mirror of
https://github.com/Doctorado-ML/Stree_datasets.git
synced 2025-08-17 00:16:09 +00:00
Add nodes, leaves, depth to mysql
Add nodes, leaves, depth, samples, features and classes to analysis
This commit is contained in:
@@ -2,9 +2,8 @@ import json
|
||||
import os
|
||||
import time
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
from sklearn.model_selection import GridSearchCV, cross_validate
|
||||
|
||||
from . import Models
|
||||
from .Database import Hyperparameters, MySQL, Outcomes
|
||||
from .Sets import Datasets
|
||||
@@ -94,15 +93,25 @@ class Experiment:
|
||||
X,
|
||||
y,
|
||||
return_train_score=True,
|
||||
return_estimator=True,
|
||||
n_jobs=self._threads,
|
||||
cv=kfold,
|
||||
)
|
||||
for item in outcomes:
|
||||
total[item].append(results[item])
|
||||
print("end")
|
||||
if type(model).__name__ == "Stree":
|
||||
best_model = results["estimator"][np.argmax(results["test_score"])]
|
||||
nodes, leaves = best_model.nodes_leaves()
|
||||
depth = best_model.depth_
|
||||
else:
|
||||
nodes = leaves = depth = 0
|
||||
complexity = dict(nodes=nodes, leaves=leaves, depth=depth)
|
||||
outcomes = Outcomes(host=self._host, model=self._model_name)
|
||||
parameters = json.dumps(parameters, sort_keys=True)
|
||||
outcomes.store(dataset, normalize, standardize, parameters, total)
|
||||
outcomes.store(
|
||||
dataset, normalize, standardize, parameters, total, complexity
|
||||
)
|
||||
if self._num_warnings > 0:
|
||||
print(f"{self._num_warnings} warnings have happend")
|
||||
|
||||
|
Reference in New Issue
Block a user