mirror of
https://github.com/Doctorado-ML/Stree_datasets.git
synced 2025-08-15 07:26:02 +00:00
Remove normalization
As every dataset is already standardized
This commit is contained in:
11
gen_csv.py
Normal file
11
gen_csv.py
Normal file
@@ -0,0 +1,11 @@
|
||||
import pandas as pd
|
||||
from experimentation.Sets import Datasets
|
||||
|
||||
dt = Datasets(normalize=False, standardize=False, set_of_files="tanveer")
|
||||
for data in dt:
|
||||
name = data[0]
|
||||
X, y = dt.load(name)
|
||||
z = pd.DataFrame(X)
|
||||
z[X.shape[1]] = y
|
||||
print(name, z.shape)
|
||||
z.to_csv(f"test/{name}.csv", header=False, index=False)
|
@@ -2,7 +2,7 @@ import os
|
||||
import pandas as pd
|
||||
from experimentation.Sets import Datasets
|
||||
|
||||
dt = Datasets(normalize=True, set_of_files="tanveer")
|
||||
dt = Datasets(normalize=False, set_of_files="tanveer")
|
||||
print("Generating: ", end="")
|
||||
for data in dt:
|
||||
name = data[0]
|
||||
|
@@ -17,4 +17,4 @@
|
||||
|
||||
### Ejecutable con sus parametros
|
||||
cd <folder>
|
||||
python experiment.py -H galgo -e <experiment> -m <model> -d <data> -S tanveer -k <kernel> -n 1 -t 12
|
||||
python experiment.py -H galgo -e <experiment> -m <model> -d <data> -S tanveer -k <kernel> -t 12
|
@@ -9,4 +9,4 @@
|
||||
|
||||
# LOAD MODULES, INSERT CODE, AND RUN YOUR PROGRAMS HERE
|
||||
cd <folder>
|
||||
python experiment.py -H galgo -e <experiment> -m <model> -d <data> -S tanveer -k <kernel> -n 1 -t 4
|
||||
python experiment.py -H galgo -e <experiment> -m <model> -d <data> -S tanveer -k <kernel> -t 4
|
@@ -25,7 +25,7 @@ def compute_depth(node, depth):
|
||||
)
|
||||
|
||||
|
||||
dt = Datasets(True, False, "tanveer")
|
||||
dt = Datasets(False, False, "tanveer")
|
||||
for dataset in dt:
|
||||
dataset_name = dataset[0]
|
||||
X, y = dt.load(dataset_name)
|
||||
|
@@ -797,7 +797,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.2"
|
||||
"version": "3.9.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
@@ -39,7 +39,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"datasets = Datasets(normalize=True, standardize=False, set_of_files=\"tanveer\")\n",
|
||||
"datasets = Datasets(normalize=False, standardize=False, set_of_files=\"tanveer\")\n",
|
||||
"X, y = datasets.load(dataset_name)"
|
||||
]
|
||||
},
|
||||
@@ -821,6 +821,60 @@
|
||||
"generate_subspaces(200, 10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"dd = pd.read_csv(\"data/csv/balloons.csv\", header=None)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data = dd.values[:,:-1]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"array([[1., 0., 1., 1.],\n",
|
||||
" [1., 0., 1., 0.],\n",
|
||||
" [1., 0., 0., 1.],\n",
|
||||
" [1., 0., 0., 0.],\n",
|
||||
" [1., 1., 1., 1.],\n",
|
||||
" [1., 1., 1., 0.],\n",
|
||||
" [1., 1., 0., 1.],\n",
|
||||
" [1., 1., 0., 0.],\n",
|
||||
" [0., 0., 1., 1.],\n",
|
||||
" [0., 0., 1., 0.],\n",
|
||||
" [0., 0., 0., 1.],\n",
|
||||
" [0., 0., 0., 0.],\n",
|
||||
" [0., 1., 1., 1.],\n",
|
||||
" [0., 1., 1., 0.],\n",
|
||||
" [0., 1., 0., 1.],\n",
|
||||
" [0., 1., 0., 0.]])"
|
||||
]
|
||||
},
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
@@ -845,9 +899,9 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.2"
|
||||
"version": "3.9.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user