mirror of
https://github.com/Doctorado-ML/STree.git
synced 2025-08-18 00:46:02 +00:00
Compare commits
7 Commits
Author | SHA1 | Date | |
---|---|---|---|
5f8ca8f3bb
|
|||
|
fb8b9b344f | ||
036d1ba2a7
|
|||
4de74973b8
|
|||
|
28dd04b95a | ||
|
542bbce7db
|
||
|
5b791bc5bf |
14
.github/workflows/codeql-analysis.yml
vendored
14
.github/workflows/codeql-analysis.yml
vendored
@@ -2,12 +2,12 @@ name: "CodeQL"
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ master ]
|
||||
branches: [master]
|
||||
pull_request:
|
||||
# The branches below must be a subset of the branches above
|
||||
branches: [ master ]
|
||||
branches: [master]
|
||||
schedule:
|
||||
- cron: '16 17 * * 3'
|
||||
- cron: "16 17 * * 3"
|
||||
|
||||
jobs:
|
||||
analyze:
|
||||
@@ -17,7 +17,7 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
language: [ 'python' ]
|
||||
language: ["python"]
|
||||
# CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python' ]
|
||||
# Learn more:
|
||||
# https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#changing-the-languages-that-are-analyzed
|
||||
@@ -28,7 +28,7 @@ jobs:
|
||||
|
||||
# Initializes the CodeQL tools for scanning.
|
||||
- name: Initialize CodeQL
|
||||
uses: github/codeql-action/init@v1
|
||||
uses: github/codeql-action/init@v2
|
||||
with:
|
||||
languages: ${{ matrix.language }}
|
||||
# If you wish to specify custom queries, you can do so here or in a config file.
|
||||
@@ -39,7 +39,7 @@ jobs:
|
||||
# Autobuild attempts to build any compiled languages (C/C++, C#, or Java).
|
||||
# If this step fails, then you should remove it and run the build manually (see below)
|
||||
- name: Autobuild
|
||||
uses: github/codeql-action/autobuild@v1
|
||||
uses: github/codeql-action/autobuild@v2
|
||||
|
||||
# ℹ️ Command-line programs to run using the OS shell.
|
||||
# 📚 https://git.io/JvXDl
|
||||
@@ -53,4 +53,4 @@ jobs:
|
||||
# make release
|
||||
|
||||
- name: Perform CodeQL Analysis
|
||||
uses: github/codeql-action/analyze@v1
|
||||
uses: github/codeql-action/analyze@v2
|
||||
|
6
.github/workflows/main.yml
vendored
6
.github/workflows/main.yml
vendored
@@ -16,9 +16,9 @@ jobs:
|
||||
python: [3.8, "3.10"]
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions/checkout@v3
|
||||
- name: Set up Python ${{ matrix.python }}
|
||||
uses: actions/setup-python@v2
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: ${{ matrix.python }}
|
||||
- name: Install dependencies
|
||||
@@ -35,7 +35,7 @@ jobs:
|
||||
coverage run -m unittest -v stree.tests
|
||||
coverage xml
|
||||
- name: Upload coverage to Codecov
|
||||
uses: codecov/codecov-action@v1
|
||||
uses: codecov/codecov-action@v3
|
||||
with:
|
||||
token: ${{ secrets.CODECOV_TOKEN }}
|
||||
files: ./coverage.xml
|
||||
|
@@ -1,7 +1,7 @@
|
||||

|
||||
[](https://github.com/Doctorado-ML/STree/actions/workflows/codeql-analysis.yml)
|
||||
[](https://codecov.io/gh/doctorado-ml/stree)
|
||||
[](https://www.codacy.com/gh/Doctorado-ML/STree?utm_source=github.com&utm_medium=referral&utm_content=Doctorado-ML/STree&utm_campaign=Badge_Grade)
|
||||
[](https://lgtm.com/projects/g/Doctorado-ML/STree/context:python)
|
||||
[](https://badge.fury.io/py/STree)
|
||||

|
||||
[](https://zenodo.org/badge/latestdoi/262658230)
|
||||
@@ -15,7 +15,7 @@ Oblique Tree classifier based on SVM nodes. The nodes are built and splitted wit
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install git+https://github.com/doctorado-ml/stree
|
||||
pip install Stree
|
||||
```
|
||||
|
||||
## Documentation
|
||||
|
@@ -178,7 +178,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Stree\n",
|
||||
"stree = Stree(random_state=random_state, C=.01, max_iter=1e3, kernel=\"liblinear\", multiclass_strategy=\"ovr\")"
|
||||
"stree = Stree(random_state=random_state, C=.01, max_iter=1000, kernel=\"liblinear\", multiclass_strategy=\"ovr\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -198,7 +198,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# SVC (linear)\n",
|
||||
"svc = LinearSVC(random_state=random_state, C=.01, max_iter=1e3)"
|
||||
"svc = LinearSVC(random_state=random_state, C=.01, max_iter=1000)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@@ -133,33 +133,33 @@
|
||||
" 'base_estimator': [Stree(random_state=random_state)],\n",
|
||||
" 'n_estimators': [10, 25],\n",
|
||||
" 'learning_rate': [.5, 1],\n",
|
||||
" 'base_estimator__split_criteria': ['max_samples', 'impurity'],\n",
|
||||
" 'base_estimator__tol': [.1, 1e-02],\n",
|
||||
" 'base_estimator__max_depth': [3, 5, 7],\n",
|
||||
" 'base_estimator__C': [1, 7, 55],\n",
|
||||
" 'base_estimator__kernel': ['linear']\n",
|
||||
" 'estimator__split_criteria': ['max_samples', 'impurity'],\n",
|
||||
" 'estimator__tol': [.1, 1e-02],\n",
|
||||
" 'estimator__max_depth': [3, 5, 7],\n",
|
||||
" 'estimator__C': [1, 7, 55],\n",
|
||||
" 'estimator__kernel': ['linear']\n",
|
||||
"},\n",
|
||||
"{\n",
|
||||
" 'base_estimator': [Stree(random_state=random_state)],\n",
|
||||
" 'n_estimators': [10, 25],\n",
|
||||
" 'learning_rate': [.5, 1],\n",
|
||||
" 'base_estimator__split_criteria': ['max_samples', 'impurity'],\n",
|
||||
" 'base_estimator__tol': [.1, 1e-02],\n",
|
||||
" 'base_estimator__max_depth': [3, 5, 7],\n",
|
||||
" 'base_estimator__C': [1, 7, 55],\n",
|
||||
" 'base_estimator__degree': [3, 5, 7],\n",
|
||||
" 'base_estimator__kernel': ['poly']\n",
|
||||
" 'estimator__split_criteria': ['max_samples', 'impurity'],\n",
|
||||
" 'estimator__tol': [.1, 1e-02],\n",
|
||||
" 'estimator__max_depth': [3, 5, 7],\n",
|
||||
" 'estimator__C': [1, 7, 55],\n",
|
||||
" 'estimator__degree': [3, 5, 7],\n",
|
||||
" 'estimator__kernel': ['poly']\n",
|
||||
"},\n",
|
||||
"{\n",
|
||||
" 'base_estimator': [Stree(random_state=random_state)],\n",
|
||||
" 'n_estimators': [10, 25],\n",
|
||||
" 'learning_rate': [.5, 1],\n",
|
||||
" 'base_estimator__split_criteria': ['max_samples', 'impurity'],\n",
|
||||
" 'base_estimator__tol': [.1, 1e-02],\n",
|
||||
" 'base_estimator__max_depth': [3, 5, 7],\n",
|
||||
" 'base_estimator__C': [1, 7, 55],\n",
|
||||
" 'base_estimator__gamma': [.1, 1, 10],\n",
|
||||
" 'base_estimator__kernel': ['rbf']\n",
|
||||
" 'estimator__split_criteria': ['max_samples', 'impurity'],\n",
|
||||
" 'estimator__tol': [.1, 1e-02],\n",
|
||||
" 'estimator__max_depth': [3, 5, 7],\n",
|
||||
" 'estimator__C': [1, 7, 55],\n",
|
||||
" 'estimator__gamma': [.1, 1, 10],\n",
|
||||
" 'estimator__kernel': ['rbf']\n",
|
||||
"}]"
|
||||
]
|
||||
},
|
||||
@@ -214,7 +214,7 @@
|
||||
" base_estimator=Stree(C=55, max_depth=7, random_state=1,\n",
|
||||
" split_criteria='max_samples', tol=0.1),\n",
|
||||
" learning_rate=0.5, n_estimators=25, random_state=1)\n",
|
||||
"Best hyperparameters: {'base_estimator': Stree(C=55, max_depth=7, random_state=1, split_criteria='max_samples', tol=0.1), 'base_estimator__C': 55, 'base_estimator__kernel': 'linear', 'base_estimator__max_depth': 7, 'base_estimator__split_criteria': 'max_samples', 'base_estimator__tol': 0.1, 'learning_rate': 0.5, 'n_estimators': 25}"
|
||||
"Best hyperparameters: {'base_estimator': Stree(C=55, max_depth=7, random_state=1, split_criteria='max_samples', tol=0.1), 'estimator__C': 55, 'estimator__kernel': 'linear', 'estimator__max_depth': 7, 'estimator__split_criteria': 'max_samples', 'estimator__tol': 0.1, 'learning_rate': 0.5, 'n_estimators': 25}"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@@ -267,7 +267,6 @@ class Splitter:
|
||||
random_state=None,
|
||||
normalize=False,
|
||||
):
|
||||
|
||||
self._clf = clf
|
||||
self._random_state = random_state
|
||||
if random_state is not None:
|
||||
|
@@ -139,7 +139,7 @@ class Stree(BaseEstimator, ClassifierMixin):
|
||||
self,
|
||||
C: float = 1.0,
|
||||
kernel: str = "linear",
|
||||
max_iter: int = 1e5,
|
||||
max_iter: int = int(1e5),
|
||||
random_state: int = None,
|
||||
max_depth: int = None,
|
||||
tol: float = 1e-4,
|
||||
@@ -153,7 +153,6 @@ class Stree(BaseEstimator, ClassifierMixin):
|
||||
multiclass_strategy: str = "ovo",
|
||||
normalize: bool = False,
|
||||
):
|
||||
|
||||
self.max_iter = max_iter
|
||||
self.C = C
|
||||
self.kernel = kernel
|
||||
@@ -485,6 +484,43 @@ class Stree(BaseEstimator, ClassifierMixin):
|
||||
X = self.check_predict(X)
|
||||
return self.classes_[np.argmax(self.__predict_class(X), axis=1)]
|
||||
|
||||
def get_nodes(self) -> int:
|
||||
"""Return the number of nodes in the tree
|
||||
|
||||
Returns
|
||||
-------
|
||||
int
|
||||
number of nodes
|
||||
"""
|
||||
nodes = 0
|
||||
for _ in self:
|
||||
nodes += 1
|
||||
return nodes
|
||||
|
||||
def get_leaves(self) -> int:
|
||||
"""Return the number of leaves in the tree
|
||||
|
||||
Returns
|
||||
-------
|
||||
int
|
||||
number of leaves
|
||||
"""
|
||||
leaves = 0
|
||||
for node in self:
|
||||
if node.is_leaf():
|
||||
leaves += 1
|
||||
return leaves
|
||||
|
||||
def get_depth(self) -> int:
|
||||
"""Return the depth of the tree
|
||||
|
||||
Returns
|
||||
-------
|
||||
int
|
||||
depth of the tree
|
||||
"""
|
||||
return self.depth_
|
||||
|
||||
def nodes_leaves(self) -> tuple:
|
||||
"""Compute the number of nodes and leaves in the built tree
|
||||
|
||||
|
@@ -1 +1 @@
|
||||
__version__ = "1.3.0"
|
||||
__version__ = "1.3.2"
|
||||
|
@@ -239,6 +239,7 @@ class Stree_test(unittest.TestCase):
|
||||
)
|
||||
tcl.fit(*load_dataset(self._random_state))
|
||||
self.assertEqual(depth, tcl.depth_)
|
||||
self.assertEqual(depth, tcl.get_depth())
|
||||
|
||||
def test_unfitted_tree_is_iterable(self):
|
||||
tcl = Stree()
|
||||
@@ -306,10 +307,10 @@ class Stree_test(unittest.TestCase):
|
||||
for criteria in ["max_samples", "impurity"]:
|
||||
for kernel in self._kernels:
|
||||
clf = Stree(
|
||||
max_iter=1e4,
|
||||
multiclass_strategy="ovr"
|
||||
if kernel == "liblinear"
|
||||
else "ovo",
|
||||
max_iter=int(1e4),
|
||||
multiclass_strategy=(
|
||||
"ovr" if kernel == "liblinear" else "ovo"
|
||||
),
|
||||
kernel=kernel,
|
||||
random_state=self._random_state,
|
||||
)
|
||||
@@ -640,10 +641,12 @@ class Stree_test(unittest.TestCase):
|
||||
clf = Stree(random_state=self._random_state)
|
||||
clf.fit(X, y)
|
||||
self.assertEqual(6, clf.depth_)
|
||||
self.assertEqual(6, clf.get_depth())
|
||||
X, y = load_wine(return_X_y=True)
|
||||
clf = Stree(random_state=self._random_state)
|
||||
clf.fit(X, y)
|
||||
self.assertEqual(4, clf.depth_)
|
||||
self.assertEqual(4, clf.get_depth())
|
||||
|
||||
def test_nodes_leaves(self):
|
||||
"""Check number of nodes and leaves."""
|
||||
@@ -657,13 +660,17 @@ class Stree_test(unittest.TestCase):
|
||||
clf.fit(X, y)
|
||||
nodes, leaves = clf.nodes_leaves()
|
||||
self.assertEqual(31, nodes)
|
||||
self.assertEqual(31, clf.get_nodes())
|
||||
self.assertEqual(16, leaves)
|
||||
self.assertEqual(16, clf.get_leaves())
|
||||
X, y = load_wine(return_X_y=True)
|
||||
clf = Stree(random_state=self._random_state)
|
||||
clf.fit(X, y)
|
||||
nodes, leaves = clf.nodes_leaves()
|
||||
self.assertEqual(11, nodes)
|
||||
self.assertEqual(11, clf.get_nodes())
|
||||
self.assertEqual(6, leaves)
|
||||
self.assertEqual(6, clf.get_leaves())
|
||||
|
||||
def test_nodes_leaves_artificial(self):
|
||||
"""Check leaves of artificial dataset."""
|
||||
@@ -682,7 +689,9 @@ class Stree_test(unittest.TestCase):
|
||||
clf.tree_ = n1
|
||||
nodes, leaves = clf.nodes_leaves()
|
||||
self.assertEqual(6, nodes)
|
||||
self.assertEqual(6, clf.get_nodes())
|
||||
self.assertEqual(2, leaves)
|
||||
self.assertEqual(2, clf.get_leaves())
|
||||
|
||||
def test_bogus_multiclass_strategy(self):
|
||||
"""Check invalid multiclass strategy."""
|
||||
|
Reference in New Issue
Block a user