("Test scores: " + fVector(r["scores_test"]));
cout << headerLine("Train times: " + fVector(r["times_train"]));
cout << headerLine("Test times: " + fVector(r["times_test"]));
cout << string(MAXL, '*') << endl;
}
}
}

23
src/Platform/Report.h Normal file
View File

@@ -0,0 +1,23 @@
#ifndef REPORT_H
#define REPORT_H
#include <string>
#include <iostream>
#include <nlohmann/json.hpp>
using json = nlohmann::json;
const int MAXL = 121;
namespace platform {
using namespace std;
class Report {
public:
explicit Report(json data_) { data = data_; };
virtual ~Report() = default;
void show();
private:
void header();
void body();
string fromVector(const string& key);
json data;
};
};
#endif

View File

@@ -102,9 +102,10 @@ int main(int argc, char** argv)
/* /*
* Begin Processing * Begin Processing
*/ */
auto env = platform::DotEnv();
auto experiment = platform::Experiment(); auto experiment = platform::Experiment();
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("1.0.0"); experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("1.0.0");
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform("BayesNet"); experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform(env.get("platform"));
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy"); experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy");
for (auto seed : seeds) { for (auto seed : seeds) {
experiment.addRandomSeed(seed); experiment.addRandomSeed(seed);
@@ -116,7 +117,7 @@ int main(int argc, char** argv)
if (saveResults) if (saveResults)
experiment.save(PATH_RESULTS); experiment.save(PATH_RESULTS);
else else
experiment.show(); experiment.report();
cout << "Done!" << endl; cout << "Done!" << endl;
return 0; return 0;
} }

View File

@@ -2,12 +2,18 @@
#define MODEL_REGISTER_H #define MODEL_REGISTER_H
static platform::Registrar registrarT("TAN", static platform::Registrar registrarT("TAN",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TAN();}); [](void) -> bayesnet::BaseClassifier* { return new bayesnet::TAN();});
static platform::Registrar registrarTN("TANNew", static platform::Registrar registrarTLD("TANLd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TANNew();}); [](void) -> bayesnet::BaseClassifier* { return new bayesnet::TANLd();});
static platform::Registrar registrarS("SPODE", static platform::Registrar registrarS("SPODE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODE(2);}); [](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODE(2);});
static platform::Registrar registrarSLD("SPODELd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODELd(2);});
static platform::Registrar registrarK("KDB", static platform::Registrar registrarK("KDB",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDB(2);}); [](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDB(2);});
static platform::Registrar registrarKLD("KDBLd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDBLd(2);});
static platform::Registrar registrarA("AODE", static platform::Registrar registrarA("AODE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODE();}); [](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODE();});
static platform::Registrar registrarALD("AODELd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODELd();});
#endif #endif

View File

@@ -9,29 +9,21 @@ TEST_CASE("Test Bayesian Network")
{ {
auto [Xd, y, features, className, states] = loadFile("iris"); auto [Xd, y, features, className, states] = loadFile("iris");
SECTION("Test Update Nodes")
{
auto net = bayesnet::Network();
net.addNode("A", 3);
REQUIRE(net.getStates() == 3);
net.addNode("A", 5);
REQUIRE(net.getStates() == 5);
}
SECTION("Test get features") SECTION("Test get features")
{ {
auto net = bayesnet::Network(); auto net = bayesnet::Network();
net.addNode("A", 3); net.addNode("A");
net.addNode("B", 5); net.addNode("B");
REQUIRE(net.getFeatures() == vector<string>{"A", "B"}); REQUIRE(net.getFeatures() == vector<string>{"A", "B"});
net.addNode("C", 2); net.addNode("C");
REQUIRE(net.getFeatures() == vector<string>{"A", "B", "C"}); REQUIRE(net.getFeatures() == vector<string>{"A", "B", "C"});
} }
SECTION("Test get edges") SECTION("Test get edges")
{ {
auto net = bayesnet::Network(); auto net = bayesnet::Network();
net.addNode("A", 3); net.addNode("A");
net.addNode("B", 5); net.addNode("B");
net.addNode("C", 2); net.addNode("C");
net.addEdge("A", "B"); net.addEdge("A", "B");
net.addEdge("B", "C"); net.addEdge("B", "C");
REQUIRE(net.getEdges() == vector<pair<string, string>>{ {"A", "B"}, { "B", "C" } }); REQUIRE(net.getEdges() == vector<pair<string, string>>{ {"A", "B"}, { "B", "C" } });