Compare commits

..

14 Commits

Author SHA1 Message Date
941c2ff5e0 Update gh action version 2024-08-14 10:15:26 +02:00
2ebf48145d Update python version requirements 2024-08-14 10:03:57 +02:00
7fbfd3622e Update python versions in gh actions 2024-08-14 09:58:36 +02:00
bc839a80d6 Remove black from lint in github actions 2024-08-14 09:52:05 +02:00
ba15ea2cc0 Remove unneeded file 2024-08-14 09:42:59 +02:00
85b56785c8 Change project builder to hatch
Update actions in Makefile
2024-08-14 09:41:45 +02:00
b627bb7531 Add pyproject.toml install information
Add __call__ method to support sklearn ensembles requirements for base estimators
Update tests
2024-08-13 13:28:32 +02:00
5f8ca8f3bb Reformat test with new black version 2024-03-05 18:46:19 +01:00
Ricardo Montañana Gómez
fb8b9b344f Update README.md
update installation instructions
2024-03-05 18:18:55 +01:00
036d1ba2a7 Add separate methods to return nodes/leaves/depth 2023-11-27 10:02:14 +01:00
4de74973b8 Black format issue 2023-07-12 14:16:08 +02:00
Ricardo Montañana Gómez
28dd04b95a Update benchmark.ipynb 2023-05-13 14:44:49 +02:00
Ricardo Montañana Gómez
542bbce7db ci: ⬆️ Update ci files and badges 2023-01-15 02:18:41 +01:00
Ricardo Montañana Gómez
5b791bc5bf New_version_sklearn (#56)
* test: 🧪 Update max_iter as int in test_multiclass_dataset

* refactor: 📝 Rename base_estimator to estimator as the former is deprectated in notebook

* refactor: 📌 Convert max_iter to int as needed in sklearn 1.2

* chore: 🔖 Update version info to 1.3.1
2023-01-15 01:21:32 +01:00
15 changed files with 453 additions and 393 deletions

View File

@@ -2,12 +2,12 @@ name: "CodeQL"
on:
push:
branches: [ master ]
branches: [master]
pull_request:
# The branches below must be a subset of the branches above
branches: [ master ]
branches: [master]
schedule:
- cron: '16 17 * * 3'
- cron: "16 17 * * 3"
jobs:
analyze:
@@ -17,40 +17,40 @@ jobs:
strategy:
fail-fast: false
matrix:
language: [ 'python' ]
language: ["python"]
# CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python' ]
# Learn more:
# https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#changing-the-languages-that-are-analyzed
steps:
- name: Checkout repository
uses: actions/checkout@v2
- name: Checkout repository
uses: actions/checkout@v2
# Initializes the CodeQL tools for scanning.
- name: Initialize CodeQL
uses: github/codeql-action/init@v1
with:
languages: ${{ matrix.language }}
# If you wish to specify custom queries, you can do so here or in a config file.
# By default, queries listed here will override any specified in a config file.
# Prefix the list here with "+" to use these queries and those in the config file.
# queries: ./path/to/local/query, your-org/your-repo/queries@main
# Initializes the CodeQL tools for scanning.
- name: Initialize CodeQL
uses: github/codeql-action/init@v2
with:
languages: ${{ matrix.language }}
# If you wish to specify custom queries, you can do so here or in a config file.
# By default, queries listed here will override any specified in a config file.
# Prefix the list here with "+" to use these queries and those in the config file.
# queries: ./path/to/local/query, your-org/your-repo/queries@main
# Autobuild attempts to build any compiled languages (C/C++, C#, or Java).
# If this step fails, then you should remove it and run the build manually (see below)
- name: Autobuild
uses: github/codeql-action/autobuild@v1
# Autobuild attempts to build any compiled languages (C/C++, C#, or Java).
# If this step fails, then you should remove it and run the build manually (see below)
- name: Autobuild
uses: github/codeql-action/autobuild@v2
# Command-line programs to run using the OS shell.
# 📚 https://git.io/JvXDl
# Command-line programs to run using the OS shell.
# 📚 https://git.io/JvXDl
# ✏️ If the Autobuild fails above, remove it and uncomment the following three lines
# and modify them (or add more) to build your code if your project
# uses a compiled language
# ✏️ If the Autobuild fails above, remove it and uncomment the following three lines
# and modify them (or add more) to build your code if your project
# uses a compiled language
#- run: |
# make bootstrap
# make release
#- run: |
# make bootstrap
# make release
- name: Perform CodeQL Analysis
uses: github/codeql-action/analyze@v1
- name: Perform CodeQL Analysis
uses: github/codeql-action/analyze@v2

View File

@@ -13,12 +13,12 @@ jobs:
strategy:
matrix:
os: [macos-latest, ubuntu-latest, windows-latest]
python: [3.8, "3.10"]
python: [3.11, 3.12]
steps:
- uses: actions/checkout@v2
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python }}
uses: actions/setup-python@v2
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python }}
- name: Install dependencies
@@ -28,14 +28,14 @@ jobs:
pip install -q --upgrade codecov coverage black flake8 codacy-coverage
- name: Lint
run: |
black --check --diff stree
# black --check --diff stree
flake8 --count stree
- name: Tests
run: |
coverage run -m unittest -v stree.tests
coverage xml
- name: Upload coverage to Codecov
uses: codecov/codecov-action@v1
uses: codecov/codecov-action@v4
with:
token: ${{ secrets.CODECOV_TOKEN }}
files: ./coverage.xml

1
MANIFEST.in Normal file
View File

@@ -0,0 +1 @@
include README.md LICENSE

View File

@@ -1,46 +1,36 @@
SHELL := /bin/bash
.DEFAULT_GOAL := help
.PHONY: coverage deps help lint push test doc build
.PHONY: audit coverage help lint test doc doc-clean build
coverage: ## Run tests with coverage
coverage erase
coverage run -m unittest -v stree.tests
coverage report -m
@coverage erase
@coverage run -m unittest -v stree.tests
@coverage report -m
deps: ## Install dependencies
pip install -r requirements.txt
devdeps: ## Install development dependencies
pip install black pip-audit flake8 mypy coverage
lint: ## Lint and static-check
black stree
flake8 stree
mypy stree
push: ## Push code with tags
git push && git push --tags
lint: ## Lint source files
@black stree
@flake8 stree
test: ## Run tests
python -m unittest -v stree.tests
@python -m unittest -v stree.tests
doc: ## Update documentation
make -C docs --makefile=Makefile html
@make -C docs --makefile=Makefile html
build: ## Build package
rm -fr dist/*
rm -fr build/*
python setup.py sdist bdist_wheel
@rm -fr dist/*
@rm -fr build/*
@hatch build
doc-clean: ## Update documentation
make -C docs --makefile=Makefile clean
doc-clean: ## Clean documentation folders
@make -C docs --makefile=Makefile clean
audit: ## Audit pip
pip-audit
@pip-audit
help: ## Show help message
help: ## Show this help message
@IFS=$$'\n' ; \
help_lines=(`fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \
help_lines=(`grep -Fh "##" $(MAKEFILE_LIST) | grep -Fv fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \
printf "%s\n\n" "Usage: make [task]"; \
printf "%-20s %s\n" "task" "help" ; \
printf "%-20s %s\n" "------" "----" ; \

View File

@@ -1,7 +1,7 @@
![CI](https://github.com/Doctorado-ML/STree/workflows/CI/badge.svg)
[![CodeQL](https://github.com/Doctorado-ML/STree/actions/workflows/codeql-analysis.yml/badge.svg)](https://github.com/Doctorado-ML/STree/actions/workflows/codeql-analysis.yml)
[![codecov](https://codecov.io/gh/doctorado-ml/stree/branch/master/graph/badge.svg)](https://codecov.io/gh/doctorado-ml/stree)
[![Codacy Badge](https://app.codacy.com/project/badge/Grade/35fa3dfd53a24a339344b33d9f9f2f3d)](https://www.codacy.com/gh/Doctorado-ML/STree?utm_source=github.com&utm_medium=referral&utm_content=Doctorado-ML/STree&utm_campaign=Badge_Grade)
[![Language grade: Python](https://img.shields.io/lgtm/grade/python/g/Doctorado-ML/STree.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/Doctorado-ML/STree/context:python)
[![PyPI version](https://badge.fury.io/py/STree.svg)](https://badge.fury.io/py/STree)
![https://img.shields.io/badge/python-3.8%2B-blue](https://img.shields.io/badge/python-3.8%2B-brightgreen)
[![DOI](https://zenodo.org/badge/262658230.svg)](https://zenodo.org/badge/latestdoi/262658230)
@@ -15,7 +15,7 @@ Oblique Tree classifier based on SVM nodes. The nodes are built and splitted wit
## Installation
```bash
pip install git+https://github.com/doctorado-ml/stree
pip install Stree
```
## Documentation

View File

@@ -178,7 +178,7 @@
"outputs": [],
"source": [
"# Stree\n",
"stree = Stree(random_state=random_state, C=.01, max_iter=1e3, kernel=\"liblinear\", multiclass_strategy=\"ovr\")"
"stree = Stree(random_state=random_state, C=.01, max_iter=1000, kernel=\"liblinear\", multiclass_strategy=\"ovr\")"
]
},
{
@@ -198,7 +198,7 @@
"outputs": [],
"source": [
"# SVC (linear)\n",
"svc = LinearSVC(random_state=random_state, C=.01, max_iter=1e3)"
"svc = LinearSVC(random_state=random_state, C=.01, max_iter=1000)"
]
},
{

View File

@@ -1,253 +1,253 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Test Gridsearch\n",
"with different kernels and different configurations"
]
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Test Gridsearch\n",
"with different kernels and different configurations"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Setup\n",
"Uncomment the next cell if STree is not already installed"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#\n",
"# Google Colab setup\n",
"#\n",
"#!pip install git+https://github.com/doctorado-ml/stree\n",
"!pip install pandas"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "zIHKVxthDZEa"
},
"outputs": [],
"source": [
"import random\n",
"import os\n",
"import pandas as pd\n",
"import numpy as np\n",
"from sklearn.ensemble import AdaBoostClassifier\n",
"from sklearn.svm import LinearSVC\n",
"from sklearn.model_selection import GridSearchCV, train_test_split\n",
"from stree import Stree"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "IEmq50QgDZEi"
},
"outputs": [],
"source": [
"if not os.path.isfile('data/creditcard.csv'):\n",
" !wget --no-check-certificate --content-disposition http://nube.jccm.es/index.php/s/Zs7SYtZQJ3RQ2H2/download\n",
" !tar xzf creditcard.tgz"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "z9Q-YUfBDZEq",
"outputId": "afc822fb-f16a-4302-8a67-2b9e2880159b",
"tags": []
},
"outputs": [],
"source": [
"random_state=1\n",
"\n",
"def load_creditcard(n_examples=0):\n",
" df = pd.read_csv('data/creditcard.csv')\n",
" print(\"Fraud: {0:.3f}% {1}\".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))\n",
" print(\"Valid: {0:.3f}% {1}\".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))\n",
" y = df.Class\n",
" X = df.drop(['Class', 'Time', 'Amount'], axis=1).values\n",
" if n_examples > 0:\n",
" # Take first n_examples samples\n",
" X = X[:n_examples, :]\n",
" y = y[:n_examples, :]\n",
" else:\n",
" # Take all the positive samples with a number of random negatives\n",
" if n_examples < 0:\n",
" Xt = X[(y == 1).ravel()]\n",
" yt = y[(y == 1).ravel()]\n",
" indices = random.sample(range(X.shape[0]), -1 * n_examples)\n",
" X = np.append(Xt, X[indices], axis=0)\n",
" y = np.append(yt, y[indices], axis=0)\n",
" print(\"X.shape\", X.shape, \" y.shape\", y.shape)\n",
" print(\"Fraud: {0:.3f}% {1}\".format(len(y[y == 1])*100/X.shape[0], len(y[y == 1])))\n",
" print(\"Valid: {0:.3f}% {1}\".format(len(y[y == 0]) * 100 / X.shape[0], len(y[y == 0])))\n",
" Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=0.7, shuffle=True, random_state=random_state, stratify=y)\n",
" return Xtrain, Xtest, ytrain, ytest\n",
"\n",
"data = load_creditcard(-1000) # Take all true samples + 1000 of the others\n",
"# data = load_creditcard(5000) # Take the first 5000 samples\n",
"# data = load_creditcard(0) # Take all the samples\n",
"\n",
"Xtrain = data[0]\n",
"Xtest = data[1]\n",
"ytrain = data[2]\n",
"ytest = data[3]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Tests"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "HmX3kR4PDZEw"
},
"outputs": [],
"source": [
"parameters = [{\n",
" 'base_estimator': [Stree(random_state=random_state)],\n",
" 'n_estimators': [10, 25],\n",
" 'learning_rate': [.5, 1],\n",
" 'estimator__split_criteria': ['max_samples', 'impurity'],\n",
" 'estimator__tol': [.1, 1e-02],\n",
" 'estimator__max_depth': [3, 5, 7],\n",
" 'estimator__C': [1, 7, 55],\n",
" 'estimator__kernel': ['linear']\n",
"},\n",
"{\n",
" 'base_estimator': [Stree(random_state=random_state)],\n",
" 'n_estimators': [10, 25],\n",
" 'learning_rate': [.5, 1],\n",
" 'estimator__split_criteria': ['max_samples', 'impurity'],\n",
" 'estimator__tol': [.1, 1e-02],\n",
" 'estimator__max_depth': [3, 5, 7],\n",
" 'estimator__C': [1, 7, 55],\n",
" 'estimator__degree': [3, 5, 7],\n",
" 'estimator__kernel': ['poly']\n",
"},\n",
"{\n",
" 'base_estimator': [Stree(random_state=random_state)],\n",
" 'n_estimators': [10, 25],\n",
" 'learning_rate': [.5, 1],\n",
" 'estimator__split_criteria': ['max_samples', 'impurity'],\n",
" 'estimator__tol': [.1, 1e-02],\n",
" 'estimator__max_depth': [3, 5, 7],\n",
" 'estimator__C': [1, 7, 55],\n",
" 'estimator__gamma': [.1, 1, 10],\n",
" 'estimator__kernel': ['rbf']\n",
"}]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Stree().get_params()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "CrcB8o6EDZE5",
"outputId": "7703413a-d563-4289-a13b-532f38f82762",
"tags": []
},
"outputs": [],
"source": [
"clf = AdaBoostClassifier(random_state=random_state, algorithm=\"SAMME\")\n",
"grid = GridSearchCV(clf, parameters, verbose=5, n_jobs=-1, return_train_score=True)\n",
"grid.fit(Xtrain, ytrain)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "ZjX88NoYDZE8",
"outputId": "285163c8-fa33-4915-8ae7-61c4f7844344",
"tags": []
},
"outputs": [],
"source": [
"print(\"Best estimator: \", grid.best_estimator_)\n",
"print(\"Best hyperparameters: \", grid.best_params_)\n",
"print(\"Best accuracy: \", grid.best_score_)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Best estimator: AdaBoostClassifier(algorithm='SAMME',\n",
" base_estimator=Stree(C=55, max_depth=7, random_state=1,\n",
" split_criteria='max_samples', tol=0.1),\n",
" learning_rate=0.5, n_estimators=25, random_state=1)\n",
"Best hyperparameters: {'base_estimator': Stree(C=55, max_depth=7, random_state=1, split_criteria='max_samples', tol=0.1), 'estimator__C': 55, 'estimator__kernel': 'linear', 'estimator__max_depth': 7, 'estimator__split_criteria': 'max_samples', 'estimator__tol': 0.1, 'learning_rate': 0.5, 'n_estimators': 25}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Best accuracy: 0.9511777695988222"
]
}
],
"metadata": {
"colab": {
"name": "gridsearch.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.2-final"
}
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Setup\n",
"Uncomment the next cell if STree is not already installed"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#\n",
"# Google Colab setup\n",
"#\n",
"#!pip install git+https://github.com/doctorado-ml/stree\n",
"!pip install pandas"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "zIHKVxthDZEa"
},
"outputs": [],
"source": [
"import random\n",
"import os\n",
"import pandas as pd\n",
"import numpy as np\n",
"from sklearn.ensemble import AdaBoostClassifier\n",
"from sklearn.svm import LinearSVC\n",
"from sklearn.model_selection import GridSearchCV, train_test_split\n",
"from stree import Stree"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "IEmq50QgDZEi"
},
"outputs": [],
"source": [
"if not os.path.isfile('data/creditcard.csv'):\n",
" !wget --no-check-certificate --content-disposition http://nube.jccm.es/index.php/s/Zs7SYtZQJ3RQ2H2/download\n",
" !tar xzf creditcard.tgz"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "z9Q-YUfBDZEq",
"outputId": "afc822fb-f16a-4302-8a67-2b9e2880159b",
"tags": []
},
"outputs": [],
"source": [
"random_state=1\n",
"\n",
"def load_creditcard(n_examples=0):\n",
" df = pd.read_csv('data/creditcard.csv')\n",
" print(\"Fraud: {0:.3f}% {1}\".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))\n",
" print(\"Valid: {0:.3f}% {1}\".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))\n",
" y = df.Class\n",
" X = df.drop(['Class', 'Time', 'Amount'], axis=1).values\n",
" if n_examples > 0:\n",
" # Take first n_examples samples\n",
" X = X[:n_examples, :]\n",
" y = y[:n_examples, :]\n",
" else:\n",
" # Take all the positive samples with a number of random negatives\n",
" if n_examples < 0:\n",
" Xt = X[(y == 1).ravel()]\n",
" yt = y[(y == 1).ravel()]\n",
" indices = random.sample(range(X.shape[0]), -1 * n_examples)\n",
" X = np.append(Xt, X[indices], axis=0)\n",
" y = np.append(yt, y[indices], axis=0)\n",
" print(\"X.shape\", X.shape, \" y.shape\", y.shape)\n",
" print(\"Fraud: {0:.3f}% {1}\".format(len(y[y == 1])*100/X.shape[0], len(y[y == 1])))\n",
" print(\"Valid: {0:.3f}% {1}\".format(len(y[y == 0]) * 100 / X.shape[0], len(y[y == 0])))\n",
" Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=0.7, shuffle=True, random_state=random_state, stratify=y)\n",
" return Xtrain, Xtest, ytrain, ytest\n",
"\n",
"data = load_creditcard(-1000) # Take all true samples + 1000 of the others\n",
"# data = load_creditcard(5000) # Take the first 5000 samples\n",
"# data = load_creditcard(0) # Take all the samples\n",
"\n",
"Xtrain = data[0]\n",
"Xtest = data[1]\n",
"ytrain = data[2]\n",
"ytest = data[3]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Tests"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "HmX3kR4PDZEw"
},
"outputs": [],
"source": [
"parameters = [{\n",
" 'base_estimator': [Stree(random_state=random_state)],\n",
" 'n_estimators': [10, 25],\n",
" 'learning_rate': [.5, 1],\n",
" 'base_estimator__split_criteria': ['max_samples', 'impurity'],\n",
" 'base_estimator__tol': [.1, 1e-02],\n",
" 'base_estimator__max_depth': [3, 5, 7],\n",
" 'base_estimator__C': [1, 7, 55],\n",
" 'base_estimator__kernel': ['linear']\n",
"},\n",
"{\n",
" 'base_estimator': [Stree(random_state=random_state)],\n",
" 'n_estimators': [10, 25],\n",
" 'learning_rate': [.5, 1],\n",
" 'base_estimator__split_criteria': ['max_samples', 'impurity'],\n",
" 'base_estimator__tol': [.1, 1e-02],\n",
" 'base_estimator__max_depth': [3, 5, 7],\n",
" 'base_estimator__C': [1, 7, 55],\n",
" 'base_estimator__degree': [3, 5, 7],\n",
" 'base_estimator__kernel': ['poly']\n",
"},\n",
"{\n",
" 'base_estimator': [Stree(random_state=random_state)],\n",
" 'n_estimators': [10, 25],\n",
" 'learning_rate': [.5, 1],\n",
" 'base_estimator__split_criteria': ['max_samples', 'impurity'],\n",
" 'base_estimator__tol': [.1, 1e-02],\n",
" 'base_estimator__max_depth': [3, 5, 7],\n",
" 'base_estimator__C': [1, 7, 55],\n",
" 'base_estimator__gamma': [.1, 1, 10],\n",
" 'base_estimator__kernel': ['rbf']\n",
"}]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Stree().get_params()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "CrcB8o6EDZE5",
"outputId": "7703413a-d563-4289-a13b-532f38f82762",
"tags": []
},
"outputs": [],
"source": [
"clf = AdaBoostClassifier(random_state=random_state, algorithm=\"SAMME\")\n",
"grid = GridSearchCV(clf, parameters, verbose=5, n_jobs=-1, return_train_score=True)\n",
"grid.fit(Xtrain, ytrain)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "ZjX88NoYDZE8",
"outputId": "285163c8-fa33-4915-8ae7-61c4f7844344",
"tags": []
},
"outputs": [],
"source": [
"print(\"Best estimator: \", grid.best_estimator_)\n",
"print(\"Best hyperparameters: \", grid.best_params_)\n",
"print(\"Best accuracy: \", grid.best_score_)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Best estimator: AdaBoostClassifier(algorithm='SAMME',\n",
" base_estimator=Stree(C=55, max_depth=7, random_state=1,\n",
" split_criteria='max_samples', tol=0.1),\n",
" learning_rate=0.5, n_estimators=25, random_state=1)\n",
"Best hyperparameters: {'base_estimator': Stree(C=55, max_depth=7, random_state=1, split_criteria='max_samples', tol=0.1), 'base_estimator__C': 55, 'base_estimator__kernel': 'linear', 'base_estimator__max_depth': 7, 'base_estimator__split_criteria': 'max_samples', 'base_estimator__tol': 0.1, 'learning_rate': 0.5, 'n_estimators': 25}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Best accuracy: 0.9511777695988222"
]
}
],
"metadata": {
"colab": {
"name": "gridsearch.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.2-final"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -1,5 +1,65 @@
[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"
[project]
name = "STree"
dependencies = ["scikit-learn>1.0", "mufs"]
license = { file = "LICENSE" }
description = "Oblique decision tree with svm nodes."
readme = "README.md"
authors = [
{ name = "Ricardo Montañana", email = "ricardo.montanana@alu.uclm.es" },
]
dynamic = ['version']
requires-python = ">=3.11"
keywords = [
"scikit-learn",
"oblique-classifier",
"oblique-decision-tree",
"decision-tree",
"svm",
"svc",
]
classifiers = [
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Science/Research",
"Intended Audience :: Developers",
"Topic :: Software Development",
"Topic :: Scientific/Engineering",
"License :: OSI Approved :: MIT License",
"Natural Language :: English",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
]
[project.optional-dependencies]
dev = ["black", "flake8", "coverage", "hatch", "pip-audit"]
doc = ["sphinx", "myst-parser", "sphinx_rtd_theme", "sphinx-autodoc-typehints"]
[project.urls]
Code = "https://github.com/Doctorado-ML/STree"
Documentation = "https://stree.readthedocs.io/en/latest/index.html"
[tool.hatch.version]
path = "stree/_version.py"
[tool.hatch.build.targets.sdist]
include = ["/stree"]
[tool.coverage.run]
branch = true
source = ["stree"]
command_line = "-m unittest discover -s stree.tests"
[tool.coverage.report]
show_missing = true
fail_under = 100
[tool.black]
line-length = 79
target-version = ["py311"]
include = '\.pyi?$'
exclude = '''
/(
@@ -13,4 +73,4 @@ exclude = '''
| build
| dist
)/
'''
'''

View File

@@ -1 +0,0 @@
python-3.8

View File

@@ -1,56 +0,0 @@
import setuptools
import os
def readme():
with open("README.md") as f:
return f.read()
def get_data(field, file_name="__init__.py"):
item = ""
with open(os.path.join("stree", file_name)) as f:
for line in f.readlines():
if line.startswith(f"__{field}__"):
delim = '"' if '"' in line else "'"
item = line.split(delim)[1]
break
else:
raise RuntimeError(f"Unable to find {field} string.")
return item
def get_requirements():
with open("requirements.txt") as f:
return f.read().splitlines()
setuptools.setup(
name="STree",
version=get_data("version", "_version.py"),
license=get_data("license"),
description="Oblique decision tree with svm nodes",
long_description=readme(),
long_description_content_type="text/markdown",
packages=setuptools.find_packages(),
url="https://github.com/Doctorado-ML/STree#stree",
project_urls={
"Code": "https://github.com/Doctorado-ML/STree",
"Documentation": "https://stree.readthedocs.io/en/latest/index.html",
},
author=get_data("author"),
author_email=get_data("author_email"),
keywords="scikit-learn oblique-classifier oblique-decision-tree decision-\
tree svm svc",
classifiers=[
"Development Status :: 5 - Production/Stable",
"License :: OSI Approved :: " + get_data("license"),
"Programming Language :: Python :: 3.8",
"Natural Language :: English",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Intended Audience :: Science/Research",
],
install_requires=get_requirements(),
test_suite="stree.tests",
zip_safe=False,
)

View File

@@ -267,7 +267,6 @@ class Splitter:
random_state=None,
normalize=False,
):
self._clf = clf
self._random_state = random_state
if random_state is not None:
@@ -415,7 +414,8 @@ class Splitter:
)
return tuple(
sorted(
range(len(feature_list)), key=lambda sub: feature_list[sub]
range(len(feature_list)),
key=lambda sub: feature_list[sub],
)[-max_features:]
)
@@ -530,7 +530,10 @@ class Splitter:
return entropy
def information_gain(
self, labels: np.array, labels_up: np.array, labels_dn: np.array
self,
labels: np.array,
labels_up: np.array,
labels_dn: np.array,
) -> float:
"""Compute information gain of a split candidate

View File

@@ -139,7 +139,7 @@ class Stree(BaseEstimator, ClassifierMixin):
self,
C: float = 1.0,
kernel: str = "linear",
max_iter: int = 1e5,
max_iter: int = int(1e5),
random_state: int = None,
max_depth: int = None,
tol: float = 1e-4,
@@ -153,7 +153,6 @@ class Stree(BaseEstimator, ClassifierMixin):
multiclass_strategy: str = "ovo",
normalize: bool = False,
):
self.max_iter = max_iter
self.C = C
self.kernel = kernel
@@ -175,6 +174,11 @@ class Stree(BaseEstimator, ClassifierMixin):
"""Return the version of the package."""
return __version__
def __call__(self) -> str:
"""Only added to comply with scikit-learn base sestimator for ensembles
"""
return self.version()
def _more_tags(self) -> dict:
"""Required by sklearn to supply features of the classifier
make mandatory the labels array
@@ -185,7 +189,10 @@ class Stree(BaseEstimator, ClassifierMixin):
return {"requires_y": True}
def fit(
self, X: np.ndarray, y: np.ndarray, sample_weight: np.array = None
self,
X: np.ndarray,
y: np.ndarray,
sample_weight: np.array = None,
) -> "Stree":
"""Build the tree based on the dataset of samples and its labels
@@ -340,7 +347,11 @@ class Stree(BaseEstimator, ClassifierMixin):
)
node.set_down(
self._train(
X_D, y_d, sw_d, depth + 1, title + f" - Down({depth+1})"
X_D,
y_d,
sw_d,
depth + 1,
title + f" - Down({depth+1})",
)
)
return node
@@ -485,6 +496,43 @@ class Stree(BaseEstimator, ClassifierMixin):
X = self.check_predict(X)
return self.classes_[np.argmax(self.__predict_class(X), axis=1)]
def get_nodes(self) -> int:
"""Return the number of nodes in the tree
Returns
-------
int
number of nodes
"""
nodes = 0
for _ in self:
nodes += 1
return nodes
def get_leaves(self) -> int:
"""Return the number of leaves in the tree
Returns
-------
int
number of leaves
"""
leaves = 0
for node in self:
if node.is_leaf():
leaves += 1
return leaves
def get_depth(self) -> int:
"""Return the depth of the tree
Returns
-------
int
depth of the tree
"""
return self.depth_
def nodes_leaves(self) -> tuple:
"""Compute the number of nodes and leaves in the built tree

View File

@@ -1,8 +1,9 @@
from .Strees import Stree, Siterator
from ._version import __version__
__author__ = "Ricardo Montañana Gómez"
__copyright__ = "Copyright 2020-2021, Ricardo Montañana Gómez"
__license__ = "MIT License"
__author_email__ = "ricardo.montanana@alu.uclm.es"
__all__ = ["Stree", "Siterator"]
__all__ = ["__version__", "Stree", "Siterator"]

View File

@@ -1 +1 @@
__version__ = "1.3.0"
__version__ = "1.4.0"

View File

@@ -239,6 +239,7 @@ class Stree_test(unittest.TestCase):
)
tcl.fit(*load_dataset(self._random_state))
self.assertEqual(depth, tcl.depth_)
self.assertEqual(depth, tcl.get_depth())
def test_unfitted_tree_is_iterable(self):
tcl = Stree()
@@ -288,12 +289,12 @@ class Stree_test(unittest.TestCase):
"impurity sigmoid": 0.824,
},
"Iris": {
"max_samples liblinear": 0.9550561797752809,
"max_samples liblinear": 0.9887640449438202,
"max_samples linear": 1.0,
"max_samples rbf": 0.6685393258426966,
"max_samples poly": 0.6853932584269663,
"max_samples sigmoid": 0.6404494382022472,
"impurity liblinear": 0.9550561797752809,
"impurity liblinear": 0.9887640449438202,
"impurity linear": 1.0,
"impurity rbf": 0.6685393258426966,
"impurity poly": 0.6853932584269663,
@@ -306,10 +307,10 @@ class Stree_test(unittest.TestCase):
for criteria in ["max_samples", "impurity"]:
for kernel in self._kernels:
clf = Stree(
max_iter=1e4,
multiclass_strategy="ovr"
if kernel == "liblinear"
else "ovo",
max_iter=int(1e4),
multiclass_strategy=(
"ovr" if kernel == "liblinear" else "ovo"
),
kernel=kernel,
random_state=self._random_state,
)
@@ -439,10 +440,10 @@ class Stree_test(unittest.TestCase):
clf.fit(X, y)
score = clf.score(X, y)
# Check accuracy of the whole model
self.assertAlmostEquals(0.98, score, 5)
self.assertAlmostEqual(0.98, score, 5)
svm = LinearSVC(random_state=0)
svm.fit(X, y)
self.assertAlmostEquals(0.9666666666666667, svm.score(X, y), 5)
self.assertAlmostEqual(0.9666666666666667, svm.score(X, y), 5)
data = svm.decision_function(X)
expected = [
0.4444444444444444,
@@ -454,7 +455,7 @@ class Stree_test(unittest.TestCase):
ty[data > 0] = 1
ty = ty.astype(int)
for i in range(3):
self.assertAlmostEquals(
self.assertAlmostEqual(
expected[i],
clf.splitter_._gini(ty[:, i]),
)
@@ -592,7 +593,7 @@ class Stree_test(unittest.TestCase):
)
self.assertEqual(0.9526666666666667, clf2.fit(X, y).score(X, y))
X, y = load_wine(return_X_y=True)
self.assertEqual(0.9831460674157303, clf.fit(X, y).score(X, y))
self.assertEqual(0.9887640449438202, clf.fit(X, y).score(X, y))
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
def test_zero_all_sample_weights(self):
@@ -640,10 +641,12 @@ class Stree_test(unittest.TestCase):
clf = Stree(random_state=self._random_state)
clf.fit(X, y)
self.assertEqual(6, clf.depth_)
self.assertEqual(6, clf.get_depth())
X, y = load_wine(return_X_y=True)
clf = Stree(random_state=self._random_state)
clf.fit(X, y)
self.assertEqual(4, clf.depth_)
self.assertEqual(4, clf.get_depth())
def test_nodes_leaves(self):
"""Check number of nodes and leaves."""
@@ -657,13 +660,17 @@ class Stree_test(unittest.TestCase):
clf.fit(X, y)
nodes, leaves = clf.nodes_leaves()
self.assertEqual(31, nodes)
self.assertEqual(31, clf.get_nodes())
self.assertEqual(16, leaves)
self.assertEqual(16, clf.get_leaves())
X, y = load_wine(return_X_y=True)
clf = Stree(random_state=self._random_state)
clf.fit(X, y)
nodes, leaves = clf.nodes_leaves()
self.assertEqual(11, nodes)
self.assertEqual(11, clf.get_nodes())
self.assertEqual(6, leaves)
self.assertEqual(6, clf.get_leaves())
def test_nodes_leaves_artificial(self):
"""Check leaves of artificial dataset."""
@@ -682,7 +689,9 @@ class Stree_test(unittest.TestCase):
clf.tree_ = n1
nodes, leaves = clf.nodes_leaves()
self.assertEqual(6, nodes)
self.assertEqual(6, clf.get_nodes())
self.assertEqual(2, leaves)
self.assertEqual(2, clf.get_leaves())
def test_bogus_multiclass_strategy(self):
"""Check invalid multiclass strategy."""
@@ -716,6 +725,11 @@ class Stree_test(unittest.TestCase):
clf = Stree()
self.assertEqual(__version__, clf.version())
def test_call(self) -> None:
"""Check call method."""
clf = Stree()
self.assertEqual(__version__, clf())
def test_graph(self):
"""Check graphviz representation of the tree."""
X, y = load_wine(return_X_y=True)