mirror of
https://github.com/Doctorado-ML/Stree_datasets.git
synced 2025-08-15 23:46:03 +00:00
Remove normalization
As every dataset is already standardized
This commit is contained in:
11
gen_csv.py
Normal file
11
gen_csv.py
Normal file
@@ -0,0 +1,11 @@
|
|||||||
|
import pandas as pd
|
||||||
|
from experimentation.Sets import Datasets
|
||||||
|
|
||||||
|
dt = Datasets(normalize=False, standardize=False, set_of_files="tanveer")
|
||||||
|
for data in dt:
|
||||||
|
name = data[0]
|
||||||
|
X, y = dt.load(name)
|
||||||
|
z = pd.DataFrame(X)
|
||||||
|
z[X.shape[1]] = y
|
||||||
|
print(name, z.shape)
|
||||||
|
z.to_csv(f"test/{name}.csv", header=False, index=False)
|
@@ -2,7 +2,7 @@ import os
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
from experimentation.Sets import Datasets
|
from experimentation.Sets import Datasets
|
||||||
|
|
||||||
dt = Datasets(normalize=True, set_of_files="tanveer")
|
dt = Datasets(normalize=False, set_of_files="tanveer")
|
||||||
print("Generating: ", end="")
|
print("Generating: ", end="")
|
||||||
for data in dt:
|
for data in dt:
|
||||||
name = data[0]
|
name = data[0]
|
||||||
|
@@ -17,4 +17,4 @@
|
|||||||
|
|
||||||
### Ejecutable con sus parametros
|
### Ejecutable con sus parametros
|
||||||
cd <folder>
|
cd <folder>
|
||||||
python experiment.py -H galgo -e <experiment> -m <model> -d <data> -S tanveer -k <kernel> -n 1 -t 12
|
python experiment.py -H galgo -e <experiment> -m <model> -d <data> -S tanveer -k <kernel> -t 12
|
@@ -9,4 +9,4 @@
|
|||||||
|
|
||||||
# LOAD MODULES, INSERT CODE, AND RUN YOUR PROGRAMS HERE
|
# LOAD MODULES, INSERT CODE, AND RUN YOUR PROGRAMS HERE
|
||||||
cd <folder>
|
cd <folder>
|
||||||
python experiment.py -H galgo -e <experiment> -m <model> -d <data> -S tanveer -k <kernel> -n 1 -t 4
|
python experiment.py -H galgo -e <experiment> -m <model> -d <data> -S tanveer -k <kernel> -t 4
|
@@ -25,7 +25,7 @@ def compute_depth(node, depth):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
dt = Datasets(True, False, "tanveer")
|
dt = Datasets(False, False, "tanveer")
|
||||||
for dataset in dt:
|
for dataset in dt:
|
||||||
dataset_name = dataset[0]
|
dataset_name = dataset[0]
|
||||||
X, y = dt.load(dataset_name)
|
X, y = dt.load(dataset_name)
|
||||||
|
@@ -797,7 +797,7 @@
|
|||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.9.2"
|
"version": "3.9.5"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
|
@@ -39,7 +39,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"datasets = Datasets(normalize=True, standardize=False, set_of_files=\"tanveer\")\n",
|
"datasets = Datasets(normalize=False, standardize=False, set_of_files=\"tanveer\")\n",
|
||||||
"X, y = datasets.load(dataset_name)"
|
"X, y = datasets.load(dataset_name)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@@ -821,6 +821,60 @@
|
|||||||
"generate_subspaces(200, 10)"
|
"generate_subspaces(200, 10)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 3,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import pandas as pd\n",
|
||||||
|
"dd = pd.read_csv(\"data/csv/balloons.csv\", header=None)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 15,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"data = dd.values[:,:-1]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 17,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"array([[1., 0., 1., 1.],\n",
|
||||||
|
" [1., 0., 1., 0.],\n",
|
||||||
|
" [1., 0., 0., 1.],\n",
|
||||||
|
" [1., 0., 0., 0.],\n",
|
||||||
|
" [1., 1., 1., 1.],\n",
|
||||||
|
" [1., 1., 1., 0.],\n",
|
||||||
|
" [1., 1., 0., 1.],\n",
|
||||||
|
" [1., 1., 0., 0.],\n",
|
||||||
|
" [0., 0., 1., 1.],\n",
|
||||||
|
" [0., 0., 1., 0.],\n",
|
||||||
|
" [0., 0., 0., 1.],\n",
|
||||||
|
" [0., 0., 0., 0.],\n",
|
||||||
|
" [0., 1., 1., 1.],\n",
|
||||||
|
" [0., 1., 1., 0.],\n",
|
||||||
|
" [0., 1., 0., 1.],\n",
|
||||||
|
" [0., 1., 0., 0.]])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 17,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"data"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
@@ -845,9 +899,9 @@
|
|||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.9.2"
|
"version": "3.9.5"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
"nbformat_minor": 4
|
"nbformat_minor": 4
|
||||||
}
|
}
|
||||||
|
Reference in New Issue
Block a user