ComputeCPT Optimization
This commit is contained in:
@@ -45,6 +45,7 @@ namespace bayesnet {
|
||||
}
|
||||
torch::Tensor SPODELd::predict_proba(torch::Tensor& X)
|
||||
{
|
||||
std::cout << "Debug: SPODELd::predict_proba" << std::endl;
|
||||
auto Xt = prepareX(X);
|
||||
return SPODE::predict_proba(Xt);
|
||||
}
|
||||
|
@@ -99,36 +99,55 @@ namespace bayesnet {
|
||||
for (const auto& parent : parents) {
|
||||
dimensions.push_back(parent->getNumStates());
|
||||
}
|
||||
//transform(parents.begin(), parents.end(), back_inserter(dimensions), [](const auto& parent) { return parent->getNumStates(); });
|
||||
// Create a tensor initialized with smoothing
|
||||
cpTable = torch::full(dimensions, smoothing, torch::kDouble);
|
||||
// Create a map for quick feature index lookup
|
||||
std::unordered_map<std::string, int> featureIndexMap;
|
||||
for (size_t i = 0; i < features.size(); ++i) {
|
||||
featureIndexMap[features[i]] = i;
|
||||
}
|
||||
// Fill table with counts
|
||||
// Get the index of this node's feature
|
||||
int name_index = featureIndexMap[name];
|
||||
// Get parent indices in dataset
|
||||
std::vector<int> parent_indices;
|
||||
parent_indices.reserve(parents.size());
|
||||
for (const auto& parent : parents) {
|
||||
parent_indices.push_back(featureIndexMap[parent->getName()]);
|
||||
}
|
||||
c10::List<c10::optional<at::Tensor>> coordinates;
|
||||
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
|
||||
coordinates.clear();
|
||||
auto sample = dataset.index({ "...", n_sample });
|
||||
coordinates.push_back(sample[name_index]);
|
||||
for (size_t i = 0; i < parent_indices.size(); ++i) {
|
||||
coordinates.push_back(sample[parent_indices[i]]);
|
||||
std::unordered_map<std::string, int> cachedFeatureIndexMap;
|
||||
bool featureIndexMapReady = false;
|
||||
// Build featureIndexMap if not ready
|
||||
if (!featureIndexMapReady) {
|
||||
cachedFeatureIndexMap.clear();
|
||||
for (size_t i = 0; i < features.size(); ++i) {
|
||||
cachedFeatureIndexMap[features[i]] = i;
|
||||
}
|
||||
// Increment the count of the corresponding coordinate
|
||||
cpTable.index_put_({ coordinates }, weights.index({ n_sample }), true);
|
||||
featureIndexMapReady = true;
|
||||
}
|
||||
const auto& featureIndexMap = cachedFeatureIndexMap;
|
||||
// Gather indices for node and parents
|
||||
std::vector<int64_t> all_indices;
|
||||
all_indices.push_back(featureIndexMap.at(name));
|
||||
for (const auto& parent : parents) {
|
||||
all_indices.push_back(featureIndexMap.at(parent->getName()));
|
||||
}
|
||||
// Extract relevant columns: shape (num_features, num_samples)
|
||||
auto indices_tensor = dataset.index_select(0, torch::tensor(all_indices, torch::kLong));
|
||||
// Transpose to (num_samples, num_features)
|
||||
indices_tensor = indices_tensor.transpose(0, 1).to(torch::kLong);
|
||||
// Flatten CPT for easier indexing
|
||||
auto flat_cpt = cpTable.flatten();
|
||||
// Compute strides for flattening multi-dim indices
|
||||
std::vector<int64_t> strides(all_indices.size(), 1);
|
||||
for (int i = strides.size() - 2; i >= 0; --i) {
|
||||
strides[i] = strides[i + 1] * cpTable.size(i + 1);
|
||||
}
|
||||
// Compute flat indices for each sample
|
||||
auto indices_tensor_cpu = indices_tensor.cpu();
|
||||
auto indices_accessor = indices_tensor_cpu.accessor<int64_t, 2>();
|
||||
std::vector<int64_t> flat_indices(indices_tensor.size(0));
|
||||
for (int64_t i = 0; i < indices_tensor.size(0); ++i) {
|
||||
int64_t idx = 0;
|
||||
for (size_t j = 0; j < strides.size(); ++j) {
|
||||
idx += indices_accessor[i][j] * strides[j];
|
||||
}
|
||||
flat_indices[i] = idx;
|
||||
}
|
||||
// Accumulate weights into flat CPT
|
||||
auto flat_indices_tensor = torch::from_blob(flat_indices.data(), { (int64_t)flat_indices.size() }, torch::kLong).clone();
|
||||
flat_cpt.index_add_(0, flat_indices_tensor, weights.cpu());
|
||||
cpTable = flat_cpt.view(cpTable.sizes());
|
||||
// Normalize the counts (dividing each row by the sum of the row)
|
||||
cpTable /= cpTable.sum(0, true);
|
||||
return;
|
||||
}
|
||||
double Node::getFactorValue(std::map<std::string, int>& evidence)
|
||||
{
|
||||
|
Reference in New Issue
Block a user