mirror of
https://github.com/Doctorado-ML/STree.git
synced 2025-08-18 17:06:01 +00:00
Compare commits
7 Commits
Author | SHA1 | Date | |
---|---|---|---|
5f8ca8f3bb
|
|||
|
fb8b9b344f | ||
036d1ba2a7
|
|||
4de74973b8
|
|||
|
28dd04b95a | ||
|
542bbce7db
|
||
|
5b791bc5bf |
14
.github/workflows/codeql-analysis.yml
vendored
14
.github/workflows/codeql-analysis.yml
vendored
@@ -2,12 +2,12 @@ name: "CodeQL"
|
|||||||
|
|
||||||
on:
|
on:
|
||||||
push:
|
push:
|
||||||
branches: [ master ]
|
branches: [master]
|
||||||
pull_request:
|
pull_request:
|
||||||
# The branches below must be a subset of the branches above
|
# The branches below must be a subset of the branches above
|
||||||
branches: [ master ]
|
branches: [master]
|
||||||
schedule:
|
schedule:
|
||||||
- cron: '16 17 * * 3'
|
- cron: "16 17 * * 3"
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
analyze:
|
analyze:
|
||||||
@@ -17,7 +17,7 @@ jobs:
|
|||||||
strategy:
|
strategy:
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
matrix:
|
matrix:
|
||||||
language: [ 'python' ]
|
language: ["python"]
|
||||||
# CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python' ]
|
# CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python' ]
|
||||||
# Learn more:
|
# Learn more:
|
||||||
# https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#changing-the-languages-that-are-analyzed
|
# https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#changing-the-languages-that-are-analyzed
|
||||||
@@ -28,7 +28,7 @@ jobs:
|
|||||||
|
|
||||||
# Initializes the CodeQL tools for scanning.
|
# Initializes the CodeQL tools for scanning.
|
||||||
- name: Initialize CodeQL
|
- name: Initialize CodeQL
|
||||||
uses: github/codeql-action/init@v1
|
uses: github/codeql-action/init@v2
|
||||||
with:
|
with:
|
||||||
languages: ${{ matrix.language }}
|
languages: ${{ matrix.language }}
|
||||||
# If you wish to specify custom queries, you can do so here or in a config file.
|
# If you wish to specify custom queries, you can do so here or in a config file.
|
||||||
@@ -39,7 +39,7 @@ jobs:
|
|||||||
# Autobuild attempts to build any compiled languages (C/C++, C#, or Java).
|
# Autobuild attempts to build any compiled languages (C/C++, C#, or Java).
|
||||||
# If this step fails, then you should remove it and run the build manually (see below)
|
# If this step fails, then you should remove it and run the build manually (see below)
|
||||||
- name: Autobuild
|
- name: Autobuild
|
||||||
uses: github/codeql-action/autobuild@v1
|
uses: github/codeql-action/autobuild@v2
|
||||||
|
|
||||||
# ℹ️ Command-line programs to run using the OS shell.
|
# ℹ️ Command-line programs to run using the OS shell.
|
||||||
# 📚 https://git.io/JvXDl
|
# 📚 https://git.io/JvXDl
|
||||||
@@ -53,4 +53,4 @@ jobs:
|
|||||||
# make release
|
# make release
|
||||||
|
|
||||||
- name: Perform CodeQL Analysis
|
- name: Perform CodeQL Analysis
|
||||||
uses: github/codeql-action/analyze@v1
|
uses: github/codeql-action/analyze@v2
|
||||||
|
6
.github/workflows/main.yml
vendored
6
.github/workflows/main.yml
vendored
@@ -16,9 +16,9 @@ jobs:
|
|||||||
python: [3.8, "3.10"]
|
python: [3.8, "3.10"]
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v2
|
- uses: actions/checkout@v3
|
||||||
- name: Set up Python ${{ matrix.python }}
|
- name: Set up Python ${{ matrix.python }}
|
||||||
uses: actions/setup-python@v2
|
uses: actions/setup-python@v4
|
||||||
with:
|
with:
|
||||||
python-version: ${{ matrix.python }}
|
python-version: ${{ matrix.python }}
|
||||||
- name: Install dependencies
|
- name: Install dependencies
|
||||||
@@ -35,7 +35,7 @@ jobs:
|
|||||||
coverage run -m unittest -v stree.tests
|
coverage run -m unittest -v stree.tests
|
||||||
coverage xml
|
coverage xml
|
||||||
- name: Upload coverage to Codecov
|
- name: Upload coverage to Codecov
|
||||||
uses: codecov/codecov-action@v1
|
uses: codecov/codecov-action@v3
|
||||||
with:
|
with:
|
||||||
token: ${{ secrets.CODECOV_TOKEN }}
|
token: ${{ secrets.CODECOV_TOKEN }}
|
||||||
files: ./coverage.xml
|
files: ./coverage.xml
|
||||||
|
@@ -1,7 +1,7 @@
|
|||||||

|

|
||||||
|
[](https://github.com/Doctorado-ML/STree/actions/workflows/codeql-analysis.yml)
|
||||||
[](https://codecov.io/gh/doctorado-ml/stree)
|
[](https://codecov.io/gh/doctorado-ml/stree)
|
||||||
[](https://www.codacy.com/gh/Doctorado-ML/STree?utm_source=github.com&utm_medium=referral&utm_content=Doctorado-ML/STree&utm_campaign=Badge_Grade)
|
[](https://www.codacy.com/gh/Doctorado-ML/STree?utm_source=github.com&utm_medium=referral&utm_content=Doctorado-ML/STree&utm_campaign=Badge_Grade)
|
||||||
[](https://lgtm.com/projects/g/Doctorado-ML/STree/context:python)
|
|
||||||
[](https://badge.fury.io/py/STree)
|
[](https://badge.fury.io/py/STree)
|
||||||

|

|
||||||
[](https://zenodo.org/badge/latestdoi/262658230)
|
[](https://zenodo.org/badge/latestdoi/262658230)
|
||||||
@@ -15,7 +15,7 @@ Oblique Tree classifier based on SVM nodes. The nodes are built and splitted wit
|
|||||||
## Installation
|
## Installation
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
pip install git+https://github.com/doctorado-ml/stree
|
pip install Stree
|
||||||
```
|
```
|
||||||
|
|
||||||
## Documentation
|
## Documentation
|
||||||
|
@@ -178,7 +178,7 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"# Stree\n",
|
"# Stree\n",
|
||||||
"stree = Stree(random_state=random_state, C=.01, max_iter=1e3, kernel=\"liblinear\", multiclass_strategy=\"ovr\")"
|
"stree = Stree(random_state=random_state, C=.01, max_iter=1000, kernel=\"liblinear\", multiclass_strategy=\"ovr\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -198,7 +198,7 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"# SVC (linear)\n",
|
"# SVC (linear)\n",
|
||||||
"svc = LinearSVC(random_state=random_state, C=.01, max_iter=1e3)"
|
"svc = LinearSVC(random_state=random_state, C=.01, max_iter=1000)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@@ -133,33 +133,33 @@
|
|||||||
" 'base_estimator': [Stree(random_state=random_state)],\n",
|
" 'base_estimator': [Stree(random_state=random_state)],\n",
|
||||||
" 'n_estimators': [10, 25],\n",
|
" 'n_estimators': [10, 25],\n",
|
||||||
" 'learning_rate': [.5, 1],\n",
|
" 'learning_rate': [.5, 1],\n",
|
||||||
" 'base_estimator__split_criteria': ['max_samples', 'impurity'],\n",
|
" 'estimator__split_criteria': ['max_samples', 'impurity'],\n",
|
||||||
" 'base_estimator__tol': [.1, 1e-02],\n",
|
" 'estimator__tol': [.1, 1e-02],\n",
|
||||||
" 'base_estimator__max_depth': [3, 5, 7],\n",
|
" 'estimator__max_depth': [3, 5, 7],\n",
|
||||||
" 'base_estimator__C': [1, 7, 55],\n",
|
" 'estimator__C': [1, 7, 55],\n",
|
||||||
" 'base_estimator__kernel': ['linear']\n",
|
" 'estimator__kernel': ['linear']\n",
|
||||||
"},\n",
|
"},\n",
|
||||||
"{\n",
|
"{\n",
|
||||||
" 'base_estimator': [Stree(random_state=random_state)],\n",
|
" 'base_estimator': [Stree(random_state=random_state)],\n",
|
||||||
" 'n_estimators': [10, 25],\n",
|
" 'n_estimators': [10, 25],\n",
|
||||||
" 'learning_rate': [.5, 1],\n",
|
" 'learning_rate': [.5, 1],\n",
|
||||||
" 'base_estimator__split_criteria': ['max_samples', 'impurity'],\n",
|
" 'estimator__split_criteria': ['max_samples', 'impurity'],\n",
|
||||||
" 'base_estimator__tol': [.1, 1e-02],\n",
|
" 'estimator__tol': [.1, 1e-02],\n",
|
||||||
" 'base_estimator__max_depth': [3, 5, 7],\n",
|
" 'estimator__max_depth': [3, 5, 7],\n",
|
||||||
" 'base_estimator__C': [1, 7, 55],\n",
|
" 'estimator__C': [1, 7, 55],\n",
|
||||||
" 'base_estimator__degree': [3, 5, 7],\n",
|
" 'estimator__degree': [3, 5, 7],\n",
|
||||||
" 'base_estimator__kernel': ['poly']\n",
|
" 'estimator__kernel': ['poly']\n",
|
||||||
"},\n",
|
"},\n",
|
||||||
"{\n",
|
"{\n",
|
||||||
" 'base_estimator': [Stree(random_state=random_state)],\n",
|
" 'base_estimator': [Stree(random_state=random_state)],\n",
|
||||||
" 'n_estimators': [10, 25],\n",
|
" 'n_estimators': [10, 25],\n",
|
||||||
" 'learning_rate': [.5, 1],\n",
|
" 'learning_rate': [.5, 1],\n",
|
||||||
" 'base_estimator__split_criteria': ['max_samples', 'impurity'],\n",
|
" 'estimator__split_criteria': ['max_samples', 'impurity'],\n",
|
||||||
" 'base_estimator__tol': [.1, 1e-02],\n",
|
" 'estimator__tol': [.1, 1e-02],\n",
|
||||||
" 'base_estimator__max_depth': [3, 5, 7],\n",
|
" 'estimator__max_depth': [3, 5, 7],\n",
|
||||||
" 'base_estimator__C': [1, 7, 55],\n",
|
" 'estimator__C': [1, 7, 55],\n",
|
||||||
" 'base_estimator__gamma': [.1, 1, 10],\n",
|
" 'estimator__gamma': [.1, 1, 10],\n",
|
||||||
" 'base_estimator__kernel': ['rbf']\n",
|
" 'estimator__kernel': ['rbf']\n",
|
||||||
"}]"
|
"}]"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@@ -214,7 +214,7 @@
|
|||||||
" base_estimator=Stree(C=55, max_depth=7, random_state=1,\n",
|
" base_estimator=Stree(C=55, max_depth=7, random_state=1,\n",
|
||||||
" split_criteria='max_samples', tol=0.1),\n",
|
" split_criteria='max_samples', tol=0.1),\n",
|
||||||
" learning_rate=0.5, n_estimators=25, random_state=1)\n",
|
" learning_rate=0.5, n_estimators=25, random_state=1)\n",
|
||||||
"Best hyperparameters: {'base_estimator': Stree(C=55, max_depth=7, random_state=1, split_criteria='max_samples', tol=0.1), 'base_estimator__C': 55, 'base_estimator__kernel': 'linear', 'base_estimator__max_depth': 7, 'base_estimator__split_criteria': 'max_samples', 'base_estimator__tol': 0.1, 'learning_rate': 0.5, 'n_estimators': 25}"
|
"Best hyperparameters: {'base_estimator': Stree(C=55, max_depth=7, random_state=1, split_criteria='max_samples', tol=0.1), 'estimator__C': 55, 'estimator__kernel': 'linear', 'estimator__max_depth': 7, 'estimator__split_criteria': 'max_samples', 'estimator__tol': 0.1, 'learning_rate': 0.5, 'n_estimators': 25}"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@@ -267,7 +267,6 @@ class Splitter:
|
|||||||
random_state=None,
|
random_state=None,
|
||||||
normalize=False,
|
normalize=False,
|
||||||
):
|
):
|
||||||
|
|
||||||
self._clf = clf
|
self._clf = clf
|
||||||
self._random_state = random_state
|
self._random_state = random_state
|
||||||
if random_state is not None:
|
if random_state is not None:
|
||||||
|
@@ -139,7 +139,7 @@ class Stree(BaseEstimator, ClassifierMixin):
|
|||||||
self,
|
self,
|
||||||
C: float = 1.0,
|
C: float = 1.0,
|
||||||
kernel: str = "linear",
|
kernel: str = "linear",
|
||||||
max_iter: int = 1e5,
|
max_iter: int = int(1e5),
|
||||||
random_state: int = None,
|
random_state: int = None,
|
||||||
max_depth: int = None,
|
max_depth: int = None,
|
||||||
tol: float = 1e-4,
|
tol: float = 1e-4,
|
||||||
@@ -153,7 +153,6 @@ class Stree(BaseEstimator, ClassifierMixin):
|
|||||||
multiclass_strategy: str = "ovo",
|
multiclass_strategy: str = "ovo",
|
||||||
normalize: bool = False,
|
normalize: bool = False,
|
||||||
):
|
):
|
||||||
|
|
||||||
self.max_iter = max_iter
|
self.max_iter = max_iter
|
||||||
self.C = C
|
self.C = C
|
||||||
self.kernel = kernel
|
self.kernel = kernel
|
||||||
@@ -485,6 +484,43 @@ class Stree(BaseEstimator, ClassifierMixin):
|
|||||||
X = self.check_predict(X)
|
X = self.check_predict(X)
|
||||||
return self.classes_[np.argmax(self.__predict_class(X), axis=1)]
|
return self.classes_[np.argmax(self.__predict_class(X), axis=1)]
|
||||||
|
|
||||||
|
def get_nodes(self) -> int:
|
||||||
|
"""Return the number of nodes in the tree
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
int
|
||||||
|
number of nodes
|
||||||
|
"""
|
||||||
|
nodes = 0
|
||||||
|
for _ in self:
|
||||||
|
nodes += 1
|
||||||
|
return nodes
|
||||||
|
|
||||||
|
def get_leaves(self) -> int:
|
||||||
|
"""Return the number of leaves in the tree
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
int
|
||||||
|
number of leaves
|
||||||
|
"""
|
||||||
|
leaves = 0
|
||||||
|
for node in self:
|
||||||
|
if node.is_leaf():
|
||||||
|
leaves += 1
|
||||||
|
return leaves
|
||||||
|
|
||||||
|
def get_depth(self) -> int:
|
||||||
|
"""Return the depth of the tree
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
int
|
||||||
|
depth of the tree
|
||||||
|
"""
|
||||||
|
return self.depth_
|
||||||
|
|
||||||
def nodes_leaves(self) -> tuple:
|
def nodes_leaves(self) -> tuple:
|
||||||
"""Compute the number of nodes and leaves in the built tree
|
"""Compute the number of nodes and leaves in the built tree
|
||||||
|
|
||||||
|
@@ -1 +1 @@
|
|||||||
__version__ = "1.3.0"
|
__version__ = "1.3.2"
|
||||||
|
@@ -239,6 +239,7 @@ class Stree_test(unittest.TestCase):
|
|||||||
)
|
)
|
||||||
tcl.fit(*load_dataset(self._random_state))
|
tcl.fit(*load_dataset(self._random_state))
|
||||||
self.assertEqual(depth, tcl.depth_)
|
self.assertEqual(depth, tcl.depth_)
|
||||||
|
self.assertEqual(depth, tcl.get_depth())
|
||||||
|
|
||||||
def test_unfitted_tree_is_iterable(self):
|
def test_unfitted_tree_is_iterable(self):
|
||||||
tcl = Stree()
|
tcl = Stree()
|
||||||
@@ -306,10 +307,10 @@ class Stree_test(unittest.TestCase):
|
|||||||
for criteria in ["max_samples", "impurity"]:
|
for criteria in ["max_samples", "impurity"]:
|
||||||
for kernel in self._kernels:
|
for kernel in self._kernels:
|
||||||
clf = Stree(
|
clf = Stree(
|
||||||
max_iter=1e4,
|
max_iter=int(1e4),
|
||||||
multiclass_strategy="ovr"
|
multiclass_strategy=(
|
||||||
if kernel == "liblinear"
|
"ovr" if kernel == "liblinear" else "ovo"
|
||||||
else "ovo",
|
),
|
||||||
kernel=kernel,
|
kernel=kernel,
|
||||||
random_state=self._random_state,
|
random_state=self._random_state,
|
||||||
)
|
)
|
||||||
@@ -640,10 +641,12 @@ class Stree_test(unittest.TestCase):
|
|||||||
clf = Stree(random_state=self._random_state)
|
clf = Stree(random_state=self._random_state)
|
||||||
clf.fit(X, y)
|
clf.fit(X, y)
|
||||||
self.assertEqual(6, clf.depth_)
|
self.assertEqual(6, clf.depth_)
|
||||||
|
self.assertEqual(6, clf.get_depth())
|
||||||
X, y = load_wine(return_X_y=True)
|
X, y = load_wine(return_X_y=True)
|
||||||
clf = Stree(random_state=self._random_state)
|
clf = Stree(random_state=self._random_state)
|
||||||
clf.fit(X, y)
|
clf.fit(X, y)
|
||||||
self.assertEqual(4, clf.depth_)
|
self.assertEqual(4, clf.depth_)
|
||||||
|
self.assertEqual(4, clf.get_depth())
|
||||||
|
|
||||||
def test_nodes_leaves(self):
|
def test_nodes_leaves(self):
|
||||||
"""Check number of nodes and leaves."""
|
"""Check number of nodes and leaves."""
|
||||||
@@ -657,13 +660,17 @@ class Stree_test(unittest.TestCase):
|
|||||||
clf.fit(X, y)
|
clf.fit(X, y)
|
||||||
nodes, leaves = clf.nodes_leaves()
|
nodes, leaves = clf.nodes_leaves()
|
||||||
self.assertEqual(31, nodes)
|
self.assertEqual(31, nodes)
|
||||||
|
self.assertEqual(31, clf.get_nodes())
|
||||||
self.assertEqual(16, leaves)
|
self.assertEqual(16, leaves)
|
||||||
|
self.assertEqual(16, clf.get_leaves())
|
||||||
X, y = load_wine(return_X_y=True)
|
X, y = load_wine(return_X_y=True)
|
||||||
clf = Stree(random_state=self._random_state)
|
clf = Stree(random_state=self._random_state)
|
||||||
clf.fit(X, y)
|
clf.fit(X, y)
|
||||||
nodes, leaves = clf.nodes_leaves()
|
nodes, leaves = clf.nodes_leaves()
|
||||||
self.assertEqual(11, nodes)
|
self.assertEqual(11, nodes)
|
||||||
|
self.assertEqual(11, clf.get_nodes())
|
||||||
self.assertEqual(6, leaves)
|
self.assertEqual(6, leaves)
|
||||||
|
self.assertEqual(6, clf.get_leaves())
|
||||||
|
|
||||||
def test_nodes_leaves_artificial(self):
|
def test_nodes_leaves_artificial(self):
|
||||||
"""Check leaves of artificial dataset."""
|
"""Check leaves of artificial dataset."""
|
||||||
@@ -682,7 +689,9 @@ class Stree_test(unittest.TestCase):
|
|||||||
clf.tree_ = n1
|
clf.tree_ = n1
|
||||||
nodes, leaves = clf.nodes_leaves()
|
nodes, leaves = clf.nodes_leaves()
|
||||||
self.assertEqual(6, nodes)
|
self.assertEqual(6, nodes)
|
||||||
|
self.assertEqual(6, clf.get_nodes())
|
||||||
self.assertEqual(2, leaves)
|
self.assertEqual(2, leaves)
|
||||||
|
self.assertEqual(2, clf.get_leaves())
|
||||||
|
|
||||||
def test_bogus_multiclass_strategy(self):
|
def test_bogus_multiclass_strategy(self):
|
||||||
"""Check invalid multiclass strategy."""
|
"""Check invalid multiclass strategy."""
|
||||||
|
Reference in New Issue
Block a user