Fix smell issues in markdown and python

This commit is contained in:
2025-07-01 19:16:48 +02:00
parent 8ccc7e263c
commit 839be5335d
3 changed files with 40 additions and 25 deletions

View File

@@ -9,14 +9,17 @@ BayesNet is a C++ library implementing Bayesian Network Classifiers. It provides
## Build System & Dependencies
### Dependency Management
The project supports **two package managers**:
#### vcpkg (Default)
- Uses vcpkg with private registry at https://github.com/rmontanana/vcpkg-stash
- Uses vcpkg with private registry at <https://github.com/rmontanana/vcpkg-stash>
- Core dependencies: libtorch, nlohmann-json, folding, fimdlp, arff-files, catch2
- All dependencies defined in `vcpkg.json` with version overrides
#### Conan (Alternative)
- Modern C++ package manager with better dependency resolution
- Configured via `conanfile.py` for packaging and distribution
- Supports subset of dependencies (libtorch, nlohmann-json, catch2)
@@ -25,6 +28,7 @@ The project supports **two package managers**:
### Build Commands
#### Using vcpkg (Default)
```bash
# Initialize dependencies
make init
@@ -49,6 +53,7 @@ make clean
```
#### Using Conan
```bash
# Install Conan first: pip install conan
@@ -74,6 +79,7 @@ make conan-clean
```
### CMake Configuration
- Uses CMake 3.27+ with C++17 standard
- Debug builds automatically enable testing and coverage
- Release builds optimize with `-Ofast`
@@ -89,6 +95,7 @@ make conan-clean
- Coverage reporting with lcov/genhtml
### Test Categories
- A2DE, BoostA2DE, BoostAODE, XSPODE, XSPnDE, XBAODE, XBA2DE
- Classifier, Ensemble, FeatureSelection, Metrics, Models
- Network, Node, MST, Modules
@@ -96,6 +103,7 @@ make conan-clean
## Code Architecture
### Core Structure
```
bayesnet/
├── BaseClassifier.h # Abstract base for all classifiers
@@ -107,12 +115,14 @@ bayesnet/
```
### Key Design Patterns
- **BaseClassifier** abstract interface for all algorithms
- Template-based design with both std::vector and torch::Tensor support
- Network/Node abstraction for Bayesian network representation
- Feature selection as separate, composable modules
### Data Handling
- Supports both discrete integer data and continuous data with discretization
- ARFF file format support through arff-files library
- Tensor operations via PyTorch C++ (libtorch)
@@ -128,6 +138,7 @@ bayesnet/
## Sample Applications
Sample code in `sample/` directory demonstrates library usage:
```bash
make sample fname=tests/data/iris.arff model=TANLd
```
@@ -135,6 +146,7 @@ make sample fname=tests/data/iris.arff model=TANLd
## Package Distribution
### Creating Conan Packages
```bash
# Create package locally
make conan-create
@@ -148,7 +160,9 @@ make conan-upload remote=myremote profile=myprofile
```
### Using the Library
With Conan:
```python
# conanfile.txt or conanfile.py
[requires]
@@ -159,6 +173,7 @@ cmake
```
With vcpkg:
```json
{
"dependencies": ["bayesnet"]
@@ -170,7 +185,7 @@ With vcpkg:
- **Add new classifier**: Extend BaseClassifier, implement in appropriate subdirectory
- **Add new test**: Update `tests/CMakeLists.txt` and create test in `tests/`
- **Modify build**: Edit main `CMakeLists.txt` or use Makefile targets
- **Update dependencies**:
- **Update dependencies**:
- vcpkg: Modify `vcpkg.json` and run `make init`
- Conan: Modify `conanfile.py` and run `make conan-init`
- **Package for distribution**: Use `make conan-create` for Conan packaging
- **Package for distribution**: Use `make conan-create` for Conan packaging

View File

@@ -16,29 +16,29 @@ conan profile new default --detect
1. Create a `conanfile.txt` in your project:
```ini
[requires]
libtorch/2.7.0
bayesnet/1.2.0
```ini
[requires]
libtorch/2.7.0
bayesnet/1.2.0
[generators]
CMakeDeps
CMakeToolchain
[generators]
CMakeDeps
CMakeToolchain
```
```
2. Install dependencies:
1. Install dependencies:
```bash
conan install . --build=missing
```
```bash
conan install . --build=missing
```
3. In your CMakeLists.txt:
1. In your CMakeLists.txt:
```cmake
find_package(bayesnet REQUIRED)
target_link_libraries(your_target bayesnet::bayesnet)
```
```cmake
find_package(bayesnet REQUIRED)
target_link_libraries(your_target bayesnet::bayesnet)
```
### Building BayesNet with Conan
@@ -69,8 +69,8 @@ make conan-create
For the custom dependencies, you'll need to create Conan recipes:
1. **folding**: Cross-validation library
2. **fimdlp**: Discretization library
3. **arff-files**: ARFF file format parser
1. **fimdlp**: Discretization library
1. **arff-files**: ARFF file format parser
Contact the maintainer or create custom recipes for these packages.

View File

@@ -18,7 +18,7 @@ class BayesNetConan(ConanFile):
"enable_testing": False,
"enable_coverage": False
}
# Sources are located in the same place as this recipe, copy them to the recipe
exports_sources = "CMakeLists.txt", "bayesnet/*", "config/*", "cmake/*", "docs/*", "tests/*", "bayesnetConfig.cmake.in"
@@ -35,7 +35,7 @@ class BayesNetConan(ConanFile):
self.version = match.group(1)
else:
raise Exception("Version not found in CMakeLists.txt")
self.version = match.group(1)
self.version = match.group(1)
def config_options(self):
if self.settings.os == "Windows":
@@ -50,7 +50,7 @@ class BayesNetConan(ConanFile):
self.requires("libtorch/2.7.0")
self.requires("nlohmann_json/3.11.3")
self.requires("folding/1.1.1") # Custom package
self.requires("fimdlp/2.1.0") # Custom package
self.requires("fimdlp/2.1.0") # Custom package
def build_requirements(self):
self.build_requires("cmake/[>=3.27]")