Add tests to 90% coverage

This commit is contained in:
2025-03-14 14:53:22 +01:00
parent c234308701
commit 400967b4e3
14 changed files with 943 additions and 463 deletions

View File

@@ -4,83 +4,111 @@
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <type_traits>
#include <catch2/catch_test_macros.hpp>
#include <catch2/catch_approx.hpp>
#include <catch2/catch_test_macros.hpp>
#include <catch2/generators/catch_generators.hpp>
#include <catch2/matchers/catch_matchers.hpp>
#include "TestUtils.h"
#include "bayesnet/classifiers/KDB.h"
#include "bayesnet/classifiers/TAN.h"
#include "bayesnet/classifiers/SPODE.h"
#include "bayesnet/classifiers/XSPODE.h"
#include "bayesnet/classifiers/TANLd.h"
#include "bayesnet/classifiers/KDBLd.h"
#include "bayesnet/classifiers/SPODE.h"
#include "bayesnet/classifiers/SPODELd.h"
#include "bayesnet/classifiers/TAN.h"
#include "bayesnet/classifiers/TANLd.h"
#include "bayesnet/classifiers/XSPODE.h"
#include "bayesnet/ensembles/AODE.h"
#include "bayesnet/ensembles/AODELd.h"
#include "bayesnet/ensembles/BoostAODE.h"
#include "TestUtils.h"
const std::string ACTUAL_VERSION = "1.0.6";
TEST_CASE("Test Bayesian Classifiers score & version", "[Models]")
{
map <pair<std::string, std::string>, float> scores{
// Diabetes
{{"diabetes", "AODE"}, 0.82161}, {{"diabetes", "KDB"}, 0.852865}, {{"diabetes", "XSPODE"}, 0.631510437f}, {{"diabetes", "SPODE"}, 0.802083}, {{"diabetes", "TAN"}, 0.821615},
{{"diabetes", "AODELd"}, 0.8125f}, {{"diabetes", "KDBLd"}, 0.80208f}, {{"diabetes", "SPODELd"}, 0.7890625f}, {{"diabetes", "TANLd"}, 0.803385437f}, {{"diabetes", "BoostAODE"}, 0.83984f},
// Ecoli
{{"ecoli", "AODE"}, 0.889881}, {{"ecoli", "KDB"}, 0.889881}, {{"ecoli", "XSPODE"}, 0.696428597f}, {{"ecoli", "SPODE"}, 0.880952}, {{"ecoli", "TAN"}, 0.892857},
{{"ecoli", "AODELd"}, 0.875f}, {{"ecoli", "KDBLd"}, 0.880952358f}, {{"ecoli", "SPODELd"}, 0.839285731f}, {{"ecoli", "TANLd"}, 0.848214269f}, {{"ecoli", "BoostAODE"}, 0.89583f},
// Glass
{{"glass", "AODE"}, 0.79439}, {{"glass", "KDB"}, 0.827103}, {{"glass", "XSPODE"}, 0.775701}, {{"glass", "SPODE"}, 0.775701}, {{"glass", "TAN"}, 0.827103},
{{"glass", "AODELd"}, 0.799065411f}, {{"glass", "KDBLd"}, 0.82710278f}, {{"glass", "SPODELd"}, 0.780373812f}, {{"glass", "TANLd"}, 0.869158864f}, {{"glass", "BoostAODE"}, 0.84579f},
// Iris
{{"iris", "AODE"}, 0.973333}, {{"iris", "KDB"}, 0.973333}, {{"iris", "XSPODE"}, 0.853333354f}, {{"iris", "SPODE"}, 0.973333}, {{"iris", "TAN"}, 0.973333},
{{"iris", "AODELd"}, 0.973333}, {{"iris", "KDBLd"}, 0.973333}, {{"iris", "SPODELd"}, 0.96f}, {{"iris", "TANLd"}, 0.97333f}, {{"iris", "BoostAODE"}, 0.98f}
};
std::map<std::string, bayesnet::BaseClassifier*> models{
{"AODE", new bayesnet::AODE()}, {"AODELd", new bayesnet::AODELd()},
{"BoostAODE", new bayesnet::BoostAODE()},
{"KDB", new bayesnet::KDB(2)}, {"KDBLd", new bayesnet::KDBLd(2)},
{"XSPODE", new bayesnet::XSpode(1)}, {"SPODE", new bayesnet::SPODE(1)}, {"SPODELd", new bayesnet::SPODELd(1)},
{"TAN", new bayesnet::TAN()}, {"TANLd", new bayesnet::TANLd()}
};
TEST_CASE("Test Bayesian Classifiers score & version", "[Models]") {
map<pair<std::string, std::string>, float> scores{// Diabetes
{{"diabetes", "AODE"}, 0.82161},
{{"diabetes", "KDB"}, 0.852865},
{{"diabetes", "XSPODE"}, 0.631510437f},
{{"diabetes", "SPODE"}, 0.802083},
{{"diabetes", "TAN"}, 0.821615},
{{"diabetes", "AODELd"}, 0.8125f},
{{"diabetes", "KDBLd"}, 0.80208f},
{{"diabetes", "SPODELd"}, 0.7890625f},
{{"diabetes", "TANLd"}, 0.803385437f},
{{"diabetes", "BoostAODE"}, 0.83984f},
// Ecoli
{{"ecoli", "AODE"}, 0.889881},
{{"ecoli", "KDB"}, 0.889881},
{{"ecoli", "XSPODE"}, 0.696428597f},
{{"ecoli", "SPODE"}, 0.880952},
{{"ecoli", "TAN"}, 0.892857},
{{"ecoli", "AODELd"}, 0.875f},
{{"ecoli", "KDBLd"}, 0.880952358f},
{{"ecoli", "SPODELd"}, 0.839285731f},
{{"ecoli", "TANLd"}, 0.848214269f},
{{"ecoli", "BoostAODE"}, 0.89583f},
// Glass
{{"glass", "AODE"}, 0.79439},
{{"glass", "KDB"}, 0.827103},
{{"glass", "XSPODE"}, 0.775701},
{{"glass", "SPODE"}, 0.775701},
{{"glass", "TAN"}, 0.827103},
{{"glass", "AODELd"}, 0.799065411f},
{{"glass", "KDBLd"}, 0.82710278f},
{{"glass", "SPODELd"}, 0.780373812f},
{{"glass", "TANLd"}, 0.869158864f},
{{"glass", "BoostAODE"}, 0.84579f},
// Iris
{{"iris", "AODE"}, 0.973333},
{{"iris", "KDB"}, 0.973333},
{{"iris", "XSPODE"}, 0.853333354f},
{{"iris", "SPODE"}, 0.973333},
{{"iris", "TAN"}, 0.973333},
{{"iris", "AODELd"}, 0.973333},
{{"iris", "KDBLd"}, 0.973333},
{{"iris", "SPODELd"}, 0.96f},
{{"iris", "TANLd"}, 0.97333f},
{{"iris", "BoostAODE"}, 0.98f}};
std::map<std::string, bayesnet::BaseClassifier *> models{{"AODE", new bayesnet::AODE()},
{"AODELd", new bayesnet::AODELd()},
{"BoostAODE", new bayesnet::BoostAODE()},
{"KDB", new bayesnet::KDB(2)},
{"KDBLd", new bayesnet::KDBLd(2)},
{"XSPODE", new bayesnet::XSpode(1)},
{"SPODE", new bayesnet::SPODE(1)},
{"SPODELd", new bayesnet::SPODELd(1)},
{"TAN", new bayesnet::TAN()},
{"TANLd", new bayesnet::TANLd()}};
std::string name = GENERATE("AODE", "AODELd", "KDB", "KDBLd", "SPODE", "XSPODE", "SPODELd", "TAN", "TANLd");
auto clf = models[name];
SECTION("Test " + name + " classifier")
{
for (const std::string& file_name : { "glass", "iris", "ecoli", "diabetes" }) {
SECTION("Test " + name + " classifier") {
for (const std::string &file_name : {"glass", "iris", "ecoli", "diabetes"}) {
auto clf = models[name];
auto discretize = name.substr(name.length() - 2) != "Ld";
auto raw = RawDatasets(file_name, discretize);
clf->fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
auto score = clf->score(raw.Xt, raw.yt);
// std::cout << "Classifier: " << name << " File: " << file_name << " Score: " << score << " expected = " << scores[{file_name, name}] << std::endl;
// std::cout << "Classifier: " << name << " File: " << file_name << " Score: " << score << " expected = " <<
// scores[{file_name, name}] << std::endl;
INFO("Classifier: " << name << " File: " << file_name);
REQUIRE(score == Catch::Approx(scores[{file_name, name}]).epsilon(raw.epsilon));
REQUIRE(clf->getStatus() == bayesnet::NORMAL);
}
}
SECTION("Library check version")
{
SECTION("Library check version") {
INFO("Checking version of " << name << " classifier");
REQUIRE(clf->getVersion() == ACTUAL_VERSION);
}
delete clf;
}
TEST_CASE("Models features & Graph", "[Models]")
{
auto graph = std::vector<std::string>({ "digraph BayesNet {\nlabel=<BayesNet Test>\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n",
"\"class\" [shape=circle, fontcolor=red, fillcolor=lightblue, style=filled ] \n",
"\"class\" -> \"sepallength\"", "\"class\" -> \"sepalwidth\"", "\"class\" -> \"petallength\"", "\"class\" -> \"petalwidth\"", "\"petallength\" [shape=circle] \n",
"\"petallength\" -> \"sepallength\"", "\"petalwidth\" [shape=circle] \n", "\"sepallength\" [shape=circle] \n",
"\"sepallength\" -> \"sepalwidth\"", "\"sepalwidth\" [shape=circle] \n", "\"sepalwidth\" -> \"petalwidth\"", "}\n"
}
);
SECTION("Test TAN")
{
TEST_CASE("Models features & Graph", "[Models]") {
auto graph = std::vector<std::string>(
{"digraph BayesNet {\nlabel=<BayesNet Test>\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n",
"\"class\" [shape=circle, fontcolor=red, fillcolor=lightblue, style=filled ] \n",
"\"class\" -> \"sepallength\"", "\"class\" -> \"sepalwidth\"", "\"class\" -> \"petallength\"",
"\"class\" -> \"petalwidth\"", "\"petallength\" [shape=circle] \n", "\"petallength\" -> \"sepallength\"",
"\"petalwidth\" [shape=circle] \n", "\"sepallength\" [shape=circle] \n", "\"sepallength\" -> \"sepalwidth\"",
"\"sepalwidth\" [shape=circle] \n", "\"sepalwidth\" -> \"petalwidth\"", "}\n"});
SECTION("Test TAN") {
auto raw = RawDatasets("iris", true);
auto clf = bayesnet::TAN();
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
@@ -88,11 +116,12 @@ TEST_CASE("Models features & Graph", "[Models]")
REQUIRE(clf.getNumberOfEdges() == 7);
REQUIRE(clf.getNumberOfStates() == 19);
REQUIRE(clf.getClassNumStates() == 3);
REQUIRE(clf.show() == std::vector<std::string>{"class -> sepallength, sepalwidth, petallength, petalwidth, ", "petallength -> sepallength, ", "petalwidth -> ", "sepallength -> sepalwidth, ", "sepalwidth -> petalwidth, "});
REQUIRE(clf.show() == std::vector<std::string>{"class -> sepallength, sepalwidth, petallength, petalwidth, ",
"petallength -> sepallength, ", "petalwidth -> ",
"sepallength -> sepalwidth, ", "sepalwidth -> petalwidth, "});
REQUIRE(clf.graph("Test") == graph);
}
SECTION("Test TANLd")
{
SECTION("Test TANLd") {
auto clf = bayesnet::TANLd();
auto raw = RawDatasets("iris", false);
clf.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
@@ -100,12 +129,13 @@ TEST_CASE("Models features & Graph", "[Models]")
REQUIRE(clf.getNumberOfEdges() == 7);
REQUIRE(clf.getNumberOfStates() == 27);
REQUIRE(clf.getClassNumStates() == 3);
REQUIRE(clf.show() == std::vector<std::string>{"class -> sepallength, sepalwidth, petallength, petalwidth, ", "petallength -> sepallength, ", "petalwidth -> ", "sepallength -> sepalwidth, ", "sepalwidth -> petalwidth, "});
REQUIRE(clf.show() == std::vector<std::string>{"class -> sepallength, sepalwidth, petallength, petalwidth, ",
"petallength -> sepallength, ", "petalwidth -> ",
"sepallength -> sepalwidth, ", "sepalwidth -> petalwidth, "});
REQUIRE(clf.graph("Test") == graph);
}
}
TEST_CASE("Get num features & num edges", "[Models]")
{
TEST_CASE("Get num features & num edges", "[Models]") {
auto raw = RawDatasets("iris", true);
auto clf = bayesnet::KDB(2);
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
@@ -113,60 +143,49 @@ TEST_CASE("Get num features & num edges", "[Models]")
REQUIRE(clf.getNumberOfEdges() == 8);
}
TEST_CASE("Model predict_proba", "[Models]")
{
TEST_CASE("Model predict_proba", "[Models]") {
std::string model = GENERATE("TAN", "SPODE", "BoostAODEproba", "BoostAODEvoting");
auto res_prob_tan = std::vector<std::vector<double>>({
{ 0.00375671, 0.994457, 0.00178621 },
{ 0.00137462, 0.992734, 0.00589123 },
{ 0.00137462, 0.992734, 0.00589123 },
{ 0.00137462, 0.992734, 0.00589123 },
{ 0.00218225, 0.992877, 0.00494094 },
{ 0.00494209, 0.0978534, 0.897205 },
{ 0.0054192, 0.974275, 0.0203054 },
{ 0.00433012, 0.985054, 0.0106159 },
{ 0.000860806, 0.996922, 0.00221698 }
});
auto res_prob_spode = std::vector<std::vector<double>>({
{0.00419032, 0.994247, 0.00156265},
{0.00172808, 0.993433, 0.00483862},
{0.00172808, 0.993433, 0.00483862},
{0.00172808, 0.993433, 0.00483862},
{0.00279211, 0.993737, 0.00347077},
{0.0120674, 0.357909, 0.630024},
{0.00386239, 0.913919, 0.0822185},
{0.0244389, 0.966447, 0.00911374},
{0.003135, 0.991799, 0.0050661}
});
auto res_prob_baode = std::vector<std::vector<double>>({
{0.0112349, 0.962274, 0.0264907},
{0.00371025, 0.950592, 0.0456973},
{0.00371025, 0.950592, 0.0456973},
{0.00371025, 0.950592, 0.0456973},
{0.00369275, 0.84967, 0.146637},
{0.0252205, 0.113564, 0.861215},
{0.0284828, 0.770524, 0.200993},
{0.0213182, 0.857189, 0.121493},
{0.00868436, 0.949494, 0.0418215}
});
auto res_prob_voting = std::vector<std::vector<double>>({
{0, 1, 0},
{0, 1, 0},
{0, 1, 0},
{0, 1, 0},
{0, 1, 0},
{0, 0, 1},
{0, 1, 0},
{0, 1, 0},
{0, 1, 0}
});
std::map<std::string, std::vector<std::vector<double>>> res_prob{ {"TAN", res_prob_tan}, {"SPODE", res_prob_spode} , {"BoostAODEproba", res_prob_baode }, {"BoostAODEvoting", res_prob_voting } };
std::map<std::string, bayesnet::BaseClassifier*> models{ {"TAN", new bayesnet::TAN()}, {"SPODE", new bayesnet::SPODE(0)}, {"BoostAODEproba", new bayesnet::BoostAODE(false)}, {"BoostAODEvoting", new bayesnet::BoostAODE(true)} };
auto res_prob_tan = std::vector<std::vector<double>>({{0.00375671, 0.994457, 0.00178621},
{0.00137462, 0.992734, 0.00589123},
{0.00137462, 0.992734, 0.00589123},
{0.00137462, 0.992734, 0.00589123},
{0.00218225, 0.992877, 0.00494094},
{0.00494209, 0.0978534, 0.897205},
{0.0054192, 0.974275, 0.0203054},
{0.00433012, 0.985054, 0.0106159},
{0.000860806, 0.996922, 0.00221698}});
auto res_prob_spode = std::vector<std::vector<double>>({{0.00419032, 0.994247, 0.00156265},
{0.00172808, 0.993433, 0.00483862},
{0.00172808, 0.993433, 0.00483862},
{0.00172808, 0.993433, 0.00483862},
{0.00279211, 0.993737, 0.00347077},
{0.0120674, 0.357909, 0.630024},
{0.00386239, 0.913919, 0.0822185},
{0.0244389, 0.966447, 0.00911374},
{0.003135, 0.991799, 0.0050661}});
auto res_prob_baode = std::vector<std::vector<double>>({{0.0112349, 0.962274, 0.0264907},
{0.00371025, 0.950592, 0.0456973},
{0.00371025, 0.950592, 0.0456973},
{0.00371025, 0.950592, 0.0456973},
{0.00369275, 0.84967, 0.146637},
{0.0252205, 0.113564, 0.861215},
{0.0284828, 0.770524, 0.200993},
{0.0213182, 0.857189, 0.121493},
{0.00868436, 0.949494, 0.0418215}});
auto res_prob_voting = std::vector<std::vector<double>>(
{{0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 0, 1}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}});
std::map<std::string, std::vector<std::vector<double>>> res_prob{{"TAN", res_prob_tan},
{"SPODE", res_prob_spode},
{"BoostAODEproba", res_prob_baode},
{"BoostAODEvoting", res_prob_voting}};
std::map<std::string, bayesnet::BaseClassifier *> models{{"TAN", new bayesnet::TAN()},
{"SPODE", new bayesnet::SPODE(0)},
{"BoostAODEproba", new bayesnet::BoostAODE(false)},
{"BoostAODEvoting", new bayesnet::BoostAODE(true)}};
int init_index = 78;
auto raw = RawDatasets("iris", true);
SECTION("Test " + model + " predict_proba")
{
SECTION("Test " + model + " predict_proba") {
auto clf = models[model];
clf->fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
auto y_pred_proba = clf->predict_proba(raw.Xv);
@@ -194,23 +213,23 @@ TEST_CASE("Model predict_proba", "[Models]")
REQUIRE(y_pred[i] == yt_pred[i].item<int>());
for (int j = 0; j < 3; j++) {
REQUIRE(res_prob[model][i][j] == Catch::Approx(y_pred_proba[i + init_index][j]).epsilon(raw.epsilon));
REQUIRE(res_prob[model][i][j] == Catch::Approx(yt_pred_proba[i + init_index][j].item<double>()).epsilon(raw.epsilon));
REQUIRE(res_prob[model][i][j] ==
Catch::Approx(yt_pred_proba[i + init_index][j].item<double>()).epsilon(raw.epsilon));
}
}
delete clf;
}
}
TEST_CASE("AODE voting-proba", "[Models]")
{
TEST_CASE("AODE voting-proba", "[Models]") {
auto raw = RawDatasets("glass", true);
auto clf = bayesnet::AODE(false);
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
auto score_proba = clf.score(raw.Xv, raw.yv);
auto pred_proba = clf.predict_proba(raw.Xv);
clf.setHyperparameters({
{"predict_voting",true},
});
{"predict_voting", true},
});
auto score_voting = clf.score(raw.Xv, raw.yv);
auto pred_voting = clf.predict_proba(raw.Xv);
REQUIRE(score_proba == Catch::Approx(0.79439f).epsilon(raw.epsilon));
@@ -219,8 +238,7 @@ TEST_CASE("AODE voting-proba", "[Models]")
REQUIRE(pred_proba[67][0] == Catch::Approx(0.702184).epsilon(raw.epsilon));
REQUIRE(clf.topological_order() == std::vector<std::string>());
}
TEST_CASE("SPODELd dataset", "[Models]")
{
TEST_CASE("SPODELd dataset", "[Models]") {
auto raw = RawDatasets("iris", false);
auto clf = bayesnet::SPODELd(0);
// raw.dataset.to(torch::kFloat32);
@@ -231,8 +249,7 @@ TEST_CASE("SPODELd dataset", "[Models]")
REQUIRE(score == Catch::Approx(0.97333f).epsilon(raw.epsilon));
REQUIRE(scoret == Catch::Approx(0.97333f).epsilon(raw.epsilon));
}
TEST_CASE("KDB with hyperparameters", "[Models]")
{
TEST_CASE("KDB with hyperparameters", "[Models]") {
auto raw = RawDatasets("glass", true);
auto clf = bayesnet::KDB(2);
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
@@ -240,20 +257,18 @@ TEST_CASE("KDB with hyperparameters", "[Models]")
clf.setHyperparameters({
{"k", 3},
{"theta", 0.7},
});
});
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
auto scoret = clf.score(raw.Xv, raw.yv);
REQUIRE(score == Catch::Approx(0.827103).epsilon(raw.epsilon));
REQUIRE(scoret == Catch::Approx(0.761682).epsilon(raw.epsilon));
}
TEST_CASE("Incorrect type of data for SPODELd", "[Models]")
{
TEST_CASE("Incorrect type of data for SPODELd", "[Models]") {
auto raw = RawDatasets("iris", true);
auto clf = bayesnet::SPODELd(0);
REQUIRE_THROWS_AS(clf.fit(raw.dataset, raw.features, raw.className, raw.states, raw.smoothing), std::runtime_error);
}
TEST_CASE("Predict, predict_proba & score without fitting", "[Models]")
{
TEST_CASE("Predict, predict_proba & score without fitting", "[Models]") {
auto clf = bayesnet::AODE();
auto raw = RawDatasets("iris", true);
std::string message = "Ensemble has not been fitted";
@@ -270,35 +285,55 @@ TEST_CASE("Predict, predict_proba & score without fitting", "[Models]")
REQUIRE_THROWS_WITH(clf.score(raw.Xv, raw.yv), message);
REQUIRE_THROWS_WITH(clf.score(raw.Xt, raw.yt), message);
}
TEST_CASE("TAN & SPODE with hyperparameters", "[Models]")
{
TEST_CASE("TAN & SPODE with hyperparameters", "[Models]") {
auto raw = RawDatasets("iris", true);
auto clf = bayesnet::TAN();
clf.setHyperparameters({
{"parent", 1},
});
});
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
auto score = clf.score(raw.Xv, raw.yv);
REQUIRE(score == Catch::Approx(0.973333).epsilon(raw.epsilon));
auto clf2 = bayesnet::SPODE(0);
clf2.setHyperparameters({
{"parent", 1},
});
});
clf2.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
auto score2 = clf2.score(raw.Xv, raw.yv);
REQUIRE(score2 == Catch::Approx(0.973333).epsilon(raw.epsilon));
}
TEST_CASE("TAN & SPODE with invalid hyperparameters", "[Models]")
{
TEST_CASE("TAN & SPODE with invalid hyperparameters", "[Models]") {
auto raw = RawDatasets("iris", true);
auto clf = bayesnet::TAN();
clf.setHyperparameters({
{"parent", 5},
});
REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing), std::invalid_argument);
});
REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing),
std::invalid_argument);
auto clf2 = bayesnet::SPODE(0);
clf2.setHyperparameters({
{"parent", 5},
});
REQUIRE_THROWS_AS(clf2.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing), std::invalid_argument);
}
});
REQUIRE_THROWS_AS(clf2.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing),
std::invalid_argument);
}
TEST_CASE("Check proposal checkInput", "[Models]") {
class testProposal : public bayesnet::Proposal {
public:
testProposal(torch::Tensor &dataset_, std::vector<std::string> &features_, std::string &className_)
: Proposal(dataset_, features_, className_) {}
void test_X_y(const torch::Tensor &X, const torch::Tensor &y) { checkInput(X, y); }
};
auto raw = RawDatasets("iris", true);
auto clf = testProposal(raw.dataset, raw.features, raw.className);
torch::Tensor X = torch::randint(0, 3, {10, 4});
torch::Tensor y = torch::rand({10});
INFO("Check X is not float");
REQUIRE_THROWS_AS(clf.test_X_y(X, y), std::invalid_argument);
X = torch::rand({10, 4});
INFO("Check y is not integer");
REQUIRE_THROWS_AS(clf.test_X_y(X, y), std::invalid_argument);
y = torch::randint(0, 3, {10});
INFO("X and y are correct");
REQUIRE_NOTHROW(clf.test_X_y(X, y));
}