Ricardo Montañana Gómez 1c869e154e Enhance partition (#16)
#15 Create impurity function in Stree (consistent name, same criteria as other splitter parameter)
Create test for the new function
Update init test
Update test splitter parameters
Rename old impurity function to partition_impurity
close #15
* Complete implementation of splitter_type = impurity with tests
Remove max_distance & min_distance splitter types

* Fix mistake in computing multiclass node belief
Set default criterion for split to entropy instead of gini
Set default max_iter to 1e5 instead of 1e3
change up-down criterion to match SVC multiclass
Fix impurity method of splitting nodes
Update jupyter Notebooks
2020-11-03 11:36:05 +01:00
2020-11-03 11:36:05 +01:00
2020-11-03 11:36:05 +01:00
2020-06-27 18:29:40 +02:00
2020-06-11 13:45:24 +02:00
2020-05-09 23:01:30 +02:00
2020-06-14 14:00:21 +02:00
2020-06-12 00:50:25 +02:00
2020-11-03 11:36:05 +01:00

Codeship Status for Doctorado-ML/STree codecov Codacy Badge

Stree

Oblique Tree classifier based on SVM nodes. The nodes are built and splitted with sklearn SVC models. Stree is a sklearn estimator and can be integrated in pipelines, grid searches, etc.

Stree

Installation

pip install git+https://github.com/doctorado-ml/stree

Examples

Jupyter notebooks

  • Binder Benchmark

  • Test Benchmark

  • Test2 Test features

  • Adaboost Adaboost

  • Gridsearch Gridsearch

  • Test Graphics Test Graphics

Command line

python main.py

Tests

python -m unittest -v stree.tests
Description
Oblique Tree classifier based on SVM nodes
Readme MIT 11 MiB
Languages
Python 72.2%
Jupyter Notebook 26.9%
Makefile 0.9%