Remove normalization

As every dataset is already standardized
This commit is contained in:
2021-06-26 13:27:03 +02:00
parent 44b44f33ad
commit 54b73880e3
7 changed files with 73 additions and 8 deletions

11
gen_csv.py Normal file
View File

@@ -0,0 +1,11 @@
import pandas as pd
from experimentation.Sets import Datasets
dt = Datasets(normalize=False, standardize=False, set_of_files="tanveer")
for data in dt:
name = data[0]
X, y = dt.load(name)
z = pd.DataFrame(X)
z[X.shape[1]] = y
print(name, z.shape)
z.to_csv(f"test/{name}.csv", header=False, index=False)

View File

@@ -2,7 +2,7 @@ import os
import pandas as pd
from experimentation.Sets import Datasets
dt = Datasets(normalize=True, set_of_files="tanveer")
dt = Datasets(normalize=False, set_of_files="tanveer")
print("Generating: ", end="")
for data in dt:
name = data[0]

View File

@@ -17,4 +17,4 @@
### Ejecutable con sus parametros
cd <folder>
python experiment.py -H galgo -e <experiment> -m <model> -d <data> -S tanveer -k <kernel> -n 1 -t 12
python experiment.py -H galgo -e <experiment> -m <model> -d <data> -S tanveer -k <kernel> -t 12

View File

@@ -9,4 +9,4 @@
# LOAD MODULES, INSERT CODE, AND RUN YOUR PROGRAMS HERE
cd <folder>
python experiment.py -H galgo -e <experiment> -m <model> -d <data> -S tanveer -k <kernel> -n 1 -t 4
python experiment.py -H galgo -e <experiment> -m <model> -d <data> -S tanveer -k <kernel> -t 4

View File

@@ -25,7 +25,7 @@ def compute_depth(node, depth):
)
dt = Datasets(True, False, "tanveer")
dt = Datasets(False, False, "tanveer")
for dataset in dt:
dataset_name = dataset[0]
X, y = dt.load(dataset_name)

View File

@@ -797,7 +797,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.2"
"version": "3.9.5"
}
},
"nbformat": 4,

View File

@@ -39,7 +39,7 @@
"metadata": {},
"outputs": [],
"source": [
"datasets = Datasets(normalize=True, standardize=False, set_of_files=\"tanveer\")\n",
"datasets = Datasets(normalize=False, standardize=False, set_of_files=\"tanveer\")\n",
"X, y = datasets.load(dataset_name)"
]
},
@@ -821,6 +821,60 @@
"generate_subspaces(200, 10)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"dd = pd.read_csv(\"data/csv/balloons.csv\", header=None)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"data = dd.values[:,:-1]"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[1., 0., 1., 1.],\n",
" [1., 0., 1., 0.],\n",
" [1., 0., 0., 1.],\n",
" [1., 0., 0., 0.],\n",
" [1., 1., 1., 1.],\n",
" [1., 1., 1., 0.],\n",
" [1., 1., 0., 1.],\n",
" [1., 1., 0., 0.],\n",
" [0., 0., 1., 1.],\n",
" [0., 0., 1., 0.],\n",
" [0., 0., 0., 1.],\n",
" [0., 0., 0., 0.],\n",
" [0., 1., 1., 1.],\n",
" [0., 1., 1., 0.],\n",
" [0., 1., 0., 1.],\n",
" [0., 1., 0., 0.]])"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data"
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -845,9 +899,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.2"
"version": "3.9.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
}