Files
BayesNet/bayesnet/network/Node.cc

168 lines
6.6 KiB
C++

// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "Node.h"
namespace bayesnet {
Node::Node(const std::string& name)
: name(name)
{
}
void Node::clear()
{
parents.clear();
children.clear();
cpTable = torch::Tensor();
dimensions.clear();
numStates = 0;
}
std::string Node::getName() const
{
return name;
}
void Node::addParent(Node* parent)
{
parents.push_back(parent);
}
void Node::removeParent(Node* parent)
{
parents.erase(std::remove(parents.begin(), parents.end(), parent), parents.end());
}
void Node::removeChild(Node* child)
{
children.erase(std::remove(children.begin(), children.end(), child), children.end());
}
void Node::addChild(Node* child)
{
children.push_back(child);
}
std::vector<Node*>& Node::getParents()
{
return parents;
}
std::vector<Node*>& Node::getChildren()
{
return children;
}
int Node::getNumStates() const
{
return numStates;
}
void Node::setNumStates(int numStates)
{
this->numStates = numStates;
}
torch::Tensor& Node::getCPT()
{
return cpTable;
}
/*
The MinFill criterion is a heuristic for variable elimination.
The variable that minimizes the number of edges that need to be added to the graph to make it triangulated.
This is done by counting the number of edges that need to be added to the graph if the variable is eliminated.
The variable with the minimum number of edges is chosen.
Here this is done computing the length of the combinations of the node neighbors taken 2 by 2.
*/
unsigned Node::minFill()
{
std::unordered_set<std::string> neighbors;
for (auto child : children) {
neighbors.emplace(child->getName());
}
for (auto parent : parents) {
neighbors.emplace(parent->getName());
}
auto source = std::vector<std::string>(neighbors.begin(), neighbors.end());
return combinations(source).size();
}
std::vector<std::pair<std::string, std::string>> Node::combinations(const std::vector<std::string>& source)
{
std::vector<std::pair<std::string, std::string>> result;
for (int i = 0; i < source.size(); ++i) {
std::string temp = source[i];
for (int j = i + 1; j < source.size(); ++j) {
result.push_back({ temp, source[j] });
}
}
return result;
}
void Node::computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double smoothing, const torch::Tensor& weights)
{
dimensions.clear();
dimensions.reserve(parents.size() + 1);
// Get dimensions of the CPT
dimensions.push_back(numStates);
for (const auto& parent : parents) {
dimensions.push_back(parent->getNumStates());
}
// Create a tensor initialized with smoothing
cpTable = torch::full(dimensions, smoothing, torch::kDouble);
// Create a map for quick feature index lookup
std::unordered_map<std::string, int> cachedFeatureIndexMap;
bool featureIndexMapReady = false;
// Build featureIndexMap if not ready
if (!featureIndexMapReady) {
cachedFeatureIndexMap.clear();
for (size_t i = 0; i < features.size(); ++i) {
cachedFeatureIndexMap[features[i]] = i;
}
featureIndexMapReady = true;
}
const auto& featureIndexMap = cachedFeatureIndexMap;
// Gather indices for node and parents
std::vector<int64_t> all_indices;
all_indices.push_back(featureIndexMap.at(name));
for (const auto& parent : parents) {
all_indices.push_back(featureIndexMap.at(parent->getName()));
}
// Extract relevant columns: shape (num_features, num_samples)
auto indices_tensor = dataset.index_select(0, torch::tensor(all_indices, torch::kLong));
// Transpose to (num_samples, num_features)
indices_tensor = indices_tensor.transpose(0, 1).to(torch::kLong);
// Flatten CPT for easier indexing
auto flat_cpt = cpTable.flatten();
// Compute strides for flattening multi-dim indices
std::vector<int64_t> strides(all_indices.size(), 1);
for (int i = strides.size() - 2; i >= 0; --i) {
strides[i] = strides[i + 1] * cpTable.size(i + 1);
}
// Compute flat indices for each sample
auto indices_tensor_cpu = indices_tensor.cpu();
auto indices_accessor = indices_tensor_cpu.accessor<int64_t, 2>();
std::vector<int64_t> flat_indices(indices_tensor.size(0));
for (int64_t i = 0; i < indices_tensor.size(0); ++i) {
int64_t idx = 0;
for (size_t j = 0; j < strides.size(); ++j) {
idx += indices_accessor[i][j] * strides[j];
}
flat_indices[i] = idx;
}
// Accumulate weights into flat CPT
auto flat_indices_tensor = torch::from_blob(flat_indices.data(), { (int64_t)flat_indices.size() }, torch::kLong).clone();
flat_cpt.index_add_(0, flat_indices_tensor, weights.cpu());
cpTable = flat_cpt.view(cpTable.sizes());
// Normalize the counts (dividing each row by the sum of the row)
cpTable /= cpTable.sum(0, true);
return;
}
double Node::getFactorValue(std::map<std::string, int>& evidence)
{
c10::List<c10::optional<at::Tensor>> coordinates;
// following predetermined order of indices in the cpTable (see Node.h)
coordinates.push_back(at::tensor(evidence[name]));
transform(parents.begin(), parents.end(), std::back_inserter(coordinates), [&evidence](const auto& parent) { return at::tensor(evidence[parent->getName()]); });
return cpTable.index({ coordinates }).item<double>();
}
std::vector<std::string> Node::graph(const std::string& className)
{
auto output = std::vector<std::string>();
auto suffix = name == className ? ", fontcolor=red, fillcolor=lightblue, style=filled " : "";
output.push_back("\"" + name + "\" [shape=circle" + suffix + "] \n");
transform(children.begin(), children.end(), back_inserter(output), [this](const auto& child) { return "\"" + name + "\" -> \"" + child->getName() + "\""; });
return output;
}
}