Add tests for Ld models predict_proba
This commit is contained in:
@@ -8,7 +8,7 @@
|
||||
[](https://sonarcloud.io/summary/new_code?id=rmontanana_BayesNet)
|
||||
[](https://deepwiki.com/Doctorado-ML/BayesNet)
|
||||

|
||||
[](https://gitea.rmontanana.es/rmontanana/BayesNet)
|
||||
[](https://gitea.rmontanana.es/rmontanana/BayesNet)
|
||||
[](https://doi.org/10.5281/zenodo.14210344)
|
||||
|
||||
Bayesian Network Classifiers library
|
||||
|
@@ -152,7 +152,7 @@ TEST_CASE("Get num features & num edges", "[Models]")
|
||||
|
||||
TEST_CASE("Model predict_proba", "[Models]")
|
||||
{
|
||||
std::string model = GENERATE("TAN", "SPODE", "BoostAODEproba", "BoostAODEvoting");
|
||||
std::string model = GENERATE("TAN", "SPODE", "BoostAODEproba", "BoostAODEvoting", "TANLd", "SPODELd", "KDBLd");
|
||||
auto res_prob_tan = std::vector<std::vector<double>>({ {0.00375671, 0.994457, 0.00178621},
|
||||
{0.00137462, 0.992734, 0.00589123},
|
||||
{0.00137462, 0.992734, 0.00589123},
|
||||
@@ -180,50 +180,99 @@ TEST_CASE("Model predict_proba", "[Models]")
|
||||
{0.0284828, 0.770524, 0.200993},
|
||||
{0.0213182, 0.857189, 0.121493},
|
||||
{0.00868436, 0.949494, 0.0418215} });
|
||||
auto res_prob_tanld = std::vector<std::vector<double>>({ {0.000544493, 0.995796, 0.00365992 },
|
||||
{0.000908092, 0.997268, 0.00182429 },
|
||||
{0.000908092, 0.997268, 0.00182429 },
|
||||
{0.000908092, 0.997268, 0.00182429 },
|
||||
{0.00228423, 0.994645, 0.00307078 },
|
||||
{0.00120539, 0.0666788, 0.932116 },
|
||||
{0.00361847, 0.979203, 0.017179 },
|
||||
{0.00483293, 0.985326, 0.00984064 },
|
||||
{0.000595606, 0.9977, 0.00170441 } });
|
||||
auto res_prob_spodeld = std::vector<std::vector<double>>({ {0.000908024, 0.993742, 0.00535024 },
|
||||
{0.00187726, 0.99167, 0.00645308 },
|
||||
{0.00187726, 0.99167, 0.00645308 },
|
||||
{0.00187726, 0.99167, 0.00645308 },
|
||||
{0.00287539, 0.993736, 0.00338846 },
|
||||
{0.00294402, 0.268495, 0.728561 },
|
||||
{0.0132381, 0.873282, 0.113479 },
|
||||
{0.0159412, 0.969228, 0.0148308 },
|
||||
{0.00203487, 0.989762, 0.00820356 } });
|
||||
auto res_prob_kdbld = std::vector<std::vector<double>>({ {0.000738981, 0.997208, 0.00205272 },
|
||||
{0.00087708, 0.996687, 0.00243633 },
|
||||
{0.00087708, 0.996687, 0.00243633 },
|
||||
{0.00087708, 0.996687, 0.00243633 },
|
||||
{0.000738981, 0.997208, 0.00205272 },
|
||||
{0.00512442, 0.0455504, 0.949325 },
|
||||
{0.0023632, 0.976631, 0.0210063 },
|
||||
{0.00189194, 0.992853, 0.00525538 },
|
||||
{0.00189194, 0.992853, 0.00525538, } });
|
||||
auto res_prob_voting = std::vector<std::vector<double>>(
|
||||
{ {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 0, 1}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0} });
|
||||
std::map<std::string, std::vector<std::vector<double>>> res_prob{ {"TAN", res_prob_tan},
|
||||
{"SPODE", res_prob_spode},
|
||||
{"BoostAODEproba", res_prob_baode},
|
||||
{"BoostAODEvoting", res_prob_voting} };
|
||||
{"BoostAODEvoting", res_prob_voting},
|
||||
{"TANLd", res_prob_tanld},
|
||||
{"SPODELd", res_prob_spodeld},
|
||||
{"KDBLd", res_prob_kdbld} };
|
||||
std::map<std::string, bayesnet::BaseClassifier*> models{ {"TAN", new bayesnet::TAN()},
|
||||
{"SPODE", new bayesnet::SPODE(0)},
|
||||
{"BoostAODEproba", new bayesnet::BoostAODE(false)},
|
||||
{"BoostAODEvoting", new bayesnet::BoostAODE(true)} };
|
||||
{"BoostAODEvoting", new bayesnet::BoostAODE(true)},
|
||||
{"TANLd", new bayesnet::TANLd()},
|
||||
{"SPODELd", new bayesnet::SPODELd(0)},
|
||||
{"KDBLd", new bayesnet::KDBLd(2)} };
|
||||
int init_index = 78;
|
||||
auto raw = RawDatasets("iris", true);
|
||||
|
||||
SECTION("Test " + model + " predict_proba")
|
||||
{
|
||||
auto ld_model = model.substr(model.length() - 2) == "Ld";
|
||||
auto discretize = !ld_model;
|
||||
auto raw = RawDatasets("iris", discretize);
|
||||
auto clf = models[model];
|
||||
clf->fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto y_pred_proba = clf->predict_proba(raw.Xv);
|
||||
clf->fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto yt_pred_proba = clf->predict_proba(raw.Xt);
|
||||
auto y_pred = clf->predict(raw.Xv);
|
||||
auto yt_pred = clf->predict(raw.Xt);
|
||||
REQUIRE(y_pred.size() == yt_pred.size(0));
|
||||
REQUIRE(y_pred.size() == y_pred_proba.size());
|
||||
REQUIRE(y_pred.size() == yt_pred_proba.size(0));
|
||||
REQUIRE(y_pred.size() == raw.yv.size());
|
||||
REQUIRE(y_pred_proba[0].size() == 3);
|
||||
REQUIRE(yt_pred_proba.size(1) == y_pred_proba[0].size());
|
||||
for (int i = 0; i < 9; ++i) {
|
||||
auto maxElem = max_element(y_pred_proba[i].begin(), y_pred_proba[i].end());
|
||||
int predictedClass = distance(y_pred_proba[i].begin(), maxElem);
|
||||
REQUIRE(predictedClass == y_pred[i]);
|
||||
// Check predict is coherent with predict_proba
|
||||
REQUIRE(yt_pred_proba[i].argmax().item<int>() == y_pred[i]);
|
||||
for (int j = 0; j < yt_pred_proba.size(1); j++) {
|
||||
REQUIRE(yt_pred_proba[i][j].item<double>() == Catch::Approx(y_pred_proba[i][j]).epsilon(raw.epsilon));
|
||||
std::vector<int> y_pred;
|
||||
std::vector<std::vector<double>> y_pred_proba;
|
||||
if (!ld_model) {
|
||||
y_pred = clf->predict(raw.Xv);
|
||||
y_pred_proba = clf->predict_proba(raw.Xv);
|
||||
REQUIRE(y_pred.size() == y_pred_proba.size());
|
||||
REQUIRE(y_pred.size() == yt_pred.size(0));
|
||||
REQUIRE(y_pred.size() == yt_pred_proba.size(0));
|
||||
REQUIRE(y_pred_proba[0].size() == 3);
|
||||
REQUIRE(y_pred.size() == raw.yv.size());
|
||||
REQUIRE(yt_pred_proba.size(1) == y_pred_proba[0].size());
|
||||
for (int i = 0; i < 9; ++i) {
|
||||
auto maxElem = max_element(y_pred_proba[i].begin(), y_pred_proba[i].end());
|
||||
int predictedClass = distance(y_pred_proba[i].begin(), maxElem);
|
||||
REQUIRE(predictedClass == y_pred[i]);
|
||||
// Check predict is coherent with predict_proba
|
||||
REQUIRE(yt_pred_proba[i].argmax().item<int>() == y_pred[i]);
|
||||
for (int j = 0; j < yt_pred_proba.size(1); j++) {
|
||||
REQUIRE(yt_pred_proba[i][j].item<double>() == Catch::Approx(y_pred_proba[i][j]).epsilon(raw.epsilon));
|
||||
}
|
||||
}
|
||||
}
|
||||
// Check predict_proba values for vectors and tensors
|
||||
for (int i = 0; i < 9; i++) {
|
||||
REQUIRE(y_pred[i] == yt_pred[i].item<int>());
|
||||
for (int j = 0; j < 3; j++) {
|
||||
REQUIRE(res_prob[model][i][j] == Catch::Approx(y_pred_proba[i + init_index][j]).epsilon(raw.epsilon));
|
||||
REQUIRE(res_prob[model][i][j] ==
|
||||
Catch::Approx(yt_pred_proba[i + init_index][j].item<double>()).epsilon(raw.epsilon));
|
||||
// Check predict_proba values for vectors and tensors
|
||||
for (int i = 0; i < 9; i++) {
|
||||
REQUIRE(y_pred[i] == yt_pred[i].item<int>());
|
||||
for (int j = 0; j < 3; j++) {
|
||||
REQUIRE(res_prob[model][i][j] == Catch::Approx(y_pred_proba[i + init_index][j]).epsilon(raw.epsilon));
|
||||
REQUIRE(res_prob[model][i][j] ==
|
||||
Catch::Approx(yt_pred_proba[i + init_index][j].item<double>()).epsilon(raw.epsilon));
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Check predict_proba values for vectors and tensors
|
||||
auto predictedClasses = yt_pred_proba.argmax(1);
|
||||
for (int i = 0; i < 9; i++) {
|
||||
REQUIRE(predictedClasses[i].item<int>() == yt_pred[i].item<int>());
|
||||
for (int j = 0; j < 3; j++) {
|
||||
REQUIRE(res_prob[model][i][j] ==
|
||||
Catch::Approx(yt_pred_proba[i + init_index][j].item<double>()).epsilon(raw.epsilon));
|
||||
}
|
||||
}
|
||||
}
|
||||
delete clf;
|
||||
|
Reference in New Issue
Block a user