Complete proposal
This commit is contained in:
15
Makefile
15
Makefile
@@ -17,6 +17,14 @@ mansrcdir = docs/man3
|
||||
mandestdir = /usr/local/share/man
|
||||
sed_command_link = 's/e">LCOV -/e"><a href="https:\/\/rmontanana.github.io\/bayesnet">Back to manual<\/a> LCOV -/g'
|
||||
sed_command_diagram = 's/Diagram"/Diagram" width="100%" height="100%" /g'
|
||||
# Set the number of parallel jobs to the number of available processors minus 7
|
||||
CPUS := $(shell getconf _NPROCESSORS_ONLN 2>/dev/null \
|
||||
|| nproc --all 2>/dev/null \
|
||||
|| sysctl -n hw.ncpu)
|
||||
|
||||
# --- Your desired job count: CPUs – 7, but never less than 1 --------------
|
||||
JOBS := $(shell n=$(CPUS); [ $${n} -gt 7 ] && echo $$((n-7)) || echo 1)
|
||||
|
||||
|
||||
define ClearTests
|
||||
@for t in $(test_targets); do \
|
||||
@@ -36,6 +44,7 @@ define setup_target
|
||||
@if [ -d $(2) ]; then rm -fr $(2); fi
|
||||
@conan install . --build=missing -of $(2) -s build_type=$(1)
|
||||
@cmake -S . -B $(2) -DCMAKE_TOOLCHAIN_FILE=$(2)/build/$(1)/generators/conan_toolchain.cmake -DCMAKE_BUILD_TYPE=$(1) -D$(3)
|
||||
@echo ">>> Will build using $(JOBS) parallel jobs"
|
||||
@echo ">>> Done"
|
||||
endef
|
||||
|
||||
@@ -72,10 +81,10 @@ release: ## Setup release version using Conan
|
||||
@$(call setup_target,"Release","$(f_release)","ENABLE_TESTING=OFF")
|
||||
|
||||
buildd: ## Build the debug targets
|
||||
cmake --build $(f_debug) --config Debug -t $(app_targets) --parallel $(CMAKE_BUILD_PARALLEL_LEVEL)
|
||||
cmake --build $(f_debug) --config Debug -t $(app_targets) --parallel $(JOBS)
|
||||
|
||||
buildr: ## Build the release targets
|
||||
cmake --build $(f_release) --config Release -t $(app_targets) --parallel $(CMAKE_BUILD_PARALLEL_LEVEL)
|
||||
cmake --build $(f_release) --config Release -t $(app_targets) --parallel $(JOBS)
|
||||
|
||||
|
||||
# Install targets
|
||||
@@ -105,7 +114,7 @@ opt = ""
|
||||
test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
|
||||
@echo ">>> Running BayesNet tests...";
|
||||
@$(MAKE) clean-test
|
||||
@cmake --build $(f_debug) -t $(test_targets) --parallel $(CMAKE_BUILD_PARALLEL_LEVEL)
|
||||
@cmake --build $(f_debug) -t $(test_targets) --parallel $(JOBS)
|
||||
@for t in $(test_targets); do \
|
||||
echo ">>> Running $$t...";\
|
||||
if [ -f $(f_debug)/tests/$$t ]; then \
|
||||
|
@@ -1,151 +0,0 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include "IterativeProposal.h"
|
||||
#include <iostream>
|
||||
#include <cmath>
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
IterativeProposal::IterativeProposal(torch::Tensor& pDataset, std::vector<std::string>& features_, std::string& className_)
|
||||
: Proposal(pDataset, features_, className_) {}
|
||||
|
||||
void IterativeProposal::setHyperparameters(const nlohmann::json& hyperparameters_) {
|
||||
// First set base Proposal hyperparameters
|
||||
Proposal::setHyperparameters(hyperparameters_);
|
||||
|
||||
// Then set IterativeProposal specific hyperparameters
|
||||
if (hyperparameters_.contains("max_iterations")) {
|
||||
convergence_params.maxIterations = hyperparameters_["max_iterations"];
|
||||
}
|
||||
if (hyperparameters_.contains("tolerance")) {
|
||||
convergence_params.tolerance = hyperparameters_["tolerance"];
|
||||
}
|
||||
if (hyperparameters_.contains("convergence_metric")) {
|
||||
convergence_params.convergenceMetric = hyperparameters_["convergence_metric"];
|
||||
}
|
||||
if (hyperparameters_.contains("verbose_convergence")) {
|
||||
convergence_params.verbose = hyperparameters_["verbose_convergence"];
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Classifier>
|
||||
map<std::string, std::vector<int>> IterativeProposal::iterativeLocalDiscretization(
|
||||
const torch::Tensor& y,
|
||||
Classifier* classifier,
|
||||
const torch::Tensor& dataset,
|
||||
const std::vector<std::string>& features,
|
||||
const std::string& className,
|
||||
const map<std::string, std::vector<int>>& initialStates,
|
||||
double smoothing
|
||||
) {
|
||||
// Phase 1: Initial discretization (same as original)
|
||||
auto currentStates = fit_local_discretization(y);
|
||||
|
||||
double previousValue = -std::numeric_limits<double>::infinity();
|
||||
double currentValue = 0.0;
|
||||
|
||||
if (convergence_params.verbose) {
|
||||
std::cout << "Starting iterative local discretization with "
|
||||
<< convergence_params.maxIterations << " max iterations" << std::endl;
|
||||
}
|
||||
|
||||
for (int iteration = 0; iteration < convergence_params.maxIterations; ++iteration) {
|
||||
if (convergence_params.verbose) {
|
||||
std::cout << "Iteration " << (iteration + 1) << "/" << convergence_params.maxIterations << std::endl;
|
||||
}
|
||||
|
||||
// Phase 2: Build model with current discretization
|
||||
classifier->fit(dataset, features, className, currentStates, smoothing);
|
||||
|
||||
// Phase 3: Network-aware discretization refinement
|
||||
auto newStates = localDiscretizationProposal(currentStates, classifier->getModel());
|
||||
|
||||
// Phase 4: Compute convergence metric
|
||||
if (convergence_params.convergenceMetric == "likelihood") {
|
||||
currentValue = computeLogLikelihood(classifier->getModel(), dataset);
|
||||
} else if (convergence_params.convergenceMetric == "accuracy") {
|
||||
// For accuracy, we would need validation data - for now use likelihood
|
||||
currentValue = computeLogLikelihood(classifier->getModel(), dataset);
|
||||
}
|
||||
|
||||
if (convergence_params.verbose) {
|
||||
std::cout << " " << convergence_params.convergenceMetric << ": " << currentValue << std::endl;
|
||||
}
|
||||
|
||||
// Check convergence
|
||||
if (iteration > 0 && hasConverged(currentValue, previousValue, convergence_params.convergenceMetric)) {
|
||||
if (convergence_params.verbose) {
|
||||
std::cout << "Converged after " << (iteration + 1) << " iterations" << std::endl;
|
||||
}
|
||||
currentStates = newStates;
|
||||
break;
|
||||
}
|
||||
|
||||
// Update for next iteration
|
||||
currentStates = newStates;
|
||||
previousValue = currentValue;
|
||||
}
|
||||
|
||||
return currentStates;
|
||||
}
|
||||
|
||||
double IterativeProposal::computeLogLikelihood(const Network& model, const torch::Tensor& dataset) {
|
||||
double logLikelihood = 0.0;
|
||||
int n_samples = dataset.size(0);
|
||||
int n_features = dataset.size(1);
|
||||
|
||||
for (int i = 0; i < n_samples; ++i) {
|
||||
double sampleLogLikelihood = 0.0;
|
||||
|
||||
// Get class value for this sample
|
||||
int classValue = dataset[i][n_features - 1].item<int>();
|
||||
|
||||
// Compute log-likelihood for each feature given its parents and class
|
||||
for (const auto& node : model.getNodes()) {
|
||||
if (node.getName() == model.getClassName()) {
|
||||
// For class node, add log P(class)
|
||||
auto classCounts = node.getCPT();
|
||||
double classProb = classCounts[classValue] / dataset.size(0);
|
||||
sampleLogLikelihood += std::log(std::max(classProb, 1e-10));
|
||||
} else {
|
||||
// For feature nodes, add log P(feature | parents, class)
|
||||
int featureIdx = std::distance(model.getFeatures().begin(),
|
||||
std::find(model.getFeatures().begin(),
|
||||
model.getFeatures().end(),
|
||||
node.getName()));
|
||||
int featureValue = dataset[i][featureIdx].item<int>();
|
||||
|
||||
// Simplified probability computation - in practice would need full CPT lookup
|
||||
double featureProb = 0.1; // Placeholder - would compute from CPT
|
||||
sampleLogLikelihood += std::log(std::max(featureProb, 1e-10));
|
||||
}
|
||||
}
|
||||
|
||||
logLikelihood += sampleLogLikelihood;
|
||||
}
|
||||
|
||||
return logLikelihood;
|
||||
}
|
||||
|
||||
bool IterativeProposal::hasConverged(double currentValue, double previousValue, const std::string& metric) {
|
||||
if (metric == "likelihood") {
|
||||
// For likelihood, check if improvement is less than tolerance
|
||||
double improvement = currentValue - previousValue;
|
||||
return improvement < convergence_params.tolerance;
|
||||
} else if (metric == "accuracy") {
|
||||
// For accuracy, check if change is less than tolerance
|
||||
double change = std::abs(currentValue - previousValue);
|
||||
return change < convergence_params.tolerance;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Explicit template instantiation for common classifier types
|
||||
template map<std::string, std::vector<int>> IterativeProposal::iterativeLocalDiscretization<Classifier>(
|
||||
const torch::Tensor&, Classifier*, const torch::Tensor&, const std::vector<std::string>&,
|
||||
const std::string&, const map<std::string, std::vector<int>>&, double);
|
||||
}
|
@@ -1,50 +0,0 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef ITERATIVE_PROPOSAL_H
|
||||
#define ITERATIVE_PROPOSAL_H
|
||||
|
||||
#include "Proposal.h"
|
||||
#include "bayesnet/network/Network.h"
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
namespace bayesnet {
|
||||
class IterativeProposal : public Proposal {
|
||||
public:
|
||||
IterativeProposal(torch::Tensor& pDataset, std::vector<std::string>& features_, std::string& className_);
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_);
|
||||
|
||||
protected:
|
||||
template<typename Classifier>
|
||||
map<std::string, std::vector<int>> iterativeLocalDiscretization(
|
||||
const torch::Tensor& y,
|
||||
Classifier* classifier,
|
||||
const torch::Tensor& dataset,
|
||||
const std::vector<std::string>& features,
|
||||
const std::string& className,
|
||||
const map<std::string, std::vector<int>>& initialStates,
|
||||
double smoothing = 1.0
|
||||
);
|
||||
|
||||
// Convergence parameters
|
||||
struct {
|
||||
int maxIterations = 10;
|
||||
double tolerance = 1e-6;
|
||||
std::string convergenceMetric = "likelihood"; // "likelihood" or "accuracy"
|
||||
bool verbose = false;
|
||||
} convergence_params;
|
||||
|
||||
nlohmann::json validHyperparameters_iter = {
|
||||
"max_iterations", "tolerance", "convergence_metric", "verbose_convergence"
|
||||
};
|
||||
|
||||
private:
|
||||
double computeLogLikelihood(const Network& model, const torch::Tensor& dataset);
|
||||
bool hasConverged(double currentValue, double previousValue, const std::string& metric);
|
||||
};
|
||||
}
|
||||
|
||||
#endif
|
@@ -33,12 +33,13 @@ namespace bayesnet {
|
||||
className = className_;
|
||||
Xf = X_;
|
||||
y = y_;
|
||||
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network
|
||||
|
||||
// Use iterative local discretization instead of the two-phase approach
|
||||
states = iterativeLocalDiscretization(y, this, dataset, features, className, states_, smoothing);
|
||||
|
||||
// Final fit with converged discretization
|
||||
KDB::fit(dataset, features, className, states, smoothing);
|
||||
states = localDiscretizationProposal(states, model);
|
||||
|
||||
return *this;
|
||||
}
|
||||
torch::Tensor KDBLd::predict(torch::Tensor& X)
|
||||
|
@@ -5,6 +5,9 @@
|
||||
// ***************************************************************
|
||||
|
||||
#include "Proposal.h"
|
||||
#include <iostream>
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
|
||||
namespace bayesnet {
|
||||
Proposal::Proposal(torch::Tensor& dataset_, std::vector<std::string>& features_, std::string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_)
|
||||
@@ -38,6 +41,15 @@ namespace bayesnet {
|
||||
throw std::invalid_argument("Invalid discretization algorithm: " + algorithm.get<std::string>());
|
||||
}
|
||||
}
|
||||
// Convergence parameters
|
||||
if (hyperparameters.contains("max_iterations")) {
|
||||
convergence_params.maxIterations = hyperparameters["max_iterations"];
|
||||
hyperparameters.erase("max_iterations");
|
||||
}
|
||||
if (hyperparameters.contains("verbose_convergence")) {
|
||||
convergence_params.verbose = hyperparameters["verbose_convergence"];
|
||||
hyperparameters.erase("verbose_convergence");
|
||||
}
|
||||
if (!hyperparameters.empty()) {
|
||||
throw std::invalid_argument("Invalid hyperparameters for Proposal: " + hyperparameters.dump());
|
||||
}
|
||||
@@ -163,4 +175,94 @@ namespace bayesnet {
|
||||
}
|
||||
return yy;
|
||||
}
|
||||
|
||||
template<typename Classifier>
|
||||
map<std::string, std::vector<int>> Proposal::iterativeLocalDiscretization(
|
||||
const torch::Tensor& y,
|
||||
Classifier* classifier,
|
||||
const torch::Tensor& dataset,
|
||||
const std::vector<std::string>& features,
|
||||
const std::string& className,
|
||||
const map<std::string, std::vector<int>>& initialStates,
|
||||
Smoothing_t smoothing
|
||||
)
|
||||
{
|
||||
// Phase 1: Initial discretization (same as original)
|
||||
auto currentStates = fit_local_discretization(y);
|
||||
auto previousModel = Network();
|
||||
|
||||
if (convergence_params.verbose) {
|
||||
std::cout << "Starting iterative local discretization with "
|
||||
<< convergence_params.maxIterations << " max iterations" << std::endl;
|
||||
}
|
||||
|
||||
for (int iteration = 0; iteration < convergence_params.maxIterations; ++iteration) {
|
||||
if (convergence_params.verbose) {
|
||||
std::cout << "Iteration " << (iteration + 1) << "/" << convergence_params.maxIterations << std::endl;
|
||||
}
|
||||
|
||||
// Phase 2: Build model with current discretization
|
||||
classifier->fit(dataset, features, className, currentStates, smoothing);
|
||||
|
||||
// Phase 3: Network-aware discretization refinement
|
||||
currentStates = localDiscretizationProposal(currentStates, classifier->model);
|
||||
|
||||
// Check convergence
|
||||
if (iteration > 0 && previousModel == classifier->model) {
|
||||
if (convergence_params.verbose) {
|
||||
std::cout << "Converged after " << (iteration + 1) << " iterations" << std::endl;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
// Update for next iteration
|
||||
previousModel = classifier->model;
|
||||
}
|
||||
|
||||
return currentStates;
|
||||
}
|
||||
|
||||
double Proposal::computeLogLikelihood(Network& model, const torch::Tensor& dataset)
|
||||
{
|
||||
double logLikelihood = 0.0;
|
||||
int n_samples = dataset.size(0);
|
||||
int n_features = dataset.size(1);
|
||||
|
||||
for (int i = 0; i < n_samples; ++i) {
|
||||
double sampleLogLikelihood = 0.0;
|
||||
|
||||
// Get class value for this sample
|
||||
int classValue = dataset[i][n_features - 1].item<int>();
|
||||
|
||||
// Compute log-likelihood for each feature given its parents and class
|
||||
for (const auto& node : model.getNodes()) {
|
||||
if (node.first == model.getClassName()) {
|
||||
// For class node, add log P(class)
|
||||
auto classCounts = node.second->getCPT();
|
||||
double classProb = classCounts[classValue].item<double>() / dataset.size(0);
|
||||
sampleLogLikelihood += std::log(std::max(classProb, 1e-10));
|
||||
} else {
|
||||
// For feature nodes, add log P(feature | parents, class)
|
||||
int featureIdx = std::distance(model.getFeatures().begin(),
|
||||
std::find(model.getFeatures().begin(),
|
||||
model.getFeatures().end(),
|
||||
node.first));
|
||||
int featureValue = dataset[i][featureIdx].item<int>();
|
||||
|
||||
// Simplified probability computation - in practice would need full CPT lookup
|
||||
double featureProb = 0.1; // Placeholder - would compute from CPT
|
||||
sampleLogLikelihood += std::log(std::max(featureProb, 1e-10));
|
||||
}
|
||||
}
|
||||
|
||||
logLikelihood += sampleLogLikelihood;
|
||||
}
|
||||
|
||||
return logLikelihood;
|
||||
}
|
||||
|
||||
// Explicit template instantiation for common classifier types
|
||||
// template map<std::string, std::vector<int>> Proposal::iterativeLocalDiscretization<Classifier>(
|
||||
// const torch::Tensor&, Classifier*, const torch::Tensor&, const std::vector<std::string>&,
|
||||
// const std::string&, const map<std::string, std::vector<int>>&, Smoothing_t);
|
||||
}
|
||||
|
@@ -25,18 +25,43 @@ namespace bayesnet {
|
||||
torch::Tensor prepareX(torch::Tensor& X);
|
||||
map<std::string, std::vector<int>> localDiscretizationProposal(const map<std::string, std::vector<int>>& states, Network& model);
|
||||
map<std::string, std::vector<int>> fit_local_discretization(const torch::Tensor& y);
|
||||
|
||||
// Iterative discretization method
|
||||
template<typename Classifier>
|
||||
map<std::string, std::vector<int>> iterativeLocalDiscretization(
|
||||
const torch::Tensor& y,
|
||||
Classifier* classifier,
|
||||
const torch::Tensor& dataset,
|
||||
const std::vector<std::string>& features,
|
||||
const std::string& className,
|
||||
const map<std::string, std::vector<int>>& initialStates,
|
||||
const Smoothing_t smoothing
|
||||
);
|
||||
|
||||
torch::Tensor Xf; // X continuous nxm tensor
|
||||
torch::Tensor y; // y discrete nx1 tensor
|
||||
map<std::string, std::unique_ptr<mdlp::Discretizer>> discretizers;
|
||||
|
||||
// MDLP parameters
|
||||
struct {
|
||||
size_t min_length = 3; // Minimum length of the interval to consider it in mdlp
|
||||
float proposed_cuts = 0.0; // Proposed cuts for the Discretization algorithm
|
||||
int max_depth = std::numeric_limits<int>::max(); // Maximum depth of the MDLP tree
|
||||
} ld_params;
|
||||
nlohmann::json validHyperparameters_ld = { "ld_algorithm", "ld_proposed_cuts", "mdlp_min_length", "mdlp_max_depth" };
|
||||
|
||||
// Convergence parameters
|
||||
struct {
|
||||
int maxIterations = 10;
|
||||
bool verbose = false;
|
||||
} convergence_params;
|
||||
|
||||
nlohmann::json validHyperparameters_ld = {
|
||||
"ld_algorithm", "ld_proposed_cuts", "mdlp_min_length", "mdlp_max_depth",
|
||||
"max_iterations", "verbose_convergence"
|
||||
};
|
||||
private:
|
||||
std::vector<int> factorize(const std::vector<std::string>& labels_t);
|
||||
double computeLogLikelihood(Network& model, const torch::Tensor& dataset);
|
||||
torch::Tensor& pDataset; // (n+1)xm tensor
|
||||
std::vector<std::string>& pFeatures;
|
||||
std::string& pClassName;
|
||||
|
@@ -15,14 +15,14 @@ namespace bayesnet {
|
||||
className = className_;
|
||||
Xf = X_;
|
||||
y = y_;
|
||||
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
|
||||
|
||||
// Use iterative local discretization instead of the two-phase approach
|
||||
states = iterativeLocalDiscretization(y, this, dataset, features, className, states_, smoothing);
|
||||
|
||||
// Final fit with converged discretization
|
||||
TAN::fit(dataset, features, className, states, smoothing);
|
||||
states = localDiscretizationProposal(states, model);
|
||||
|
||||
return *this;
|
||||
|
||||
}
|
||||
torch::Tensor TANLd::predict(torch::Tensor& X)
|
||||
{
|
||||
|
@@ -1,45 +0,0 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include "TANLdi.h"
|
||||
|
||||
namespace bayesnet {
|
||||
TANLdi::TANLdIterative() : TAN(), IterativeProposal(dataset, features, className) {}
|
||||
|
||||
TANLdi& TANLdIterative::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||
{
|
||||
checkInput(X_, y_);
|
||||
features = features_;
|
||||
className = className_;
|
||||
Xf = X_;
|
||||
y = y_;
|
||||
|
||||
// Use iterative local discretization instead of the two-phase approach
|
||||
states = iterativeLocalDiscretization(y, this, dataset, features, className, states_, smoothing);
|
||||
|
||||
// Final fit with converged discretization
|
||||
TAN::fit(dataset, features, className, states, smoothing);
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
torch::Tensor TANLdi::predict(torch::Tensor& X)
|
||||
{
|
||||
auto Xt = prepareX(X);
|
||||
return TAN::predict(Xt);
|
||||
}
|
||||
|
||||
torch::Tensor TANLdi::predict_proba(torch::Tensor& X)
|
||||
{
|
||||
auto Xt = prepareX(X);
|
||||
return TAN::predict_proba(Xt);
|
||||
}
|
||||
|
||||
std::vector<std::string> TANLdi::graph(const std::string& name) const
|
||||
{
|
||||
return TAN::graph(name);
|
||||
}
|
||||
}
|
@@ -1,24 +0,0 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef TANLDI_H
|
||||
#define TANLDI_H
|
||||
#include "TAN.h"
|
||||
#include "IterativeProposal.h"
|
||||
|
||||
namespace bayesnet {
|
||||
class TANLdi : public TAN, public IterativeProposal {
|
||||
private:
|
||||
public:
|
||||
TANLdi();
|
||||
virtual ~TANLdi() = default;
|
||||
TANLdi& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
std::vector<std::string> graph(const std::string& name = "TANLdi") const override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
torch::Tensor predict_proba(torch::Tensor& X) override;
|
||||
};
|
||||
}
|
||||
#endif // !TANLDI_H
|
@@ -17,14 +17,90 @@ namespace bayesnet {
|
||||
Network::Network() : fitted{ false }, classNumStates{ 0 }
|
||||
{
|
||||
}
|
||||
Network::Network(const Network& other) : features(other.features), className(other.className), classNumStates(other.getClassNumStates()),
|
||||
fitted(other.fitted), samples(other.samples)
|
||||
Network::Network(const Network& other)
|
||||
: features(other.features), className(other.className), classNumStates(other.classNumStates),
|
||||
fitted(other.fitted)
|
||||
{
|
||||
if (samples.defined())
|
||||
samples = samples.clone();
|
||||
// Deep copy the samples tensor
|
||||
if (other.samples.defined()) {
|
||||
samples = other.samples.clone();
|
||||
}
|
||||
|
||||
// First, create all nodes (without relationships)
|
||||
for (const auto& node : other.nodes) {
|
||||
nodes[node.first] = std::make_unique<Node>(*node.second);
|
||||
}
|
||||
|
||||
// Second, reconstruct the relationships between nodes
|
||||
for (const auto& node : other.nodes) {
|
||||
const std::string& nodeName = node.first;
|
||||
Node* originalNode = node.second.get();
|
||||
Node* newNode = nodes[nodeName].get();
|
||||
|
||||
// Reconstruct parent relationships
|
||||
for (Node* parent : originalNode->getParents()) {
|
||||
const std::string& parentName = parent->getName();
|
||||
if (nodes.find(parentName) != nodes.end()) {
|
||||
newNode->addParent(nodes[parentName].get());
|
||||
}
|
||||
}
|
||||
|
||||
// Reconstruct child relationships
|
||||
for (Node* child : originalNode->getChildren()) {
|
||||
const std::string& childName = child->getName();
|
||||
if (nodes.find(childName) != nodes.end()) {
|
||||
newNode->addChild(nodes[childName].get());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Network& Network::operator=(const Network& other)
|
||||
{
|
||||
if (this != &other) {
|
||||
// Clear existing state
|
||||
nodes.clear();
|
||||
features = other.features;
|
||||
className = other.className;
|
||||
classNumStates = other.classNumStates;
|
||||
fitted = other.fitted;
|
||||
|
||||
// Deep copy the samples tensor
|
||||
if (other.samples.defined()) {
|
||||
samples = other.samples.clone();
|
||||
} else {
|
||||
samples = torch::Tensor();
|
||||
}
|
||||
|
||||
// First, create all nodes (without relationships)
|
||||
for (const auto& node : other.nodes) {
|
||||
nodes[node.first] = std::make_unique<Node>(*node.second);
|
||||
}
|
||||
|
||||
// Second, reconstruct the relationships between nodes
|
||||
for (const auto& node : other.nodes) {
|
||||
const std::string& nodeName = node.first;
|
||||
Node* originalNode = node.second.get();
|
||||
Node* newNode = nodes[nodeName].get();
|
||||
|
||||
// Reconstruct parent relationships
|
||||
for (Node* parent : originalNode->getParents()) {
|
||||
const std::string& parentName = parent->getName();
|
||||
if (nodes.find(parentName) != nodes.end()) {
|
||||
newNode->addParent(nodes[parentName].get());
|
||||
}
|
||||
}
|
||||
|
||||
// Reconstruct child relationships
|
||||
for (Node* child : originalNode->getChildren()) {
|
||||
const std::string& childName = child->getName();
|
||||
if (nodes.find(childName) != nodes.end()) {
|
||||
newNode->addChild(nodes[childName].get());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
void Network::initialize()
|
||||
{
|
||||
@@ -503,4 +579,41 @@ namespace bayesnet {
|
||||
}
|
||||
return oss.str();
|
||||
}
|
||||
|
||||
bool Network::operator==(const Network& other) const
|
||||
{
|
||||
// Compare number of nodes
|
||||
if (nodes.size() != other.nodes.size()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Compare if all node names exist in both networks
|
||||
for (const auto& node : nodes) {
|
||||
if (other.nodes.find(node.first) == other.nodes.end()) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Compare edges (topology)
|
||||
auto thisEdges = getEdges();
|
||||
auto otherEdges = other.getEdges();
|
||||
|
||||
// Compare number of edges
|
||||
if (thisEdges.size() != otherEdges.size()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Sort both edge lists for comparison
|
||||
std::sort(thisEdges.begin(), thisEdges.end());
|
||||
std::sort(otherEdges.begin(), otherEdges.end());
|
||||
|
||||
// Compare each edge
|
||||
for (size_t i = 0; i < thisEdges.size(); ++i) {
|
||||
if (thisEdges[i] != otherEdges[i]) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
@@ -17,7 +17,8 @@ namespace bayesnet {
|
||||
class Network {
|
||||
public:
|
||||
Network();
|
||||
explicit Network(const Network&);
|
||||
Network(const Network& other);
|
||||
Network& operator=(const Network& other);
|
||||
~Network() = default;
|
||||
torch::Tensor& getSamples();
|
||||
void addNode(const std::string&);
|
||||
@@ -47,6 +48,7 @@ namespace bayesnet {
|
||||
void initialize();
|
||||
std::string dump_cpt() const;
|
||||
inline std::string version() { return { project_version.begin(), project_version.end() }; }
|
||||
bool operator==(const Network& other) const;
|
||||
private:
|
||||
std::map<std::string, std::unique_ptr<Node>> nodes;
|
||||
bool fitted;
|
||||
|
@@ -13,6 +13,41 @@ namespace bayesnet {
|
||||
: name(name)
|
||||
{
|
||||
}
|
||||
|
||||
Node::Node(const Node& other)
|
||||
: name(other.name), numStates(other.numStates), dimensions(other.dimensions)
|
||||
{
|
||||
// Deep copy the CPT tensor
|
||||
if (other.cpTable.defined()) {
|
||||
cpTable = other.cpTable.clone();
|
||||
}
|
||||
// Note: parent and children pointers are NOT copied here
|
||||
// They will be reconstructed by the Network copy constructor
|
||||
// to maintain proper object relationships
|
||||
}
|
||||
|
||||
Node& Node::operator=(const Node& other)
|
||||
{
|
||||
if (this != &other) {
|
||||
name = other.name;
|
||||
numStates = other.numStates;
|
||||
dimensions = other.dimensions;
|
||||
|
||||
// Deep copy the CPT tensor
|
||||
if (other.cpTable.defined()) {
|
||||
cpTable = other.cpTable.clone();
|
||||
} else {
|
||||
cpTable = torch::Tensor();
|
||||
}
|
||||
|
||||
// Clear existing relationships
|
||||
parents.clear();
|
||||
children.clear();
|
||||
// Note: parent and children pointers are NOT copied here
|
||||
// They must be reconstructed to maintain proper object relationships
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
void Node::clear()
|
||||
{
|
||||
parents.clear();
|
||||
|
@@ -14,6 +14,9 @@ namespace bayesnet {
|
||||
class Node {
|
||||
public:
|
||||
explicit Node(const std::string&);
|
||||
Node(const Node& other);
|
||||
Node& operator=(const Node& other);
|
||||
~Node() = default;
|
||||
void clear();
|
||||
void addParent(Node*);
|
||||
void addChild(Node*);
|
||||
|
@@ -338,6 +338,188 @@ TEST_CASE("Test Bayesian Network", "[Network]")
|
||||
REQUIRE_THROWS_AS(net5.addEdge("A", "B"), std::logic_error);
|
||||
REQUIRE_THROWS_WITH(net5.addEdge("A", "B"), "Cannot add edge to a fitted network. Initialize first.");
|
||||
}
|
||||
SECTION("Test assignment operator")
|
||||
{
|
||||
INFO("Test assignment operator");
|
||||
// Create original network
|
||||
auto net1 = bayesnet::Network();
|
||||
buildModel(net1, raw.features, raw.className);
|
||||
net1.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
|
||||
// Create empty network and assign
|
||||
auto net2 = bayesnet::Network();
|
||||
net2.addNode("TempNode"); // Add something to make sure it gets cleared
|
||||
net2 = net1;
|
||||
|
||||
// Verify they are equal
|
||||
REQUIRE(net1.getFeatures() == net2.getFeatures());
|
||||
REQUIRE(net1.getEdges() == net2.getEdges());
|
||||
REQUIRE(net1.getNumEdges() == net2.getNumEdges());
|
||||
REQUIRE(net1.getStates() == net2.getStates());
|
||||
REQUIRE(net1.getClassName() == net2.getClassName());
|
||||
REQUIRE(net1.getClassNumStates() == net2.getClassNumStates());
|
||||
REQUIRE(net1.getSamples().size(0) == net2.getSamples().size(0));
|
||||
REQUIRE(net1.getSamples().size(1) == net2.getSamples().size(1));
|
||||
REQUIRE(net1.getNodes().size() == net2.getNodes().size());
|
||||
|
||||
// Verify topology equality
|
||||
REQUIRE(net1 == net2);
|
||||
|
||||
// Verify they are separate objects by modifying one
|
||||
net2.initialize();
|
||||
net2.addNode("OnlyInNet2");
|
||||
REQUIRE(net1.getNodes().size() != net2.getNodes().size());
|
||||
REQUIRE_FALSE(net1 == net2);
|
||||
}
|
||||
SECTION("Test self assignment")
|
||||
{
|
||||
INFO("Test self assignment");
|
||||
buildModel(net, raw.features, raw.className);
|
||||
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
|
||||
int original_edges = net.getNumEdges();
|
||||
int original_nodes = net.getNodes().size();
|
||||
|
||||
// Self assignment should not corrupt the network
|
||||
net = net;
|
||||
|
||||
REQUIRE(net.getNumEdges() == original_edges);
|
||||
REQUIRE(net.getNodes().size() == original_nodes);
|
||||
REQUIRE(net.getFeatures() == raw.features);
|
||||
REQUIRE(net.getClassName() == raw.className);
|
||||
}
|
||||
SECTION("Test operator== topology comparison")
|
||||
{
|
||||
INFO("Test operator== topology comparison");
|
||||
|
||||
// Test 1: Two identical networks
|
||||
auto net1 = bayesnet::Network();
|
||||
auto net2 = bayesnet::Network();
|
||||
|
||||
net1.addNode("A");
|
||||
net1.addNode("B");
|
||||
net1.addNode("C");
|
||||
net1.addEdge("A", "B");
|
||||
net1.addEdge("B", "C");
|
||||
|
||||
net2.addNode("A");
|
||||
net2.addNode("B");
|
||||
net2.addNode("C");
|
||||
net2.addEdge("A", "B");
|
||||
net2.addEdge("B", "C");
|
||||
|
||||
REQUIRE(net1 == net2);
|
||||
|
||||
// Test 2: Different nodes
|
||||
auto net3 = bayesnet::Network();
|
||||
net3.addNode("A");
|
||||
net3.addNode("D"); // Different node
|
||||
REQUIRE_FALSE(net1 == net3);
|
||||
|
||||
// Test 3: Same nodes, different edges
|
||||
auto net4 = bayesnet::Network();
|
||||
net4.addNode("A");
|
||||
net4.addNode("B");
|
||||
net4.addNode("C");
|
||||
net4.addEdge("A", "C"); // Different topology
|
||||
net4.addEdge("B", "C");
|
||||
REQUIRE_FALSE(net1 == net4);
|
||||
|
||||
// Test 4: Empty networks
|
||||
auto net5 = bayesnet::Network();
|
||||
auto net6 = bayesnet::Network();
|
||||
REQUIRE(net5 == net6);
|
||||
|
||||
// Test 5: Same topology, different edge order
|
||||
auto net7 = bayesnet::Network();
|
||||
net7.addNode("A");
|
||||
net7.addNode("B");
|
||||
net7.addNode("C");
|
||||
net7.addEdge("B", "C"); // Add edges in different order
|
||||
net7.addEdge("A", "B");
|
||||
REQUIRE(net1 == net7); // Should still be equal
|
||||
}
|
||||
SECTION("Test RAII compliance with smart pointers")
|
||||
{
|
||||
INFO("Test RAII compliance with smart pointers");
|
||||
|
||||
std::unique_ptr<bayesnet::Network> net1 = std::make_unique<bayesnet::Network>();
|
||||
buildModel(*net1, raw.features, raw.className);
|
||||
net1->fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
|
||||
// Test that copy constructor works with smart pointers
|
||||
std::unique_ptr<bayesnet::Network> net2 = std::make_unique<bayesnet::Network>(*net1);
|
||||
|
||||
REQUIRE(*net1 == *net2);
|
||||
REQUIRE(net1->getNumEdges() == net2->getNumEdges());
|
||||
REQUIRE(net1->getNodes().size() == net2->getNodes().size());
|
||||
|
||||
// Destroy original
|
||||
net1.reset();
|
||||
|
||||
// net2 should still be valid and functional
|
||||
REQUIRE_NOTHROW(net2->addNode("NewNode"));
|
||||
REQUIRE(net2->getNodes().count("NewNode") == 1);
|
||||
|
||||
// Test predictions still work
|
||||
std::vector<std::vector<int>> test = { {1, 2, 0, 1, 1} };
|
||||
REQUIRE_NOTHROW(net2->predict(test));
|
||||
}
|
||||
SECTION("Test complex topology copy")
|
||||
{
|
||||
INFO("Test complex topology copy");
|
||||
|
||||
auto original = bayesnet::Network();
|
||||
|
||||
// Create a more complex network
|
||||
original.addNode("Root");
|
||||
original.addNode("Child1");
|
||||
original.addNode("Child2");
|
||||
original.addNode("Grandchild1");
|
||||
original.addNode("Grandchild2");
|
||||
original.addNode("Grandchild3");
|
||||
|
||||
original.addEdge("Root", "Child1");
|
||||
original.addEdge("Root", "Child2");
|
||||
original.addEdge("Child1", "Grandchild1");
|
||||
original.addEdge("Child1", "Grandchild2");
|
||||
original.addEdge("Child2", "Grandchild3");
|
||||
|
||||
// Copy it
|
||||
auto copy = original;
|
||||
|
||||
// Verify topology is identical
|
||||
REQUIRE(original == copy);
|
||||
REQUIRE(original.getNodes().size() == copy.getNodes().size());
|
||||
REQUIRE(original.getNumEdges() == copy.getNumEdges());
|
||||
|
||||
// Verify edges are properly reconstructed
|
||||
auto originalEdges = original.getEdges();
|
||||
auto copyEdges = copy.getEdges();
|
||||
REQUIRE(originalEdges.size() == copyEdges.size());
|
||||
|
||||
// Verify node relationships are properly copied
|
||||
for (const auto& nodePair : original.getNodes()) {
|
||||
const std::string& nodeName = nodePair.first;
|
||||
auto* originalNode = nodePair.second.get();
|
||||
auto* copyNode = copy.getNodes().at(nodeName).get();
|
||||
|
||||
REQUIRE(originalNode->getParents().size() == copyNode->getParents().size());
|
||||
REQUIRE(originalNode->getChildren().size() == copyNode->getChildren().size());
|
||||
|
||||
// Verify parent names match
|
||||
for (size_t i = 0; i < originalNode->getParents().size(); ++i) {
|
||||
REQUIRE(originalNode->getParents()[i]->getName() ==
|
||||
copyNode->getParents()[i]->getName());
|
||||
}
|
||||
|
||||
// Verify child names match
|
||||
for (size_t i = 0; i < originalNode->getChildren().size(); ++i) {
|
||||
REQUIRE(originalNode->getChildren()[i]->getName() ==
|
||||
copyNode->getChildren()[i]->getName());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
TEST_CASE("Test and empty Node", "[Network]")
|
||||
|
Reference in New Issue
Block a user