Complete proposal

This commit is contained in:
2025-07-07 00:37:16 +02:00
parent 97894cc49c
commit 62fa85a1b3
14 changed files with 492 additions and 290 deletions

View File

@@ -17,6 +17,14 @@ mansrcdir = docs/man3
mandestdir = /usr/local/share/man
sed_command_link = 's/e">LCOV -/e"><a href="https:\/\/rmontanana.github.io\/bayesnet">Back to manual<\/a> LCOV -/g'
sed_command_diagram = 's/Diagram"/Diagram" width="100%" height="100%" /g'
# Set the number of parallel jobs to the number of available processors minus 7
CPUS := $(shell getconf _NPROCESSORS_ONLN 2>/dev/null \
|| nproc --all 2>/dev/null \
|| sysctl -n hw.ncpu)
# --- Your desired job count: CPUs 7, but never less than 1 --------------
JOBS := $(shell n=$(CPUS); [ $${n} -gt 7 ] && echo $$((n-7)) || echo 1)
define ClearTests
@for t in $(test_targets); do \
@@ -36,6 +44,7 @@ define setup_target
@if [ -d $(2) ]; then rm -fr $(2); fi
@conan install . --build=missing -of $(2) -s build_type=$(1)
@cmake -S . -B $(2) -DCMAKE_TOOLCHAIN_FILE=$(2)/build/$(1)/generators/conan_toolchain.cmake -DCMAKE_BUILD_TYPE=$(1) -D$(3)
@echo ">>> Will build using $(JOBS) parallel jobs"
@echo ">>> Done"
endef
@@ -72,10 +81,10 @@ release: ## Setup release version using Conan
@$(call setup_target,"Release","$(f_release)","ENABLE_TESTING=OFF")
buildd: ## Build the debug targets
cmake --build $(f_debug) --config Debug -t $(app_targets) --parallel $(CMAKE_BUILD_PARALLEL_LEVEL)
cmake --build $(f_debug) --config Debug -t $(app_targets) --parallel $(JOBS)
buildr: ## Build the release targets
cmake --build $(f_release) --config Release -t $(app_targets) --parallel $(CMAKE_BUILD_PARALLEL_LEVEL)
cmake --build $(f_release) --config Release -t $(app_targets) --parallel $(JOBS)
# Install targets
@@ -105,7 +114,7 @@ opt = ""
test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
@echo ">>> Running BayesNet tests...";
@$(MAKE) clean-test
@cmake --build $(f_debug) -t $(test_targets) --parallel $(CMAKE_BUILD_PARALLEL_LEVEL)
@cmake --build $(f_debug) -t $(test_targets) --parallel $(JOBS)
@for t in $(test_targets); do \
echo ">>> Running $$t...";\
if [ -f $(f_debug)/tests/$$t ]; then \

View File

@@ -1,151 +0,0 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "IterativeProposal.h"
#include <iostream>
#include <cmath>
namespace bayesnet {
IterativeProposal::IterativeProposal(torch::Tensor& pDataset, std::vector<std::string>& features_, std::string& className_)
: Proposal(pDataset, features_, className_) {}
void IterativeProposal::setHyperparameters(const nlohmann::json& hyperparameters_) {
// First set base Proposal hyperparameters
Proposal::setHyperparameters(hyperparameters_);
// Then set IterativeProposal specific hyperparameters
if (hyperparameters_.contains("max_iterations")) {
convergence_params.maxIterations = hyperparameters_["max_iterations"];
}
if (hyperparameters_.contains("tolerance")) {
convergence_params.tolerance = hyperparameters_["tolerance"];
}
if (hyperparameters_.contains("convergence_metric")) {
convergence_params.convergenceMetric = hyperparameters_["convergence_metric"];
}
if (hyperparameters_.contains("verbose_convergence")) {
convergence_params.verbose = hyperparameters_["verbose_convergence"];
}
}
template<typename Classifier>
map<std::string, std::vector<int>> IterativeProposal::iterativeLocalDiscretization(
const torch::Tensor& y,
Classifier* classifier,
const torch::Tensor& dataset,
const std::vector<std::string>& features,
const std::string& className,
const map<std::string, std::vector<int>>& initialStates,
double smoothing
) {
// Phase 1: Initial discretization (same as original)
auto currentStates = fit_local_discretization(y);
double previousValue = -std::numeric_limits<double>::infinity();
double currentValue = 0.0;
if (convergence_params.verbose) {
std::cout << "Starting iterative local discretization with "
<< convergence_params.maxIterations << " max iterations" << std::endl;
}
for (int iteration = 0; iteration < convergence_params.maxIterations; ++iteration) {
if (convergence_params.verbose) {
std::cout << "Iteration " << (iteration + 1) << "/" << convergence_params.maxIterations << std::endl;
}
// Phase 2: Build model with current discretization
classifier->fit(dataset, features, className, currentStates, smoothing);
// Phase 3: Network-aware discretization refinement
auto newStates = localDiscretizationProposal(currentStates, classifier->getModel());
// Phase 4: Compute convergence metric
if (convergence_params.convergenceMetric == "likelihood") {
currentValue = computeLogLikelihood(classifier->getModel(), dataset);
} else if (convergence_params.convergenceMetric == "accuracy") {
// For accuracy, we would need validation data - for now use likelihood
currentValue = computeLogLikelihood(classifier->getModel(), dataset);
}
if (convergence_params.verbose) {
std::cout << " " << convergence_params.convergenceMetric << ": " << currentValue << std::endl;
}
// Check convergence
if (iteration > 0 && hasConverged(currentValue, previousValue, convergence_params.convergenceMetric)) {
if (convergence_params.verbose) {
std::cout << "Converged after " << (iteration + 1) << " iterations" << std::endl;
}
currentStates = newStates;
break;
}
// Update for next iteration
currentStates = newStates;
previousValue = currentValue;
}
return currentStates;
}
double IterativeProposal::computeLogLikelihood(const Network& model, const torch::Tensor& dataset) {
double logLikelihood = 0.0;
int n_samples = dataset.size(0);
int n_features = dataset.size(1);
for (int i = 0; i < n_samples; ++i) {
double sampleLogLikelihood = 0.0;
// Get class value for this sample
int classValue = dataset[i][n_features - 1].item<int>();
// Compute log-likelihood for each feature given its parents and class
for (const auto& node : model.getNodes()) {
if (node.getName() == model.getClassName()) {
// For class node, add log P(class)
auto classCounts = node.getCPT();
double classProb = classCounts[classValue] / dataset.size(0);
sampleLogLikelihood += std::log(std::max(classProb, 1e-10));
} else {
// For feature nodes, add log P(feature | parents, class)
int featureIdx = std::distance(model.getFeatures().begin(),
std::find(model.getFeatures().begin(),
model.getFeatures().end(),
node.getName()));
int featureValue = dataset[i][featureIdx].item<int>();
// Simplified probability computation - in practice would need full CPT lookup
double featureProb = 0.1; // Placeholder - would compute from CPT
sampleLogLikelihood += std::log(std::max(featureProb, 1e-10));
}
}
logLikelihood += sampleLogLikelihood;
}
return logLikelihood;
}
bool IterativeProposal::hasConverged(double currentValue, double previousValue, const std::string& metric) {
if (metric == "likelihood") {
// For likelihood, check if improvement is less than tolerance
double improvement = currentValue - previousValue;
return improvement < convergence_params.tolerance;
} else if (metric == "accuracy") {
// For accuracy, check if change is less than tolerance
double change = std::abs(currentValue - previousValue);
return change < convergence_params.tolerance;
}
return false;
}
// Explicit template instantiation for common classifier types
template map<std::string, std::vector<int>> IterativeProposal::iterativeLocalDiscretization<Classifier>(
const torch::Tensor&, Classifier*, const torch::Tensor&, const std::vector<std::string>&,
const std::string&, const map<std::string, std::vector<int>>&, double);
}

View File

@@ -1,50 +0,0 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef ITERATIVE_PROPOSAL_H
#define ITERATIVE_PROPOSAL_H
#include "Proposal.h"
#include "bayesnet/network/Network.h"
#include <nlohmann/json.hpp>
namespace bayesnet {
class IterativeProposal : public Proposal {
public:
IterativeProposal(torch::Tensor& pDataset, std::vector<std::string>& features_, std::string& className_);
void setHyperparameters(const nlohmann::json& hyperparameters_);
protected:
template<typename Classifier>
map<std::string, std::vector<int>> iterativeLocalDiscretization(
const torch::Tensor& y,
Classifier* classifier,
const torch::Tensor& dataset,
const std::vector<std::string>& features,
const std::string& className,
const map<std::string, std::vector<int>>& initialStates,
double smoothing = 1.0
);
// Convergence parameters
struct {
int maxIterations = 10;
double tolerance = 1e-6;
std::string convergenceMetric = "likelihood"; // "likelihood" or "accuracy"
bool verbose = false;
} convergence_params;
nlohmann::json validHyperparameters_iter = {
"max_iterations", "tolerance", "convergence_metric", "verbose_convergence"
};
private:
double computeLogLikelihood(const Network& model, const torch::Tensor& dataset);
bool hasConverged(double currentValue, double previousValue, const std::string& metric);
};
}
#endif

View File

@@ -33,12 +33,13 @@ namespace bayesnet {
className = className_;
Xf = X_;
y = y_;
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network
// Use iterative local discretization instead of the two-phase approach
states = iterativeLocalDiscretization(y, this, dataset, features, className, states_, smoothing);
// Final fit with converged discretization
KDB::fit(dataset, features, className, states, smoothing);
states = localDiscretizationProposal(states, model);
return *this;
}
torch::Tensor KDBLd::predict(torch::Tensor& X)

View File

@@ -5,6 +5,9 @@
// ***************************************************************
#include "Proposal.h"
#include <iostream>
#include <cmath>
#include <limits>
namespace bayesnet {
Proposal::Proposal(torch::Tensor& dataset_, std::vector<std::string>& features_, std::string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_)
@@ -38,6 +41,15 @@ namespace bayesnet {
throw std::invalid_argument("Invalid discretization algorithm: " + algorithm.get<std::string>());
}
}
// Convergence parameters
if (hyperparameters.contains("max_iterations")) {
convergence_params.maxIterations = hyperparameters["max_iterations"];
hyperparameters.erase("max_iterations");
}
if (hyperparameters.contains("verbose_convergence")) {
convergence_params.verbose = hyperparameters["verbose_convergence"];
hyperparameters.erase("verbose_convergence");
}
if (!hyperparameters.empty()) {
throw std::invalid_argument("Invalid hyperparameters for Proposal: " + hyperparameters.dump());
}
@@ -163,4 +175,94 @@ namespace bayesnet {
}
return yy;
}
template<typename Classifier>
map<std::string, std::vector<int>> Proposal::iterativeLocalDiscretization(
const torch::Tensor& y,
Classifier* classifier,
const torch::Tensor& dataset,
const std::vector<std::string>& features,
const std::string& className,
const map<std::string, std::vector<int>>& initialStates,
Smoothing_t smoothing
)
{
// Phase 1: Initial discretization (same as original)
auto currentStates = fit_local_discretization(y);
auto previousModel = Network();
if (convergence_params.verbose) {
std::cout << "Starting iterative local discretization with "
<< convergence_params.maxIterations << " max iterations" << std::endl;
}
for (int iteration = 0; iteration < convergence_params.maxIterations; ++iteration) {
if (convergence_params.verbose) {
std::cout << "Iteration " << (iteration + 1) << "/" << convergence_params.maxIterations << std::endl;
}
// Phase 2: Build model with current discretization
classifier->fit(dataset, features, className, currentStates, smoothing);
// Phase 3: Network-aware discretization refinement
currentStates = localDiscretizationProposal(currentStates, classifier->model);
// Check convergence
if (iteration > 0 && previousModel == classifier->model) {
if (convergence_params.verbose) {
std::cout << "Converged after " << (iteration + 1) << " iterations" << std::endl;
}
break;
}
// Update for next iteration
previousModel = classifier->model;
}
return currentStates;
}
double Proposal::computeLogLikelihood(Network& model, const torch::Tensor& dataset)
{
double logLikelihood = 0.0;
int n_samples = dataset.size(0);
int n_features = dataset.size(1);
for (int i = 0; i < n_samples; ++i) {
double sampleLogLikelihood = 0.0;
// Get class value for this sample
int classValue = dataset[i][n_features - 1].item<int>();
// Compute log-likelihood for each feature given its parents and class
for (const auto& node : model.getNodes()) {
if (node.first == model.getClassName()) {
// For class node, add log P(class)
auto classCounts = node.second->getCPT();
double classProb = classCounts[classValue].item<double>() / dataset.size(0);
sampleLogLikelihood += std::log(std::max(classProb, 1e-10));
} else {
// For feature nodes, add log P(feature | parents, class)
int featureIdx = std::distance(model.getFeatures().begin(),
std::find(model.getFeatures().begin(),
model.getFeatures().end(),
node.first));
int featureValue = dataset[i][featureIdx].item<int>();
// Simplified probability computation - in practice would need full CPT lookup
double featureProb = 0.1; // Placeholder - would compute from CPT
sampleLogLikelihood += std::log(std::max(featureProb, 1e-10));
}
}
logLikelihood += sampleLogLikelihood;
}
return logLikelihood;
}
// Explicit template instantiation for common classifier types
// template map<std::string, std::vector<int>> Proposal::iterativeLocalDiscretization<Classifier>(
// const torch::Tensor&, Classifier*, const torch::Tensor&, const std::vector<std::string>&,
// const std::string&, const map<std::string, std::vector<int>>&, Smoothing_t);
}

View File

@@ -25,18 +25,43 @@ namespace bayesnet {
torch::Tensor prepareX(torch::Tensor& X);
map<std::string, std::vector<int>> localDiscretizationProposal(const map<std::string, std::vector<int>>& states, Network& model);
map<std::string, std::vector<int>> fit_local_discretization(const torch::Tensor& y);
// Iterative discretization method
template<typename Classifier>
map<std::string, std::vector<int>> iterativeLocalDiscretization(
const torch::Tensor& y,
Classifier* classifier,
const torch::Tensor& dataset,
const std::vector<std::string>& features,
const std::string& className,
const map<std::string, std::vector<int>>& initialStates,
const Smoothing_t smoothing
);
torch::Tensor Xf; // X continuous nxm tensor
torch::Tensor y; // y discrete nx1 tensor
map<std::string, std::unique_ptr<mdlp::Discretizer>> discretizers;
// MDLP parameters
struct {
size_t min_length = 3; // Minimum length of the interval to consider it in mdlp
float proposed_cuts = 0.0; // Proposed cuts for the Discretization algorithm
int max_depth = std::numeric_limits<int>::max(); // Maximum depth of the MDLP tree
} ld_params;
nlohmann::json validHyperparameters_ld = { "ld_algorithm", "ld_proposed_cuts", "mdlp_min_length", "mdlp_max_depth" };
// Convergence parameters
struct {
int maxIterations = 10;
bool verbose = false;
} convergence_params;
nlohmann::json validHyperparameters_ld = {
"ld_algorithm", "ld_proposed_cuts", "mdlp_min_length", "mdlp_max_depth",
"max_iterations", "verbose_convergence"
};
private:
std::vector<int> factorize(const std::vector<std::string>& labels_t);
double computeLogLikelihood(Network& model, const torch::Tensor& dataset);
torch::Tensor& pDataset; // (n+1)xm tensor
std::vector<std::string>& pFeatures;
std::string& pClassName;

View File

@@ -15,14 +15,14 @@ namespace bayesnet {
className = className_;
Xf = X_;
y = y_;
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
// Use iterative local discretization instead of the two-phase approach
states = iterativeLocalDiscretization(y, this, dataset, features, className, states_, smoothing);
// Final fit with converged discretization
TAN::fit(dataset, features, className, states, smoothing);
states = localDiscretizationProposal(states, model);
return *this;
}
torch::Tensor TANLd::predict(torch::Tensor& X)
{

View File

@@ -1,45 +0,0 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "TANLdi.h"
namespace bayesnet {
TANLdi::TANLdIterative() : TAN(), IterativeProposal(dataset, features, className) {}
TANLdi& TANLdIterative::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
{
checkInput(X_, y_);
features = features_;
className = className_;
Xf = X_;
y = y_;
// Use iterative local discretization instead of the two-phase approach
states = iterativeLocalDiscretization(y, this, dataset, features, className, states_, smoothing);
// Final fit with converged discretization
TAN::fit(dataset, features, className, states, smoothing);
return *this;
}
torch::Tensor TANLdi::predict(torch::Tensor& X)
{
auto Xt = prepareX(X);
return TAN::predict(Xt);
}
torch::Tensor TANLdi::predict_proba(torch::Tensor& X)
{
auto Xt = prepareX(X);
return TAN::predict_proba(Xt);
}
std::vector<std::string> TANLdi::graph(const std::string& name) const
{
return TAN::graph(name);
}
}

View File

@@ -1,24 +0,0 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef TANLDI_H
#define TANLDI_H
#include "TAN.h"
#include "IterativeProposal.h"
namespace bayesnet {
class TANLdi : public TAN, public IterativeProposal {
private:
public:
TANLdi();
virtual ~TANLdi() = default;
TANLdi& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
std::vector<std::string> graph(const std::string& name = "TANLdi") const override;
torch::Tensor predict(torch::Tensor& X) override;
torch::Tensor predict_proba(torch::Tensor& X) override;
};
}
#endif // !TANLDI_H

View File

@@ -17,14 +17,90 @@ namespace bayesnet {
Network::Network() : fitted{ false }, classNumStates{ 0 }
{
}
Network::Network(const Network& other) : features(other.features), className(other.className), classNumStates(other.getClassNumStates()),
fitted(other.fitted), samples(other.samples)
Network::Network(const Network& other)
: features(other.features), className(other.className), classNumStates(other.classNumStates),
fitted(other.fitted)
{
if (samples.defined())
samples = samples.clone();
// Deep copy the samples tensor
if (other.samples.defined()) {
samples = other.samples.clone();
}
// First, create all nodes (without relationships)
for (const auto& node : other.nodes) {
nodes[node.first] = std::make_unique<Node>(*node.second);
}
// Second, reconstruct the relationships between nodes
for (const auto& node : other.nodes) {
const std::string& nodeName = node.first;
Node* originalNode = node.second.get();
Node* newNode = nodes[nodeName].get();
// Reconstruct parent relationships
for (Node* parent : originalNode->getParents()) {
const std::string& parentName = parent->getName();
if (nodes.find(parentName) != nodes.end()) {
newNode->addParent(nodes[parentName].get());
}
}
// Reconstruct child relationships
for (Node* child : originalNode->getChildren()) {
const std::string& childName = child->getName();
if (nodes.find(childName) != nodes.end()) {
newNode->addChild(nodes[childName].get());
}
}
}
}
Network& Network::operator=(const Network& other)
{
if (this != &other) {
// Clear existing state
nodes.clear();
features = other.features;
className = other.className;
classNumStates = other.classNumStates;
fitted = other.fitted;
// Deep copy the samples tensor
if (other.samples.defined()) {
samples = other.samples.clone();
} else {
samples = torch::Tensor();
}
// First, create all nodes (without relationships)
for (const auto& node : other.nodes) {
nodes[node.first] = std::make_unique<Node>(*node.second);
}
// Second, reconstruct the relationships between nodes
for (const auto& node : other.nodes) {
const std::string& nodeName = node.first;
Node* originalNode = node.second.get();
Node* newNode = nodes[nodeName].get();
// Reconstruct parent relationships
for (Node* parent : originalNode->getParents()) {
const std::string& parentName = parent->getName();
if (nodes.find(parentName) != nodes.end()) {
newNode->addParent(nodes[parentName].get());
}
}
// Reconstruct child relationships
for (Node* child : originalNode->getChildren()) {
const std::string& childName = child->getName();
if (nodes.find(childName) != nodes.end()) {
newNode->addChild(nodes[childName].get());
}
}
}
}
return *this;
}
void Network::initialize()
{
@@ -503,4 +579,41 @@ namespace bayesnet {
}
return oss.str();
}
bool Network::operator==(const Network& other) const
{
// Compare number of nodes
if (nodes.size() != other.nodes.size()) {
return false;
}
// Compare if all node names exist in both networks
for (const auto& node : nodes) {
if (other.nodes.find(node.first) == other.nodes.end()) {
return false;
}
}
// Compare edges (topology)
auto thisEdges = getEdges();
auto otherEdges = other.getEdges();
// Compare number of edges
if (thisEdges.size() != otherEdges.size()) {
return false;
}
// Sort both edge lists for comparison
std::sort(thisEdges.begin(), thisEdges.end());
std::sort(otherEdges.begin(), otherEdges.end());
// Compare each edge
for (size_t i = 0; i < thisEdges.size(); ++i) {
if (thisEdges[i] != otherEdges[i]) {
return false;
}
}
return true;
}
}

View File

@@ -17,7 +17,8 @@ namespace bayesnet {
class Network {
public:
Network();
explicit Network(const Network&);
Network(const Network& other);
Network& operator=(const Network& other);
~Network() = default;
torch::Tensor& getSamples();
void addNode(const std::string&);
@@ -47,6 +48,7 @@ namespace bayesnet {
void initialize();
std::string dump_cpt() const;
inline std::string version() { return { project_version.begin(), project_version.end() }; }
bool operator==(const Network& other) const;
private:
std::map<std::string, std::unique_ptr<Node>> nodes;
bool fitted;

View File

@@ -13,6 +13,41 @@ namespace bayesnet {
: name(name)
{
}
Node::Node(const Node& other)
: name(other.name), numStates(other.numStates), dimensions(other.dimensions)
{
// Deep copy the CPT tensor
if (other.cpTable.defined()) {
cpTable = other.cpTable.clone();
}
// Note: parent and children pointers are NOT copied here
// They will be reconstructed by the Network copy constructor
// to maintain proper object relationships
}
Node& Node::operator=(const Node& other)
{
if (this != &other) {
name = other.name;
numStates = other.numStates;
dimensions = other.dimensions;
// Deep copy the CPT tensor
if (other.cpTable.defined()) {
cpTable = other.cpTable.clone();
} else {
cpTable = torch::Tensor();
}
// Clear existing relationships
parents.clear();
children.clear();
// Note: parent and children pointers are NOT copied here
// They must be reconstructed to maintain proper object relationships
}
return *this;
}
void Node::clear()
{
parents.clear();

View File

@@ -14,6 +14,9 @@ namespace bayesnet {
class Node {
public:
explicit Node(const std::string&);
Node(const Node& other);
Node& operator=(const Node& other);
~Node() = default;
void clear();
void addParent(Node*);
void addChild(Node*);

View File

@@ -338,6 +338,188 @@ TEST_CASE("Test Bayesian Network", "[Network]")
REQUIRE_THROWS_AS(net5.addEdge("A", "B"), std::logic_error);
REQUIRE_THROWS_WITH(net5.addEdge("A", "B"), "Cannot add edge to a fitted network. Initialize first.");
}
SECTION("Test assignment operator")
{
INFO("Test assignment operator");
// Create original network
auto net1 = bayesnet::Network();
buildModel(net1, raw.features, raw.className);
net1.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states, raw.smoothing);
// Create empty network and assign
auto net2 = bayesnet::Network();
net2.addNode("TempNode"); // Add something to make sure it gets cleared
net2 = net1;
// Verify they are equal
REQUIRE(net1.getFeatures() == net2.getFeatures());
REQUIRE(net1.getEdges() == net2.getEdges());
REQUIRE(net1.getNumEdges() == net2.getNumEdges());
REQUIRE(net1.getStates() == net2.getStates());
REQUIRE(net1.getClassName() == net2.getClassName());
REQUIRE(net1.getClassNumStates() == net2.getClassNumStates());
REQUIRE(net1.getSamples().size(0) == net2.getSamples().size(0));
REQUIRE(net1.getSamples().size(1) == net2.getSamples().size(1));
REQUIRE(net1.getNodes().size() == net2.getNodes().size());
// Verify topology equality
REQUIRE(net1 == net2);
// Verify they are separate objects by modifying one
net2.initialize();
net2.addNode("OnlyInNet2");
REQUIRE(net1.getNodes().size() != net2.getNodes().size());
REQUIRE_FALSE(net1 == net2);
}
SECTION("Test self assignment")
{
INFO("Test self assignment");
buildModel(net, raw.features, raw.className);
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states, raw.smoothing);
int original_edges = net.getNumEdges();
int original_nodes = net.getNodes().size();
// Self assignment should not corrupt the network
net = net;
REQUIRE(net.getNumEdges() == original_edges);
REQUIRE(net.getNodes().size() == original_nodes);
REQUIRE(net.getFeatures() == raw.features);
REQUIRE(net.getClassName() == raw.className);
}
SECTION("Test operator== topology comparison")
{
INFO("Test operator== topology comparison");
// Test 1: Two identical networks
auto net1 = bayesnet::Network();
auto net2 = bayesnet::Network();
net1.addNode("A");
net1.addNode("B");
net1.addNode("C");
net1.addEdge("A", "B");
net1.addEdge("B", "C");
net2.addNode("A");
net2.addNode("B");
net2.addNode("C");
net2.addEdge("A", "B");
net2.addEdge("B", "C");
REQUIRE(net1 == net2);
// Test 2: Different nodes
auto net3 = bayesnet::Network();
net3.addNode("A");
net3.addNode("D"); // Different node
REQUIRE_FALSE(net1 == net3);
// Test 3: Same nodes, different edges
auto net4 = bayesnet::Network();
net4.addNode("A");
net4.addNode("B");
net4.addNode("C");
net4.addEdge("A", "C"); // Different topology
net4.addEdge("B", "C");
REQUIRE_FALSE(net1 == net4);
// Test 4: Empty networks
auto net5 = bayesnet::Network();
auto net6 = bayesnet::Network();
REQUIRE(net5 == net6);
// Test 5: Same topology, different edge order
auto net7 = bayesnet::Network();
net7.addNode("A");
net7.addNode("B");
net7.addNode("C");
net7.addEdge("B", "C"); // Add edges in different order
net7.addEdge("A", "B");
REQUIRE(net1 == net7); // Should still be equal
}
SECTION("Test RAII compliance with smart pointers")
{
INFO("Test RAII compliance with smart pointers");
std::unique_ptr<bayesnet::Network> net1 = std::make_unique<bayesnet::Network>();
buildModel(*net1, raw.features, raw.className);
net1->fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states, raw.smoothing);
// Test that copy constructor works with smart pointers
std::unique_ptr<bayesnet::Network> net2 = std::make_unique<bayesnet::Network>(*net1);
REQUIRE(*net1 == *net2);
REQUIRE(net1->getNumEdges() == net2->getNumEdges());
REQUIRE(net1->getNodes().size() == net2->getNodes().size());
// Destroy original
net1.reset();
// net2 should still be valid and functional
REQUIRE_NOTHROW(net2->addNode("NewNode"));
REQUIRE(net2->getNodes().count("NewNode") == 1);
// Test predictions still work
std::vector<std::vector<int>> test = { {1, 2, 0, 1, 1} };
REQUIRE_NOTHROW(net2->predict(test));
}
SECTION("Test complex topology copy")
{
INFO("Test complex topology copy");
auto original = bayesnet::Network();
// Create a more complex network
original.addNode("Root");
original.addNode("Child1");
original.addNode("Child2");
original.addNode("Grandchild1");
original.addNode("Grandchild2");
original.addNode("Grandchild3");
original.addEdge("Root", "Child1");
original.addEdge("Root", "Child2");
original.addEdge("Child1", "Grandchild1");
original.addEdge("Child1", "Grandchild2");
original.addEdge("Child2", "Grandchild3");
// Copy it
auto copy = original;
// Verify topology is identical
REQUIRE(original == copy);
REQUIRE(original.getNodes().size() == copy.getNodes().size());
REQUIRE(original.getNumEdges() == copy.getNumEdges());
// Verify edges are properly reconstructed
auto originalEdges = original.getEdges();
auto copyEdges = copy.getEdges();
REQUIRE(originalEdges.size() == copyEdges.size());
// Verify node relationships are properly copied
for (const auto& nodePair : original.getNodes()) {
const std::string& nodeName = nodePair.first;
auto* originalNode = nodePair.second.get();
auto* copyNode = copy.getNodes().at(nodeName).get();
REQUIRE(originalNode->getParents().size() == copyNode->getParents().size());
REQUIRE(originalNode->getChildren().size() == copyNode->getChildren().size());
// Verify parent names match
for (size_t i = 0; i < originalNode->getParents().size(); ++i) {
REQUIRE(originalNode->getParents()[i]->getName() ==
copyNode->getParents()[i]->getName());
}
// Verify child names match
for (size_t i = 0; i < originalNode->getChildren().size(); ++i) {
REQUIRE(originalNode->getChildren()[i]->getName() ==
copyNode->getChildren()[i]->getName());
}
}
}
}
TEST_CASE("Test and empty Node", "[Network]")