mirror of
https://github.com/Doctorado-ML/STree.git
synced 2025-08-17 16:36:01 +00:00
Compare commits
14 Commits
predict_pr
...
gridsearch
Author | SHA1 | Date | |
---|---|---|---|
724a4855fb
|
|||
a22ae81b54
|
|||
ed98054f0d
|
|||
e95bd9697a
|
|||
5956cd0cd2
|
|||
27b278860d
|
|||
d5d723c67f
|
|||
77f10281c1
|
|||
ac1483ae1d
|
|||
e51690ed95
|
|||
a4595f5815
|
|||
316f84cc63
|
|||
6e35628c85
|
|||
c0ef71f139
|
@@ -10,4 +10,4 @@ notifications:
|
|||||||
on_success: never # default: change
|
on_success: never # default: change
|
||||||
on_failure: always # default: always
|
on_failure: always # default: always
|
||||||
# command to run tests
|
# command to run tests
|
||||||
script: python -m unittest tests.Stree_test tests.Snode_test
|
script: python -m unittest stree.tests
|
32
README.md
32
README.md
@@ -2,22 +2,40 @@
|
|||||||
|
|
||||||
# Stree
|
# Stree
|
||||||
|
|
||||||
Oblique Tree classifier based on SVM nodes
|
Oblique Tree classifier based on SVM nodes. The nodes are built and splitted with sklearn LinearSVC models.Stree is a sklearn estimator and can be integrated in pipelines, grid searches, etc.
|
||||||
|
|
||||||
## Example
|

|
||||||
|
|
||||||
### Jupyter
|
## Installation
|
||||||
|
|
||||||
[](https://mybinder.org/v2/gh/Doctorado-ML/STree/master?urlpath=lab/tree/test.ipynb)
|
```bash
|
||||||
|
pip install git+https://github.com/doctorado-ml/stree
|
||||||
|
```
|
||||||
|
|
||||||
|
## Examples
|
||||||
|
|
||||||
|
### Jupyter notebooks
|
||||||
|
|
||||||
|
##### Slow launch but better integration
|
||||||
|
|
||||||
|
* [](https://mybinder.org/v2/gh/Doctorado-ML/STree/master?urlpath=lab/tree/notebooks/test.ipynb) Test notebook
|
||||||
|
|
||||||
|
##### Fast launch but have to run first commented out cell for setup
|
||||||
|
|
||||||
|
* [](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/test.ipynb) Test notebook
|
||||||
|
|
||||||
|
* [](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/test2.ipynb) Another Test notebook
|
||||||
|
|
||||||
|
* [](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/test_graphs.ipynb) Test Graphics notebook
|
||||||
|
|
||||||
### Command line
|
### Command line
|
||||||
|
|
||||||
```python
|
```bash
|
||||||
python main.py
|
python main.py
|
||||||
```
|
```
|
||||||
|
|
||||||
## Tests
|
## Tests
|
||||||
|
|
||||||
```python
|
```bash
|
||||||
python -m unittest -v tests.Stree_test tests.Snode_test
|
python -m unittest -v stree.tests
|
||||||
```
|
```
|
||||||
|
2
data/.gitignore
vendored
2
data/.gitignore
vendored
@@ -1,2 +0,0 @@
|
|||||||
*.csv
|
|
||||||
*.txt
|
|
BIN
example.png
Normal file
BIN
example.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 3.1 MiB |
9
main.py
9
main.py
@@ -1,6 +1,6 @@
|
|||||||
import time
|
import time
|
||||||
from sklearn.model_selection import train_test_split
|
from sklearn.model_selection import train_test_split
|
||||||
from trees.Stree import Stree
|
from stree import Stree
|
||||||
|
|
||||||
random_state=1
|
random_state=1
|
||||||
|
|
||||||
@@ -50,9 +50,8 @@ print(f"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}")
|
|||||||
proba = clf.predict_proba(Xtest)
|
proba = clf.predict_proba(Xtest)
|
||||||
print("Checking that we have correct probabilities, these are probabilities of sample belonging to class 1")
|
print("Checking that we have correct probabilities, these are probabilities of sample belonging to class 1")
|
||||||
res0 = proba[proba[:, 0] == 0]
|
res0 = proba[proba[:, 0] == 0]
|
||||||
res1 = proba[proba[:, 0] == 0]
|
res1 = proba[proba[:, 0] == 1]
|
||||||
print("++++++++++res0++++++++++++")
|
print("++++++++++res0 > .8++++++++++++")
|
||||||
print(res0[res0[:, 1] > .8])
|
print(res0[res0[:, 1] > .8])
|
||||||
print("**********res1************")
|
print("**********res1 < .4************")
|
||||||
print(res1[res1[:, 1] < .4])
|
print(res1[res1[:, 1] < .4])
|
||||||
print(clf.predict_proba(Xtest))
|
|
190
notebooks/adaboost.ipynb
Normal file
190
notebooks/adaboost.ipynb
Normal file
@@ -0,0 +1,190 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import time\n",
|
||||||
|
"from sklearn.ensemble import AdaBoostClassifier\n",
|
||||||
|
"from sklearn.tree import DecisionTreeClassifier\n",
|
||||||
|
"from sklearn.svm import LinearSVC\n",
|
||||||
|
"from sklearn.model_selection import GridSearchCV, train_test_split\n",
|
||||||
|
"from sklearn.datasets import load_iris\n",
|
||||||
|
"from stree import Stree"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 2,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import os\n",
|
||||||
|
"if not os.path.isfile('data/creditcard.csv'):\n",
|
||||||
|
" !wget --no-check-certificate --content-disposition http://nube.jccm.es/index.php/s/Zs7SYtZQJ3RQ2H2/download\n",
|
||||||
|
" !tar xzf creditcard.tgz"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 3,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"output_type": "stream",
|
||||||
|
"name": "stdout",
|
||||||
|
"text": "Fraud: 0.244% 196\nValid: 99.755% 80234\nX.shape (1196, 28) y.shape (1196,)\nFraud: 16.722% 200\nValid: 83.278% 996\n"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"random_state=1\n",
|
||||||
|
"\n",
|
||||||
|
"def load_creditcard(n_examples=0):\n",
|
||||||
|
" import pandas as pd\n",
|
||||||
|
" import numpy as np\n",
|
||||||
|
" import random\n",
|
||||||
|
" df = pd.read_csv('data/creditcard.csv')\n",
|
||||||
|
" print(\"Fraud: {0:.3f}% {1}\".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))\n",
|
||||||
|
" print(\"Valid: {0:.3f}% {1}\".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))\n",
|
||||||
|
" y = df.Class\n",
|
||||||
|
" X = df.drop(['Class', 'Time', 'Amount'], axis=1).values\n",
|
||||||
|
" if n_examples > 0:\n",
|
||||||
|
" # Take first n_examples samples\n",
|
||||||
|
" X = X[:n_examples, :]\n",
|
||||||
|
" y = y[:n_examples, :]\n",
|
||||||
|
" else:\n",
|
||||||
|
" # Take all the positive samples with a number of random negatives\n",
|
||||||
|
" if n_examples < 0:\n",
|
||||||
|
" Xt = X[(y == 1).ravel()]\n",
|
||||||
|
" yt = y[(y == 1).ravel()]\n",
|
||||||
|
" indices = random.sample(range(X.shape[0]), -1 * n_examples)\n",
|
||||||
|
" X = np.append(Xt, X[indices], axis=0)\n",
|
||||||
|
" y = np.append(yt, y[indices], axis=0)\n",
|
||||||
|
" print(\"X.shape\", X.shape, \" y.shape\", y.shape)\n",
|
||||||
|
" print(\"Fraud: {0:.3f}% {1}\".format(len(y[y == 1])*100/X.shape[0], len(y[y == 1])))\n",
|
||||||
|
" print(\"Valid: {0:.3f}% {1}\".format(len(y[y == 0]) * 100 / X.shape[0], len(y[y == 0])))\n",
|
||||||
|
" Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=0.7, shuffle=True, random_state=random_state, stratify=y)\n",
|
||||||
|
" return Xtrain, Xtest, ytrain, ytest\n",
|
||||||
|
"\n",
|
||||||
|
"data = load_creditcard(-1000) # Take all true samples + 1000 of the others\n",
|
||||||
|
"# data = load_creditcard(5000) # Take the first 5000 samples\n",
|
||||||
|
"# data = load_creditcard(0) # Take all the samples\n",
|
||||||
|
"\n",
|
||||||
|
"Xtrain = data[0]\n",
|
||||||
|
"Xtest = data[1]\n",
|
||||||
|
"ytrain = data[2]\n",
|
||||||
|
"ytest = data[3]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 4,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"output_type": "stream",
|
||||||
|
"name": "stdout",
|
||||||
|
"text": "Score Train: 0.986857825567503\nScore Test: 0.9805013927576601\nTook 0.12 seconds\n"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"now = time.time()\n",
|
||||||
|
"clf = Stree(max_depth=3, random_state=random_state)\n",
|
||||||
|
"clf.fit(Xtrain, ytrain)\n",
|
||||||
|
"print(\"Score Train: \", clf.score(Xtrain, ytrain))\n",
|
||||||
|
"print(\"Score Test: \", clf.score(Xtest, ytest))\n",
|
||||||
|
"print(f\"Took {time.time() - now:.2f} seconds\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 5,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"output_type": "stream",
|
||||||
|
"name": "stdout",
|
||||||
|
"text": "Score Train: 0.997610513739546\nScore Test: 0.9721448467966574\nTook 7.80 seconds\n"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"now = time.time()\n",
|
||||||
|
"clf2 = AdaBoostClassifier(Stree(max_depth=3, random_state=random_state), n_estimators=100, random_state=random_state)\n",
|
||||||
|
"clf2.fit(Xtrain, ytrain)\n",
|
||||||
|
"print(\"Score Train: \", clf2.score(Xtrain, ytrain))\n",
|
||||||
|
"print(\"Score Test: \", clf2.score(Xtest, ytest))\n",
|
||||||
|
"print(f\"Took {time.time() - now:.2f} seconds\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 6,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"output_type": "stream",
|
||||||
|
"name": "stdout",
|
||||||
|
"text": "Score Train: 0.9796893667861409\nScore Test: 0.9554317548746518\nTook 0.48 seconds\n"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"now = time.time()\n",
|
||||||
|
"clf3 = AdaBoostClassifier(LinearSVC(random_state=random_state), n_estimators=100, random_state=random_state, algorithm='SAMME')\n",
|
||||||
|
"clf3.fit(Xtrain, ytrain)\n",
|
||||||
|
"print(\"Score Train: \", clf3.score(Xtrain, ytrain))\n",
|
||||||
|
"print(\"Score Test: \", clf3.score(Xtest, ytest))\n",
|
||||||
|
"print(f\"Took {time.time() - now:.2f} seconds\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 7,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"output_type": "stream",
|
||||||
|
"name": "stdout",
|
||||||
|
"text": "Score Train: 1.0\nScore Test: 0.9721448467966574\nTook 0.86 seconds\n"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"now = time.time()\n",
|
||||||
|
"clf4 = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1, random_state=random_state), n_estimators=100, random_state=random_state)\n",
|
||||||
|
"clf4.fit(Xtrain, ytrain)\n",
|
||||||
|
"print(\"Score Train: \", clf4.score(Xtrain, ytrain))\n",
|
||||||
|
"print(\"Score Test: \", clf4.score(Xtest, ytest))\n",
|
||||||
|
"print(f\"Took {time.time() - now:.2f} seconds\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.7.6-final"
|
||||||
|
},
|
||||||
|
"orig_nbformat": 2,
|
||||||
|
"kernelspec": {
|
||||||
|
"name": "python37664bitgeneralvenvfbd0a23e74cf4e778460f5ffc6761f39",
|
||||||
|
"display_name": "Python 3.7.6 64-bit ('general': venv)"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 2
|
||||||
|
}
|
199
notebooks/crcard_graphs.ipynb
Normal file
199
notebooks/crcard_graphs.ipynb
Normal file
File diff suppressed because one or more lines are too long
236
notebooks/gridsearch.ipynb
Normal file
236
notebooks/gridsearch.ipynb
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
227
notebooks/test2.ipynb
Normal file
227
notebooks/test2.ipynb
Normal file
@@ -0,0 +1,227 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"#\n",
|
||||||
|
"# Google Colab setup\n",
|
||||||
|
"#\n",
|
||||||
|
"#!pip install git+https://github.com/doctorado-ml/stree"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 2,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import numpy as np\n",
|
||||||
|
"import pandas as pd\n",
|
||||||
|
"from sklearn.svm import LinearSVC\n",
|
||||||
|
"from sklearn.tree import DecisionTreeClassifier\n",
|
||||||
|
"from sklearn.datasets import make_classification, load_iris, load_wine\n",
|
||||||
|
"from sklearn.model_selection import train_test_split\n",
|
||||||
|
"from stree import Stree\n",
|
||||||
|
"import time"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 3,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import os\n",
|
||||||
|
"if not os.path.isfile('data/creditcard.csv'):\n",
|
||||||
|
" !wget --no-check-certificate --content-disposition http://nube.jccm.es/index.php/s/Zs7SYtZQJ3RQ2H2/download\n",
|
||||||
|
" !tar xzf creditcard.tgz"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 4,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"output_type": "stream",
|
||||||
|
"name": "stdout",
|
||||||
|
"text": "Fraud: 0.244% 196\nValid: 99.755% 80234\nX.shape (1196, 28) y.shape (1196,)\nFraud: 16.722% 200\nValid: 83.278% 996\n"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"random_state=1\n",
|
||||||
|
"\n",
|
||||||
|
"def load_creditcard(n_examples=0):\n",
|
||||||
|
" import pandas as pd\n",
|
||||||
|
" import numpy as np\n",
|
||||||
|
" import random\n",
|
||||||
|
" df = pd.read_csv('data/creditcard.csv')\n",
|
||||||
|
" print(\"Fraud: {0:.3f}% {1}\".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))\n",
|
||||||
|
" print(\"Valid: {0:.3f}% {1}\".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))\n",
|
||||||
|
" y = df.Class\n",
|
||||||
|
" X = df.drop(['Class', 'Time', 'Amount'], axis=1).values\n",
|
||||||
|
" if n_examples > 0:\n",
|
||||||
|
" # Take first n_examples samples\n",
|
||||||
|
" X = X[:n_examples, :]\n",
|
||||||
|
" y = y[:n_examples, :]\n",
|
||||||
|
" else:\n",
|
||||||
|
" # Take all the positive samples with a number of random negatives\n",
|
||||||
|
" if n_examples < 0:\n",
|
||||||
|
" Xt = X[(y == 1).ravel()]\n",
|
||||||
|
" yt = y[(y == 1).ravel()]\n",
|
||||||
|
" indices = random.sample(range(X.shape[0]), -1 * n_examples)\n",
|
||||||
|
" X = np.append(Xt, X[indices], axis=0)\n",
|
||||||
|
" y = np.append(yt, y[indices], axis=0)\n",
|
||||||
|
" print(\"X.shape\", X.shape, \" y.shape\", y.shape)\n",
|
||||||
|
" print(\"Fraud: {0:.3f}% {1}\".format(len(y[y == 1])*100/X.shape[0], len(y[y == 1])))\n",
|
||||||
|
" print(\"Valid: {0:.3f}% {1}\".format(len(y[y == 0]) * 100 / X.shape[0], len(y[y == 0])))\n",
|
||||||
|
" Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=0.7, shuffle=True, random_state=random_state, stratify=y)\n",
|
||||||
|
" return Xtrain, Xtest, ytrain, ytest\n",
|
||||||
|
"\n",
|
||||||
|
"# data = load_creditcard(-5000) # Take all true samples + 5000 of the others\n",
|
||||||
|
"# data = load_creditcard(5000) # Take the first 5000 samples\n",
|
||||||
|
"data = load_creditcard(-1000) # Take all the samples\n",
|
||||||
|
"\n",
|
||||||
|
"Xtrain = data[0]\n",
|
||||||
|
"Xtest = data[1]\n",
|
||||||
|
"ytrain = data[2]\n",
|
||||||
|
"ytest = data[3]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 5,
|
||||||
|
"metadata": {
|
||||||
|
"tags": [
|
||||||
|
"outputPrepend"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"output_type": "stream",
|
||||||
|
"name": "stdout",
|
||||||
|
"text": "************** C=0.001 ****************************\nClassifier's accuracy (train): 0.9797\nClassifier's accuracy (test) : 0.9749\nroot\nroot - Down\nroot - Down - Down, <cgaf> - Leaf class=1.0 belief=0.984127 counts=(array([0., 1.]), array([ 2, 124]))\nroot - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([5]))\nroot - Up\nroot - Up - Down, <cgaf> - Leaf class=0.0 belief=0.750000 counts=(array([0., 1.]), array([3, 1]))\nroot - Up - Up\nroot - Up - Up - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([1]))\nroot - Up - Up - Up, <cgaf> - Leaf class=0.0 belief=0.980029 counts=(array([0., 1.]), array([687, 14]))\n\n**************************************************\n************** C=0.01 ****************************\nClassifier's accuracy (train): 0.9809\nClassifier's accuracy (test) : 0.9749\nroot\nroot - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([124]))\nroot - Up, <cgaf> - Leaf class=0.0 belief=0.977560 counts=(array([0., 1.]), array([697, 16]))\n\n**************************************************\n************** C=1 ****************************\nClassifier's accuracy (train): 0.9869\nClassifier's accuracy (test) : 0.9749\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([129]))\nroot - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([2]))\nroot - Up, <cgaf> - Leaf class=0.0 belief=0.984419 counts=(array([0., 1.]), array([695, 11]))\n\n**************************************************\n************** C=5 ****************************\nClassifier's accuracy (train): 0.9869\nClassifier's accuracy (test) : 0.9777\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([129]))\nroot - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([2]))\nroot - Up, <cgaf> - Leaf class=0.0 belief=0.984419 counts=(array([0., 1.]), array([695, 11]))\n\n**************************************************\n************** C=17 ****************************\nClassifier's accuracy (train): 0.9916\nClassifier's accuracy (test) : 0.9833\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([131]))\nroot - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([8]))\nroot - Up\nroot - Up - Down, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([1]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([1]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([5]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([1]))\nroot - Up - Up - Up - Up, <cgaf> - Leaf class=0.0 belief=0.989855 counts=(array([0., 1.]), array([683, 7]))\n\n**************************************************\n0.2235 secs\n"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"t = time.time()\n",
|
||||||
|
"for C in (.001, .01, 1, 5, 17):\n",
|
||||||
|
" clf = Stree(C=C, random_state=random_state)\n",
|
||||||
|
" clf.fit(Xtrain, ytrain)\n",
|
||||||
|
" print(f\"************** C={C} ****************************\")\n",
|
||||||
|
" print(f\"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}\")\n",
|
||||||
|
" print(f\"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}\")\n",
|
||||||
|
" print(clf)\n",
|
||||||
|
" print(f\"**************************************************\")\n",
|
||||||
|
"print(f\"{time.time() - t:.4f} secs\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 6,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import numpy as np\n",
|
||||||
|
"from sklearn.preprocessing import StandardScaler\n",
|
||||||
|
"from sklearn.svm import LinearSVC\n",
|
||||||
|
"from sklearn.calibration import CalibratedClassifierCV\n",
|
||||||
|
"scaler = StandardScaler()\n",
|
||||||
|
"cclf = CalibratedClassifierCV(base_estimator=LinearSVC(), cv=5)\n",
|
||||||
|
"cclf.fit(Xtrain, ytrain)\n",
|
||||||
|
"res = cclf.predict_proba(Xtest)\n",
|
||||||
|
"#an array containing probabilities of belonging to the 1st class"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 7,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"output_type": "stream",
|
||||||
|
"name": "stdout",
|
||||||
|
"text": "root\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([131]))\nroot - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([8]))\nroot - Up\nroot - Up - Down, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([1]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([1]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([5]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([1]))\nroot - Up - Up - Up - Up, <cgaf> - Leaf class=0.0 belief=0.989855 counts=(array([0., 1.]), array([683, 7]))\n"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"#check iterator\n",
|
||||||
|
"for i in list(clf):\n",
|
||||||
|
" print(i)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 8,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"output_type": "stream",
|
||||||
|
"name": "stdout",
|
||||||
|
"text": "root\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([131]))\nroot - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([8]))\nroot - Up\nroot - Up - Down, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([1]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([1]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0.0 belief=1.000000 counts=(array([0.]), array([5]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down, <pure> - Leaf class=1.0 belief=1.000000 counts=(array([1.]), array([1]))\nroot - Up - Up - Up - Up, <cgaf> - Leaf class=0.0 belief=0.989855 counts=(array([0., 1.]), array([683, 7]))\n"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"#check iterator again\n",
|
||||||
|
"for i in clf:\n",
|
||||||
|
" print(i)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 9,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# Check if the classifier is a sklearn estimator\n",
|
||||||
|
"from sklearn.utils.estimator_checks import check_estimator\n",
|
||||||
|
"check_estimator(Stree())"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 10,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"output_type": "stream",
|
||||||
|
"name": "stdout",
|
||||||
|
"text": "1 functools.partial(<function check_no_attributes_set_in_init at 0x12aabb320>, 'Stree')\n2 functools.partial(<function check_estimators_dtypes at 0x12aab0440>, 'Stree')\n3 functools.partial(<function check_fit_score_takes_y at 0x12aab0320>, 'Stree')\n4 functools.partial(<function check_sample_weights_pandas_series at 0x12aaaac20>, 'Stree')\n5 functools.partial(<function check_sample_weights_not_an_array at 0x12aaaad40>, 'Stree')\n6 functools.partial(<function check_sample_weights_list at 0x12aaaae60>, 'Stree')\n7 functools.partial(<function check_sample_weights_shape at 0x12aaaaf80>, 'Stree')\n8 functools.partial(<function check_sample_weights_invariance at 0x12aaac0e0>, 'Stree')\n9 functools.partial(<function check_estimators_fit_returns_self at 0x12aab6440>, 'Stree')\n10 functools.partial(<function check_estimators_fit_returns_self at 0x12aab6440>, 'Stree', readonly_memmap=True)\n11 functools.partial(<function check_complex_data at 0x12aaac290>, 'Stree')\n12 functools.partial(<function check_dtype_object at 0x12aaac200>, 'Stree')\n13 functools.partial(<function check_estimators_empty_data_messages at 0x12aab0560>, 'Stree')\n14 functools.partial(<function check_pipeline_consistency at 0x12aab0200>, 'Stree')\n15 functools.partial(<function check_estimators_nan_inf at 0x12aab0680>, 'Stree')\n16 functools.partial(<function check_estimators_overwrite_params at 0x12aabb200>, 'Stree')\n17 functools.partial(<function check_estimator_sparse_data at 0x12aaaab00>, 'Stree')\n18 functools.partial(<function check_estimators_pickle at 0x12aab08c0>, 'Stree')\n19 functools.partial(<function check_classifier_data_not_an_array at 0x12aabb560>, 'Stree')\n20 functools.partial(<function check_classifiers_one_label at 0x12aab0f80>, 'Stree')\n21 functools.partial(<function check_classifiers_classes at 0x12aab69e0>, 'Stree')\n22 functools.partial(<function check_estimators_partial_fit_n_features at 0x12aab09e0>, 'Stree')\n23 functools.partial(<function check_classifiers_train at 0x12aab60e0>, 'Stree')\n24 functools.partial(<function check_classifiers_train at 0x12aab60e0>, 'Stree', readonly_memmap=True)\n25 functools.partial(<function check_classifiers_train at 0x12aab60e0>, 'Stree', readonly_memmap=True, X_dtype='float32')\n26 functools.partial(<function check_classifiers_regression_target at 0x12aabf050>, 'Stree')\n27 functools.partial(<function check_supervised_y_no_nan at 0x12aaa0c20>, 'Stree')\n28 functools.partial(<function check_supervised_y_2d at 0x12aab6680>, 'Stree')\n29 functools.partial(<function check_estimators_unfitted at 0x12aab6560>, 'Stree')\n30 functools.partial(<function check_non_transformer_estimators_n_iter at 0x12aabbb90>, 'Stree')\n31 functools.partial(<function check_decision_proba_consistency at 0x12aabf170>, 'Stree')\n32 functools.partial(<function check_fit2d_predict1d at 0x12aaac7a0>, 'Stree')\n33 functools.partial(<function check_methods_subset_invariance at 0x12aaac950>, 'Stree')\n34 functools.partial(<function check_fit2d_1sample at 0x12aaaca70>, 'Stree')\n35 functools.partial(<function check_fit2d_1feature at 0x12aaacb90>, 'Stree')\n36 functools.partial(<function check_fit1d at 0x12aaaccb0>, 'Stree')\n37 functools.partial(<function check_get_params_invariance at 0x12aabbdd0>, 'Stree')\n38 functools.partial(<function check_set_params at 0x12aabbef0>, 'Stree')\n39 functools.partial(<function check_dict_unchanged at 0x12aaac3b0>, 'Stree')\n40 functools.partial(<function check_dont_overwrite_parameters at 0x12aaac680>, 'Stree')\n41 functools.partial(<function check_fit_idempotent at 0x12aabf320>, 'Stree')\n42 functools.partial(<function check_n_features_in at 0x12aabf3b0>, 'Stree')\n"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"# Make checks one by one\n",
|
||||||
|
"c = 0\n",
|
||||||
|
"checks = check_estimator(Stree(), generate_only=True)\n",
|
||||||
|
"for check in checks:\n",
|
||||||
|
" c += 1\n",
|
||||||
|
" print(c, check[1])\n",
|
||||||
|
" check[1](check[0])"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3.7.6 64-bit ('general': venv)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python37664bitgeneralvenvfbd0a23e74cf4e778460f5ffc6761f39"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.7.6-final"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 2
|
||||||
|
}
|
197
notebooks/test_graphs.ipynb
Normal file
197
notebooks/test_graphs.ipynb
Normal file
@@ -0,0 +1,197 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"#\n",
|
||||||
|
"# Google Colab setup\n",
|
||||||
|
"#\n",
|
||||||
|
"#!pip install git+https://github.com/doctorado-ml/stree"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 12,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"output_type": "error",
|
||||||
|
"ename": "ModuleNotFoundError",
|
||||||
|
"evalue": "No module named 'stree'",
|
||||||
|
"traceback": [
|
||||||
|
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||||
|
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
|
||||||
|
"\u001b[0;32m<ipython-input-12-36af63297651>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msklearn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdatasets\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmake_blobs\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msklearn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msvm\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mLinearSVC\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mstree\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mStree\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mStree_grapher\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
||||||
|
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'stree'"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"import time\n",
|
||||||
|
"import random\n",
|
||||||
|
"import numpy as np\n",
|
||||||
|
"from sklearn.datasets import make_blobs\n",
|
||||||
|
"from sklearn.svm import LinearSVC\n",
|
||||||
|
"from stree import Stree, Stree_grapher"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 3,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"def build_data(random_state):\n",
|
||||||
|
" random.seed(random_state)\n",
|
||||||
|
" X, y = make_blobs(centers=10, n_features=3, n_samples=500, random_state=random_state)\n",
|
||||||
|
" def make_binary(y):\n",
|
||||||
|
" for i in range(2, 10):\n",
|
||||||
|
" y[y==i] = random.randint(0, 1)\n",
|
||||||
|
" return y\n",
|
||||||
|
" y = make_binary(y)\n",
|
||||||
|
" #print(X.shape, np.unique(y), y[y==0].shape, y[y==1].shape)\n",
|
||||||
|
" return X, y"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 4,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"output_type": "error",
|
||||||
|
"ename": "NameError",
|
||||||
|
"evalue": "name 'Stree_grapher' is not defined",
|
||||||
|
"traceback": [
|
||||||
|
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||||
|
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
||||||
|
"\u001b[0;32m<ipython-input-4-b909470cb406>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbuild_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mgr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mStree_grapher\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mC\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m.01\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmax_iter\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m200\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m#gr.save_all(save_folder='data/', save_prefix='7')\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||||
|
"\u001b[0;31mNameError\u001b[0m: name 'Stree_grapher' is not defined"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"X, y = build_data(10)\n",
|
||||||
|
"gr = Stree_grapher(dict(C=.01, max_iter=200))\n",
|
||||||
|
"gr.fit(X, y)\n",
|
||||||
|
"#gr.save_all(save_folder='data/', save_prefix='7')"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 5,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"output_type": "error",
|
||||||
|
"ename": "NameError",
|
||||||
|
"evalue": "name 'gr' is not defined",
|
||||||
|
"traceback": [
|
||||||
|
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||||
|
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
||||||
|
"\u001b[0;32m<ipython-input-5-efa3db892bfd>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
||||||
|
"\u001b[0;31mNameError\u001b[0m: name 'gr' is not defined"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"print(gr)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 6,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"output_type": "error",
|
||||||
|
"ename": "NameError",
|
||||||
|
"evalue": "name 'gr' is not defined",
|
||||||
|
"traceback": [
|
||||||
|
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||||
|
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
||||||
|
"\u001b[0;32m<ipython-input-6-0e62f081c9aa>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0muse\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Agg'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave_all\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msave_folder\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'data/'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
||||||
|
"\u001b[0;31mNameError\u001b[0m: name 'gr' is not defined"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"import matplotlib\n",
|
||||||
|
"matplotlib.use('Agg')\n",
|
||||||
|
"gr.save_all(save_folder='data/')"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 7,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"output_type": "error",
|
||||||
|
"ename": "NameError",
|
||||||
|
"evalue": "name 'gr' is not defined",
|
||||||
|
"traceback": [
|
||||||
|
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||||
|
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
||||||
|
"\u001b[0;32m<ipython-input-7-b0484cfe9d26>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;31m#%matplotlib inline\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mget_ipython\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun_line_magic\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'matplotlib'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'widget'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_tree_gr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot_hyperplane\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
||||||
|
"\u001b[0;31mNameError\u001b[0m: name 'gr' is not defined"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"#Uncomment one of the following lines to display graphics: static(inline), dynamic(widget)\n",
|
||||||
|
"#%matplotlib inline\n",
|
||||||
|
"%matplotlib widget\n",
|
||||||
|
"gr._tree_gr.plot_hyperplane()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 8,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"output_type": "error",
|
||||||
|
"ename": "NameError",
|
||||||
|
"evalue": "name 'gr' is not defined",
|
||||||
|
"traceback": [
|
||||||
|
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||||
|
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
||||||
|
"\u001b[0;32m<ipython-input-8-4277c1aacbe2>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mget_ipython\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun_line_magic\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'matplotlib'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'inline'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;31m#%matplotlib widget\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot_all\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
||||||
|
"\u001b[0;31mNameError\u001b[0m: name 'gr' is not defined"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"#Uncomment one of the following lines to display graphics: static(inline), dynamic(widget)\n",
|
||||||
|
"%matplotlib inline\n",
|
||||||
|
"#%matplotlib widget\n",
|
||||||
|
"gr.plot_all()"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.7.6-final"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 2
|
||||||
|
}
|
@@ -1,3 +1,5 @@
|
|||||||
numpy==1.18.2
|
numpy
|
||||||
scikit-learn==0.22.2
|
scikit-learn
|
||||||
pandas==1.0.3
|
pandas
|
||||||
|
matplotlib
|
||||||
|
ipympl
|
39
setup.py
Normal file
39
setup.py
Normal file
@@ -0,0 +1,39 @@
|
|||||||
|
import setuptools
|
||||||
|
|
||||||
|
__version__ = "0.9rc3"
|
||||||
|
__author__ = "Ricardo Montañana Gómez"
|
||||||
|
|
||||||
|
def readme():
|
||||||
|
with open('README.md') as f:
|
||||||
|
return f.read()
|
||||||
|
|
||||||
|
|
||||||
|
setuptools.setup(
|
||||||
|
name='STree',
|
||||||
|
version=__version__,
|
||||||
|
license='MIT License',
|
||||||
|
description='Oblique decision tree with svm nodes',
|
||||||
|
long_description=readme(),
|
||||||
|
long_description_content_type='text/markdown',
|
||||||
|
packages=setuptools.find_packages(),
|
||||||
|
url='https://github.com/doctorado-ml/stree',
|
||||||
|
author=__author__,
|
||||||
|
author_email='ricardo.montanana@alu.uclm.es',
|
||||||
|
keywords='scikit-learn oblique-classifier oblique-decision-tree decision-tree svm svc',
|
||||||
|
classifiers=[
|
||||||
|
'Development Status :: 4 - Beta',
|
||||||
|
'License :: OSI Approved :: MIT License',
|
||||||
|
'Programming Language :: Python :: 3.7',
|
||||||
|
'Natural Language :: English',
|
||||||
|
'Topic :: Scientific/Engineering :: Artificial Intelligence',
|
||||||
|
'Intended Audience :: Science/Research'
|
||||||
|
],
|
||||||
|
install_requires=[
|
||||||
|
'scikit-learn>=0.23.0',
|
||||||
|
'numpy',
|
||||||
|
'matplotlib',
|
||||||
|
'ipympl'
|
||||||
|
],
|
||||||
|
test_suite="stree.tests",
|
||||||
|
zip_safe=False
|
||||||
|
)
|
327
stree/Strees.py
Normal file
327
stree/Strees.py
Normal file
@@ -0,0 +1,327 @@
|
|||||||
|
'''
|
||||||
|
__author__ = "Ricardo Montañana Gómez"
|
||||||
|
__copyright__ = "Copyright 2020, Ricardo Montañana Gómez"
|
||||||
|
__license__ = "MIT"
|
||||||
|
__version__ = "0.9"
|
||||||
|
Build an oblique tree classifier based on SVM Trees
|
||||||
|
Uses LinearSVC
|
||||||
|
'''
|
||||||
|
|
||||||
|
import typing
|
||||||
|
import os
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from sklearn.base import BaseEstimator, ClassifierMixin
|
||||||
|
from sklearn.svm import LinearSVC
|
||||||
|
from sklearn.utils.multiclass import check_classification_targets
|
||||||
|
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted, _check_sample_weight, check_random_state
|
||||||
|
|
||||||
|
|
||||||
|
class Snode:
|
||||||
|
def __init__(self, clf: LinearSVC, X: np.ndarray, y: np.ndarray, title: str):
|
||||||
|
self._clf = clf
|
||||||
|
self._vector = None if clf is None else clf.coef_
|
||||||
|
self._interceptor = 0. if clf is None else clf.intercept_
|
||||||
|
self._title = title
|
||||||
|
self._belief = 0. # belief of the prediction in a leaf node based on samples
|
||||||
|
# Only store dataset in Testing
|
||||||
|
self._X = X if os.environ.get('TESTING', 'NS') != 'NS' else None
|
||||||
|
self._y = y
|
||||||
|
self._down = None
|
||||||
|
self._up = None
|
||||||
|
self._class = None
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def copy(cls, node: 'Snode') -> 'Snode':
|
||||||
|
return cls(node._clf, node._X, node._y, node._title)
|
||||||
|
|
||||||
|
def set_down(self, son):
|
||||||
|
self._down = son
|
||||||
|
|
||||||
|
def set_up(self, son):
|
||||||
|
self._up = son
|
||||||
|
|
||||||
|
def is_leaf(self) -> bool:
|
||||||
|
return self._up is None and self._down is None
|
||||||
|
|
||||||
|
def get_down(self) -> 'Snode':
|
||||||
|
return self._down
|
||||||
|
|
||||||
|
def get_up(self) -> 'Snode':
|
||||||
|
return self._up
|
||||||
|
|
||||||
|
def make_predictor(self):
|
||||||
|
"""Compute the class of the predictor and its belief based on the subdataset of the node
|
||||||
|
only if it is a leaf
|
||||||
|
"""
|
||||||
|
if not self.is_leaf():
|
||||||
|
return
|
||||||
|
classes, card = np.unique(self._y, return_counts=True)
|
||||||
|
if len(classes) > 1:
|
||||||
|
max_card = max(card)
|
||||||
|
min_card = min(card)
|
||||||
|
try:
|
||||||
|
self._belief = max_card / (max_card + min_card)
|
||||||
|
except:
|
||||||
|
self._belief = 0.
|
||||||
|
self._class = classes[card == max_card][0]
|
||||||
|
else:
|
||||||
|
self._belief = 1
|
||||||
|
self._class = classes[0]
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
if self.is_leaf():
|
||||||
|
return f"{self._title} - Leaf class={self._class} belief={self._belief:.6f} counts={np.unique(self._y, return_counts=True)}"
|
||||||
|
else:
|
||||||
|
return f"{self._title}"
|
||||||
|
|
||||||
|
|
||||||
|
class Siterator:
|
||||||
|
"""Stree preorder iterator
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, tree: Snode):
|
||||||
|
self._stack = []
|
||||||
|
self._push(tree)
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
return self
|
||||||
|
|
||||||
|
def _push(self, node: Snode):
|
||||||
|
if node is not None:
|
||||||
|
self._stack.append(node)
|
||||||
|
|
||||||
|
def __next__(self) -> Snode:
|
||||||
|
if len(self._stack) == 0:
|
||||||
|
raise StopIteration()
|
||||||
|
node = self._stack.pop()
|
||||||
|
self._push(node.get_up())
|
||||||
|
self._push(node.get_down())
|
||||||
|
return node
|
||||||
|
|
||||||
|
|
||||||
|
class Stree(BaseEstimator, ClassifierMixin):
|
||||||
|
"""
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, C: float = 1.0, max_iter: int = 1000, random_state: int = None,
|
||||||
|
max_depth: int=None, tol: float=1e-4, use_predictions: bool = False):
|
||||||
|
self.max_iter = max_iter
|
||||||
|
self.C = C
|
||||||
|
self.random_state = random_state
|
||||||
|
self.use_predictions = use_predictions
|
||||||
|
self.max_depth = max_depth
|
||||||
|
self.tol = tol
|
||||||
|
|
||||||
|
def get_params(self, deep: bool=True) -> dict:
|
||||||
|
"""Get dict with hyperparameters and its values to accomplish sklearn rules
|
||||||
|
"""
|
||||||
|
return {
|
||||||
|
'C': self.C,
|
||||||
|
'random_state': self.random_state,
|
||||||
|
'max_iter': self.max_iter,
|
||||||
|
'use_predictions': self.use_predictions,
|
||||||
|
'max_depth': self.max_depth,
|
||||||
|
'tol': self.tol
|
||||||
|
}
|
||||||
|
|
||||||
|
def set_params(self, **parameters: dict):
|
||||||
|
"""Set hyperparmeters as specified by sklearn, needed in Gridsearchs
|
||||||
|
"""
|
||||||
|
for parameter, value in parameters.items():
|
||||||
|
setattr(self, parameter, value)
|
||||||
|
return self
|
||||||
|
|
||||||
|
# Added binary_only tag as required by sklearn check_estimator
|
||||||
|
def _more_tags(self) -> dict:
|
||||||
|
return {'binary_only': True}
|
||||||
|
|
||||||
|
def _linear_function(self, data: np.array, node: Snode) -> np.array:
|
||||||
|
coef = node._vector[0, :].reshape(-1, data.shape[1])
|
||||||
|
return data.dot(coef.T) + node._interceptor[0]
|
||||||
|
|
||||||
|
def _split_array(self, origin: np.array, down: np.array) -> list:
|
||||||
|
up = ~down
|
||||||
|
return origin[up[:, 0]] if any(up) else None, \
|
||||||
|
origin[down[:, 0]] if any(down) else None
|
||||||
|
|
||||||
|
def _distances(self, node: Snode, data: np.ndarray) -> np.array:
|
||||||
|
if self.use_predictions:
|
||||||
|
res = np.expand_dims(node._clf.decision_function(data), 1)
|
||||||
|
else:
|
||||||
|
# doesn't work with multiclass as each sample has to do inner product with its own coeficients
|
||||||
|
# computes positition of every sample is w.r.t. the hyperplane
|
||||||
|
res = self._linear_function(data, node)
|
||||||
|
return res
|
||||||
|
|
||||||
|
def _split_criteria(self, data: np.array) -> np.array:
|
||||||
|
return data > 0
|
||||||
|
|
||||||
|
def fit(self, X: np.ndarray, y: np.ndarray, sample_weight: np.array = None) -> 'Stree':
|
||||||
|
# Check parameters are Ok.
|
||||||
|
if type(y).__name__ == 'np.ndarray':
|
||||||
|
y = y.ravel()
|
||||||
|
if self.C < 0:
|
||||||
|
raise ValueError(f"Penalty term must be positive... got (C={self.C:f})")
|
||||||
|
self.__max_depth = np.iinfo(np.int32).max if self.max_depth is None else self.max_depth
|
||||||
|
if self.__max_depth < 1:
|
||||||
|
raise ValueError(f"Maximum depth has to be greater than 1... got (max_depth={self.max_depth})")
|
||||||
|
check_classification_targets(y)
|
||||||
|
X, y = check_X_y(X, y)
|
||||||
|
sample_weight = _check_sample_weight(sample_weight, X)
|
||||||
|
check_classification_targets(y)
|
||||||
|
# Initialize computed parameters
|
||||||
|
self.classes_ = np.unique(y)
|
||||||
|
self.n_iter_ = self.max_iter
|
||||||
|
self.depth_ = 0
|
||||||
|
self.n_features_in_ = X.shape[1]
|
||||||
|
self.tree_ = self.train(X, y, sample_weight, 1, 'root')
|
||||||
|
self._build_predictor()
|
||||||
|
return self
|
||||||
|
|
||||||
|
def _build_predictor(self):
|
||||||
|
"""Process the leaves to make them predictors
|
||||||
|
"""
|
||||||
|
|
||||||
|
def run_tree(node: Snode):
|
||||||
|
if node.is_leaf():
|
||||||
|
node.make_predictor()
|
||||||
|
return
|
||||||
|
run_tree(node.get_down())
|
||||||
|
run_tree(node.get_up())
|
||||||
|
|
||||||
|
run_tree(self.tree_)
|
||||||
|
|
||||||
|
def train(self, X: np.ndarray, y: np.ndarray, sample_weight: np.ndarray, depth: int, title: str) -> Snode:
|
||||||
|
|
||||||
|
if depth > self.__max_depth:
|
||||||
|
return None
|
||||||
|
if np.unique(y).shape[0] == 1 :
|
||||||
|
# only 1 class => pure dataset
|
||||||
|
return Snode(None, X, y, title + ', <pure>')
|
||||||
|
# Train the model
|
||||||
|
clf = LinearSVC(max_iter=self.max_iter, random_state=self.random_state,
|
||||||
|
C=self.C) #, sample_weight=sample_weight)
|
||||||
|
clf.fit(X, y, sample_weight=sample_weight)
|
||||||
|
tree = Snode(clf, X, y, title)
|
||||||
|
self.depth_ = max(depth, self.depth_)
|
||||||
|
down = self._split_criteria(self._distances(tree, X))
|
||||||
|
X_U, X_D = self._split_array(X, down)
|
||||||
|
y_u, y_d = self._split_array(y, down)
|
||||||
|
sw_u, sw_d = self._split_array(sample_weight, down)
|
||||||
|
if X_U is None or X_D is None:
|
||||||
|
# didn't part anything
|
||||||
|
return Snode(clf, X, y, title + ', <cgaf>')
|
||||||
|
tree.set_up(self.train(X_U, y_u, sw_u, depth + 1, title + ' - Up'))
|
||||||
|
tree.set_down(self.train(X_D, y_d, sw_d, depth + 1, title + ' - Down'))
|
||||||
|
return tree
|
||||||
|
|
||||||
|
def _reorder_results(self, y: np.array, indices: np.array) -> np.array:
|
||||||
|
if y.ndim > 1 and y.shape[1] > 1:
|
||||||
|
# if predict_proba return np.array of floats
|
||||||
|
y_ordered = np.zeros(y.shape, dtype=float)
|
||||||
|
else:
|
||||||
|
# return array of same type given in y
|
||||||
|
y_ordered = y.copy()
|
||||||
|
indices = indices.astype(int)
|
||||||
|
for i, index in enumerate(indices):
|
||||||
|
y_ordered[index] = y[i]
|
||||||
|
return y_ordered
|
||||||
|
|
||||||
|
def predict(self, X: np.array) -> np.array:
|
||||||
|
def predict_class(xp: np.array, indices: np.array, node: Snode) -> np.array:
|
||||||
|
if xp is None:
|
||||||
|
return [], []
|
||||||
|
if node.is_leaf():
|
||||||
|
# set a class for every sample in dataset
|
||||||
|
prediction = np.full((xp.shape[0], 1), node._class)
|
||||||
|
return prediction, indices
|
||||||
|
down = self._split_criteria(self._distances(node, xp))
|
||||||
|
X_U, X_D = self._split_array(xp, down)
|
||||||
|
i_u, i_d = self._split_array(indices, down)
|
||||||
|
prx_u, prin_u = predict_class(X_U, i_u, node.get_up())
|
||||||
|
prx_d, prin_d = predict_class(X_D, i_d, node.get_down())
|
||||||
|
return np.append(prx_u, prx_d), np.append(prin_u, prin_d)
|
||||||
|
|
||||||
|
# sklearn check
|
||||||
|
check_is_fitted(self, ['tree_'])
|
||||||
|
# Input validation
|
||||||
|
X = check_array(X)
|
||||||
|
# setup prediction & make it happen
|
||||||
|
indices = np.arange(X.shape[0])
|
||||||
|
return self._reorder_results(*predict_class(X, indices, self.tree_)).ravel()
|
||||||
|
|
||||||
|
def predict_proba(self, X: np.array) -> np.array:
|
||||||
|
"""Computes an approximation of the probability of samples belonging to class 0 and 1
|
||||||
|
:param X: dataset
|
||||||
|
:type X: np.array
|
||||||
|
"""
|
||||||
|
|
||||||
|
def predict_class(xp: np.array, indices: np.array, dist: np.array, node: Snode) -> np.array:
|
||||||
|
"""Run the tree to compute predictions
|
||||||
|
|
||||||
|
:param xp: subdataset of samples
|
||||||
|
:type xp: np.array
|
||||||
|
:param indices: indices of subdataset samples to rebuild original order
|
||||||
|
:type indices: np.array
|
||||||
|
:param dist: distances of every sample to the hyperplane or the father node
|
||||||
|
:type dist: np.array
|
||||||
|
:param node: node of the leaf with the class
|
||||||
|
:type node: Snode
|
||||||
|
:return: array of labels and distances, array of indices
|
||||||
|
:rtype: np.array
|
||||||
|
"""
|
||||||
|
if xp is None:
|
||||||
|
return [], []
|
||||||
|
if node.is_leaf():
|
||||||
|
# set a class for every sample in dataset
|
||||||
|
prediction = np.full((xp.shape[0], 1), node._class)
|
||||||
|
prediction_proba = dist
|
||||||
|
return np.append(prediction, prediction_proba, axis=1), indices
|
||||||
|
distances = self._distances(node, xp)
|
||||||
|
down = self._split_criteria(distances)
|
||||||
|
|
||||||
|
X_U, X_D = self._split_array(xp, down)
|
||||||
|
i_u, i_d = self._split_array(indices, down)
|
||||||
|
di_u, di_d = self._split_array(distances, down)
|
||||||
|
prx_u, prin_u = predict_class(X_U, i_u, di_u, node.get_up())
|
||||||
|
prx_d, prin_d = predict_class(X_D, i_d, di_d, node.get_down())
|
||||||
|
return np.append(prx_u, prx_d), np.append(prin_u, prin_d)
|
||||||
|
|
||||||
|
# sklearn check
|
||||||
|
check_is_fitted(self, ['tree_'])
|
||||||
|
# Input validation
|
||||||
|
X = check_array(X)
|
||||||
|
# setup prediction & make it happen
|
||||||
|
indices = np.arange(X.shape[0])
|
||||||
|
empty_dist = np.empty((X.shape[0], 1), dtype=float)
|
||||||
|
result, indices = predict_class(X, indices, empty_dist, self.tree_)
|
||||||
|
result = result.reshape(X.shape[0], 2)
|
||||||
|
# Turn distances to hyperplane into probabilities based on fitting distances
|
||||||
|
# of samples to its hyperplane that classified them, to the sigmoid function
|
||||||
|
# Probability of being 1
|
||||||
|
result[:, 1] = 1 / (1 + np.exp(-result[:, 1]))
|
||||||
|
result[:, 0] = 1 - result[:, 1] # Probability of being 0
|
||||||
|
return self._reorder_results(result, indices)
|
||||||
|
|
||||||
|
def score(self, X: np.array, y: np.array) -> float:
|
||||||
|
"""Return accuracy
|
||||||
|
"""
|
||||||
|
# sklearn check
|
||||||
|
check_is_fitted(self)
|
||||||
|
yp = self.predict(X).reshape(y.shape)
|
||||||
|
return np.mean(yp == y)
|
||||||
|
|
||||||
|
def __iter__(self) -> Siterator:
|
||||||
|
try:
|
||||||
|
tree = self.tree_
|
||||||
|
except:
|
||||||
|
tree = None
|
||||||
|
return Siterator(tree)
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
output = ''
|
||||||
|
for i in self:
|
||||||
|
output += str(i) + '\n'
|
||||||
|
return output
|
||||||
|
|
184
stree/Strees_grapher.py
Normal file
184
stree/Strees_grapher.py
Normal file
@@ -0,0 +1,184 @@
|
|||||||
|
'''
|
||||||
|
__author__ = "Ricardo Montañana Gómez"
|
||||||
|
__copyright__ = "Copyright 2020, Ricardo Montañana Gómez"
|
||||||
|
__license__ = "MIT"
|
||||||
|
__version__ = "0.9"
|
||||||
|
Plot 3D views of nodes in Stree
|
||||||
|
'''
|
||||||
|
|
||||||
|
import os
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
from sklearn.decomposition import PCA
|
||||||
|
from mpl_toolkits.mplot3d import Axes3D
|
||||||
|
|
||||||
|
from .Strees import Stree, Snode, Siterator
|
||||||
|
|
||||||
|
class Snode_graph(Snode):
|
||||||
|
|
||||||
|
def __init__(self, node: Stree):
|
||||||
|
self._plot_size = (8, 8)
|
||||||
|
self._xlimits = (None, None)
|
||||||
|
self._ylimits = (None, None)
|
||||||
|
self._zlimits = (None, None)
|
||||||
|
n = Snode.copy(node)
|
||||||
|
super().__init__(n._clf, n._X, n._y, n._title)
|
||||||
|
|
||||||
|
def set_plot_size(self, size: tuple):
|
||||||
|
self._plot_size = size
|
||||||
|
|
||||||
|
def _is_pure(self) -> bool:
|
||||||
|
"""is considered pure a leaf node with one label
|
||||||
|
"""
|
||||||
|
if self.is_leaf():
|
||||||
|
return self._belief == 1.
|
||||||
|
return False
|
||||||
|
|
||||||
|
def set_axis_limits(self, limits: tuple):
|
||||||
|
self._xlimits = limits[0]
|
||||||
|
self._ylimits = limits[1]
|
||||||
|
self._zlimits = limits[2]
|
||||||
|
|
||||||
|
def _set_graphics_axis(self, ax: Axes3D):
|
||||||
|
ax.set_xlim(self._xlimits)
|
||||||
|
ax.set_ylim(self._ylimits)
|
||||||
|
ax.set_zlim(self._zlimits)
|
||||||
|
|
||||||
|
def save_hyperplane(self, save_folder: str = './', save_prefix: str = '', save_seq: int = 1):
|
||||||
|
_, fig = self.plot_hyperplane()
|
||||||
|
name = f"{save_folder}{save_prefix}STnode{save_seq}.png"
|
||||||
|
fig.savefig(name, bbox_inches='tight')
|
||||||
|
plt.close(fig)
|
||||||
|
|
||||||
|
def _get_cmap(self):
|
||||||
|
cmap = 'jet'
|
||||||
|
if self._is_pure():
|
||||||
|
if self._class == 1:
|
||||||
|
cmap = 'jet_r'
|
||||||
|
return cmap
|
||||||
|
|
||||||
|
def _graph_title(self):
|
||||||
|
n_class, card = np.unique(self._y, return_counts=True)
|
||||||
|
return f"{self._title} {n_class} {card}"
|
||||||
|
|
||||||
|
def plot_hyperplane(self, plot_distribution: bool = True):
|
||||||
|
fig = plt.figure(figsize=self._plot_size)
|
||||||
|
ax = fig.add_subplot(1, 1, 1, projection='3d')
|
||||||
|
if not self._is_pure():
|
||||||
|
# Can't plot hyperplane of leaves with one label because it hasn't classiffier
|
||||||
|
# get the splitting hyperplane
|
||||||
|
def hyperplane(x, y): return (-self._interceptor - self._vector[0][0] * x
|
||||||
|
- self._vector[0][1] * y) / self._vector[0][2]
|
||||||
|
|
||||||
|
tmpx = np.linspace(self._X[:, 0].min(), self._X[:, 0].max())
|
||||||
|
tmpy = np.linspace(self._X[:, 1].min(), self._X[:, 1].max())
|
||||||
|
xx, yy = np.meshgrid(tmpx, tmpy)
|
||||||
|
ax.plot_surface(xx, yy, hyperplane(xx, yy), alpha=.5, antialiased=True,
|
||||||
|
rstride=1, cstride=1, cmap='seismic')
|
||||||
|
self._set_graphics_axis(ax)
|
||||||
|
if plot_distribution:
|
||||||
|
self.plot_distribution(ax)
|
||||||
|
else:
|
||||||
|
plt.title(self._graph_title())
|
||||||
|
plt.show()
|
||||||
|
return ax, fig
|
||||||
|
|
||||||
|
def plot_distribution(self, ax: Axes3D = None):
|
||||||
|
if ax is None:
|
||||||
|
fig = plt.figure(figsize=self._plot_size)
|
||||||
|
ax = fig.add_subplot(1, 1, 1, projection='3d')
|
||||||
|
plt.title(self._graph_title())
|
||||||
|
cmap = self._get_cmap()
|
||||||
|
ax.scatter(self._X[:, 0], self._X[:, 1],
|
||||||
|
self._X[:, 2], c=self._y, cmap=cmap)
|
||||||
|
ax.set_xlabel('X0')
|
||||||
|
ax.set_ylabel('X1')
|
||||||
|
ax.set_zlabel('X2')
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
class Stree_grapher(Stree):
|
||||||
|
"""Build 3d graphs of any dataset, if it's more than 3 features PCA shall
|
||||||
|
make its magic
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, params: dict):
|
||||||
|
self._plot_size = (8, 8)
|
||||||
|
self._tree_gr = None
|
||||||
|
# make Snode store X's
|
||||||
|
os.environ['TESTING'] = '1'
|
||||||
|
self._fitted = False
|
||||||
|
self._pca = None
|
||||||
|
super().__init__(**params)
|
||||||
|
|
||||||
|
def __del__(self):
|
||||||
|
try:
|
||||||
|
os.environ.pop('TESTING')
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
plt.close('all')
|
||||||
|
|
||||||
|
def _copy_tree(self, node: Snode) -> Snode_graph:
|
||||||
|
mirror = Snode_graph(node)
|
||||||
|
# clone node
|
||||||
|
mirror._class = node._class
|
||||||
|
mirror._belief = node._belief
|
||||||
|
if node.get_down() is not None:
|
||||||
|
mirror.set_down(self._copy_tree(node.get_down()))
|
||||||
|
if node.get_up() is not None:
|
||||||
|
mirror.set_up(self._copy_tree(node.get_up()))
|
||||||
|
return mirror
|
||||||
|
|
||||||
|
def fit(self, X: np.array, y: np.array) -> Stree:
|
||||||
|
"""Fit the Stree and copy the tree in a Snode_graph tree
|
||||||
|
|
||||||
|
:param X: Dataset
|
||||||
|
:type X: np.array
|
||||||
|
:param y: Labels
|
||||||
|
:type y: np.array
|
||||||
|
:return: Stree model
|
||||||
|
:rtype: Stree
|
||||||
|
"""
|
||||||
|
if X.shape[1] != 3:
|
||||||
|
self._pca = PCA(n_components=3)
|
||||||
|
X = self._pca.fit_transform(X)
|
||||||
|
res = super().fit(X, y)
|
||||||
|
self._tree_gr = self._copy_tree(self.tree_)
|
||||||
|
self._fitted = True
|
||||||
|
return res
|
||||||
|
|
||||||
|
def score(self, X: np.array, y: np.array) -> float:
|
||||||
|
self._check_fitted()
|
||||||
|
if X.shape[1] != 3:
|
||||||
|
X = self._pca.transform(X)
|
||||||
|
return super().score(X, y)
|
||||||
|
|
||||||
|
def _check_fitted(self):
|
||||||
|
if not self._fitted:
|
||||||
|
raise Exception('Have to fit the grapher first!')
|
||||||
|
|
||||||
|
def save_all(self, save_folder: str = './', save_prefix: str = ''):
|
||||||
|
"""Save all the node plots in png format, each with a sequence number
|
||||||
|
|
||||||
|
:param save_folder: folder where the plots are saved, defaults to './'
|
||||||
|
:type save_folder: str, optional
|
||||||
|
"""
|
||||||
|
self._check_fitted()
|
||||||
|
if not os.path.isdir(save_folder):
|
||||||
|
os.mkdir(save_folder)
|
||||||
|
seq = 1
|
||||||
|
for node in self:
|
||||||
|
node.save_hyperplane(save_folder=save_folder,
|
||||||
|
save_prefix=save_prefix, save_seq=seq)
|
||||||
|
seq += 1
|
||||||
|
|
||||||
|
def plot_all(self):
|
||||||
|
"""Plots all the nodes
|
||||||
|
"""
|
||||||
|
self._check_fitted()
|
||||||
|
for node in self:
|
||||||
|
node.plot_hyperplane()
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
return Siterator(self._tree_gr)
|
||||||
|
|
2
stree/__init__.py
Normal file
2
stree/__init__.py
Normal file
@@ -0,0 +1,2 @@
|
|||||||
|
from .Strees import Stree, Snode, Siterator
|
||||||
|
from .Strees_grapher import Stree_grapher, Snode_graph
|
@@ -5,7 +5,7 @@ import unittest
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from sklearn.datasets import make_classification
|
from sklearn.datasets import make_classification
|
||||||
|
|
||||||
from trees.Stree import Stree, Snode
|
from stree import Stree, Snode
|
||||||
|
|
||||||
|
|
||||||
class Stree_test(unittest.TestCase):
|
class Stree_test(unittest.TestCase):
|
||||||
@@ -14,9 +14,9 @@ class Stree_test(unittest.TestCase):
|
|||||||
os.environ['TESTING'] = '1'
|
os.environ['TESTING'] = '1'
|
||||||
self._random_state = 1
|
self._random_state = 1
|
||||||
self._clf = Stree(random_state=self._random_state,
|
self._clf = Stree(random_state=self._random_state,
|
||||||
use_predictions=False)
|
use_predictions=False)
|
||||||
self._clf.fit(*self._get_Xy())
|
self._clf.fit(*self._get_Xy())
|
||||||
super(Stree_test, self).__init__(*args, **kwargs)
|
super().__init__(*args, **kwargs)
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def tearDownClass(cls):
|
def tearDownClass(cls):
|
||||||
@@ -71,7 +71,7 @@ class Stree_test(unittest.TestCase):
|
|||||||
def test_build_tree(self):
|
def test_build_tree(self):
|
||||||
"""Check if the tree is built the same way as predictions of models
|
"""Check if the tree is built the same way as predictions of models
|
||||||
"""
|
"""
|
||||||
self._check_tree(self._clf._tree)
|
self._check_tree(self._clf.tree_)
|
||||||
|
|
||||||
def _get_file_data(self, file_name: str) -> tuple:
|
def _get_file_data(self, file_name: str) -> tuple:
|
||||||
"""Return X, y from data, y is the last column in array
|
"""Return X, y from data, y is the last column in array
|
||||||
@@ -107,18 +107,6 @@ class Stree_test(unittest.TestCase):
|
|||||||
res.append(y_original[row])
|
res.append(y_original[row])
|
||||||
return res
|
return res
|
||||||
|
|
||||||
def test_subdatasets(self):
|
|
||||||
"""Check if the subdatasets files have the same labels as the original dataset
|
|
||||||
"""
|
|
||||||
self._clf.save_sub_datasets()
|
|
||||||
with open(self._clf.get_catalog_name()) as cat_file:
|
|
||||||
catalog = csv.reader(cat_file, delimiter=',')
|
|
||||||
for row in catalog:
|
|
||||||
X, y = self._get_Xy()
|
|
||||||
x_file, y_file = self._get_file_data(row[0])
|
|
||||||
y_original = np.array(self._find_out(x_file, X, y), dtype=int)
|
|
||||||
self.assertTrue(np.array_equal(y_file, y_original))
|
|
||||||
|
|
||||||
def test_single_prediction(self):
|
def test_single_prediction(self):
|
||||||
X, y = self._get_Xy()
|
X, y = self._get_Xy()
|
||||||
yp = self._clf.predict((X[0, :].reshape(-1, X.shape[1])))
|
yp = self._clf.predict((X[0, :].reshape(-1, X.shape[1])))
|
||||||
@@ -135,33 +123,43 @@ class Stree_test(unittest.TestCase):
|
|||||||
X, y = self._get_Xy()
|
X, y = self._get_Xy()
|
||||||
accuracy_score = self._clf.score(X, y)
|
accuracy_score = self._clf.score(X, y)
|
||||||
yp = self._clf.predict(X)
|
yp = self._clf.predict(X)
|
||||||
right = (yp == y).astype(int)
|
accuracy_computed = np.mean(yp == y)
|
||||||
accuracy_computed = sum(right) / len(y)
|
|
||||||
self.assertEqual(accuracy_score, accuracy_computed)
|
self.assertEqual(accuracy_score, accuracy_computed)
|
||||||
self.assertGreater(accuracy_score, 0.8)
|
self.assertGreater(accuracy_score, 0.9)
|
||||||
|
|
||||||
def test_single_predict_proba(self):
|
def test_single_predict_proba(self):
|
||||||
"""Check that element 28 has a prediction different that the current label
|
"""Check that element 28 has a prediction different that the current label
|
||||||
"""
|
"""
|
||||||
# Element 28 has a different prediction than the truth
|
# Element 28 has a different prediction than the truth
|
||||||
|
decimals = 5
|
||||||
|
prob = 0.29026400766
|
||||||
X, y = self._get_Xy()
|
X, y = self._get_Xy()
|
||||||
yp = self._clf.predict_proba(X[28, :].reshape(-1, X.shape[1]))
|
yp = self._clf.predict_proba(X[28, :].reshape(-1, X.shape[1]))
|
||||||
self.assertEqual(0, yp[0:, 0])
|
self.assertEqual(np.round(1 - prob, decimals), np.round(yp[0:, 0], decimals))
|
||||||
self.assertEqual(1, y[28])
|
self.assertEqual(1, y[28])
|
||||||
self.assertEqual(0.29026400766, round(yp[0, 1], 11))
|
|
||||||
|
self.assertAlmostEqual(
|
||||||
|
round(prob, decimals),
|
||||||
|
round(yp[0, 1], decimals),
|
||||||
|
decimals
|
||||||
|
)
|
||||||
|
|
||||||
def test_multiple_predict_proba(self):
|
def test_multiple_predict_proba(self):
|
||||||
# First 27 elements the predictions are the same as the truth
|
# First 27 elements the predictions are the same as the truth
|
||||||
num = 27
|
num = 27
|
||||||
|
decimals = 5
|
||||||
X, y = self._get_Xy()
|
X, y = self._get_Xy()
|
||||||
yp = self._clf.predict_proba(X[:num, :])
|
yp = self._clf.predict_proba(X[:num, :])
|
||||||
self.assertListEqual(y[:num].tolist(), yp[:, 0].tolist())
|
self.assertListEqual(y[:num].tolist(), np.argmax(yp[:num], axis=1).tolist())
|
||||||
expected_proba = [0.88395641, 0.36746962, 0.84158767, 0.34106833, 0.14269291, 0.85193236,
|
expected_proba = [0.88395641, 0.36746962, 0.84158767, 0.34106833, 0.14269291, 0.85193236,
|
||||||
0.29876058, 0.7282164, 0.85958616, 0.89517877, 0.99745224, 0.18860349,
|
0.29876058, 0.7282164, 0.85958616, 0.89517877, 0.99745224, 0.18860349,
|
||||||
0.30756427, 0.8318412, 0.18981198, 0.15564624, 0.25740655, 0.22923355,
|
0.30756427, 0.8318412, 0.18981198, 0.15564624, 0.25740655, 0.22923355,
|
||||||
0.87365959, 0.49928689, 0.95574351, 0.28761257, 0.28906333, 0.32643692,
|
0.87365959, 0.49928689, 0.95574351, 0.28761257, 0.28906333, 0.32643692,
|
||||||
0.29788483, 0.01657364, 0.81149083]
|
0.29788483, 0.01657364, 0.81149083]
|
||||||
self.assertListEqual(expected_proba, np.round(yp[:, 1], decimals=8).tolist())
|
expected = np.round(expected_proba, decimals=decimals).tolist()
|
||||||
|
computed = np.round(yp[:, 1], decimals=decimals).tolist()
|
||||||
|
for i in range(len(expected)):
|
||||||
|
self.assertAlmostEqual(expected[i], computed[i], decimals)
|
||||||
|
|
||||||
def build_models(self):
|
def build_models(self):
|
||||||
"""Build and train two models, model_clf will use the sklearn classifier to
|
"""Build and train two models, model_clf will use the sklearn classifier to
|
||||||
@@ -169,9 +167,9 @@ class Stree_test(unittest.TestCase):
|
|||||||
coefficients to compute both predictions and splitted data
|
coefficients to compute both predictions and splitted data
|
||||||
"""
|
"""
|
||||||
model_clf = Stree(random_state=self._random_state,
|
model_clf = Stree(random_state=self._random_state,
|
||||||
use_predictions=True)
|
use_predictions=True)
|
||||||
model_computed = Stree(random_state=self._random_state,
|
model_computed = Stree(random_state=self._random_state,
|
||||||
use_predictions=False)
|
use_predictions=False)
|
||||||
X, y = self._get_Xy()
|
X, y = self._get_Xy()
|
||||||
model_clf.fit(X, y)
|
model_clf.fit(X, y)
|
||||||
model_computed.fit(X, y)
|
model_computed.fit(X, y)
|
||||||
@@ -192,7 +190,7 @@ class Stree_test(unittest.TestCase):
|
|||||||
b = use_math.score(X, y)
|
b = use_math.score(X, y)
|
||||||
self.assertEqual(
|
self.assertEqual(
|
||||||
use_clf.score(X, y),
|
use_clf.score(X, y),
|
||||||
b
|
b
|
||||||
)
|
)
|
||||||
self.assertGreater(b, .95)
|
self.assertGreater(b, .95)
|
||||||
|
|
||||||
@@ -217,7 +215,119 @@ class Stree_test(unittest.TestCase):
|
|||||||
#
|
#
|
||||||
self.assertListEqual(yp_line.tolist(), yp_once.tolist())
|
self.assertListEqual(yp_line.tolist(), yp_once.tolist())
|
||||||
|
|
||||||
|
def test_iterator(self):
|
||||||
|
"""Check preorder iterator
|
||||||
|
"""
|
||||||
|
expected = [
|
||||||
|
'root',
|
||||||
|
'root - Down',
|
||||||
|
'root - Down - Down, <cgaf> - Leaf class=1 belief=0.975989 counts=(array([0, 1]), array([ 17, 691]))',
|
||||||
|
'root - Down - Up',
|
||||||
|
'root - Down - Up - Down, <cgaf> - Leaf class=1 belief=0.750000 counts=(array([0, 1]), array([1, 3]))',
|
||||||
|
'root - Down - Up - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([7]))',
|
||||||
|
'root - Up, <cgaf> - Leaf class=0 belief=0.928297 counts=(array([0, 1]), array([725, 56]))',
|
||||||
|
]
|
||||||
|
computed = []
|
||||||
|
for node in self._clf:
|
||||||
|
computed.append(str(node))
|
||||||
|
self.assertListEqual(expected, computed)
|
||||||
|
|
||||||
|
def test_is_a_sklearn_classifier(self):
|
||||||
|
import warnings
|
||||||
|
from sklearn.exceptions import ConvergenceWarning
|
||||||
|
warnings.filterwarnings('ignore', category=ConvergenceWarning)
|
||||||
|
warnings.filterwarnings('ignore', category=RuntimeWarning)
|
||||||
|
from sklearn.utils.estimator_checks import check_estimator
|
||||||
|
check_estimator(Stree())
|
||||||
|
|
||||||
|
def test_exception_if_C_is_negative(self):
|
||||||
|
tclf = Stree(C=-1)
|
||||||
|
with self.assertRaises(ValueError):
|
||||||
|
tclf.fit(*self._get_Xy())
|
||||||
|
|
||||||
|
def test_check_max_depth_is_positive_or_None(self):
|
||||||
|
tcl = Stree()
|
||||||
|
self.assertIsNone(tcl.max_depth)
|
||||||
|
tcl = Stree(max_depth=1)
|
||||||
|
self.assertGreaterEqual(1, tcl.max_depth)
|
||||||
|
with self.assertRaises(ValueError):
|
||||||
|
tcl = Stree(max_depth=-1)
|
||||||
|
tcl.fit(*self._get_Xy())
|
||||||
|
|
||||||
|
def test_check_max_depth(self):
|
||||||
|
depth = 3
|
||||||
|
tcl = Stree(random_state=self._random_state, max_depth=depth)
|
||||||
|
tcl.fit(*self._get_Xy())
|
||||||
|
self.assertEqual(depth, tcl.depth_)
|
||||||
|
|
||||||
|
def test_unfitted_tree_is_iterable(self):
|
||||||
|
tcl = Stree()
|
||||||
|
self.assertEqual(0, len(list(tcl)))
|
||||||
|
|
||||||
|
class Snode_test(unittest.TestCase):
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
os.environ['TESTING'] = '1'
|
||||||
|
self._random_state = 1
|
||||||
|
self._clf = Stree(random_state=self._random_state,
|
||||||
|
use_predictions=True)
|
||||||
|
self._clf.fit(*self._get_Xy())
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def tearDownClass(cls):
|
||||||
|
try:
|
||||||
|
os.environ.pop('TESTING')
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def _get_Xy(self):
|
||||||
|
X, y = make_classification(n_samples=1500, n_features=3, n_informative=3,
|
||||||
|
n_redundant=0, n_repeated=0, n_classes=2, n_clusters_per_class=2,
|
||||||
|
class_sep=1.5, flip_y=0, weights=[0.5, 0.5], random_state=self._random_state)
|
||||||
|
return X, y
|
||||||
|
|
||||||
|
def test_attributes_in_leaves(self):
|
||||||
|
"""Check if the attributes in leaves have correct values so they form a predictor
|
||||||
|
"""
|
||||||
|
|
||||||
|
def check_leave(node: Snode):
|
||||||
|
if not node.is_leaf():
|
||||||
|
check_leave(node.get_down())
|
||||||
|
check_leave(node.get_up())
|
||||||
|
return
|
||||||
|
# Check Belief in leave
|
||||||
|
classes, card = np.unique(node._y, return_counts=True)
|
||||||
|
max_card = max(card)
|
||||||
|
min_card = min(card)
|
||||||
|
if len(classes) > 1:
|
||||||
|
try:
|
||||||
|
belief = max_card / (max_card + min_card)
|
||||||
|
except:
|
||||||
|
belief = 0.
|
||||||
|
else:
|
||||||
|
belief = 1
|
||||||
|
self.assertEqual(belief, node._belief)
|
||||||
|
# Check Class
|
||||||
|
class_computed = classes[card == max_card]
|
||||||
|
self.assertEqual(class_computed, node._class)
|
||||||
|
|
||||||
|
check_leave(self._clf.tree_)
|
||||||
|
|
||||||
|
def test_nodes_coefs(self):
|
||||||
|
"""Check if the nodes of the tree have the right attributes filled
|
||||||
|
"""
|
||||||
|
|
||||||
|
def run_tree(node: Snode):
|
||||||
|
if node._belief < 1:
|
||||||
|
# only exclude pure leaves
|
||||||
|
self.assertIsNotNone(node._clf)
|
||||||
|
self.assertIsNotNone(node._clf.coef_)
|
||||||
|
self.assertIsNotNone(node._vector)
|
||||||
|
self.assertIsNotNone(node._interceptor)
|
||||||
|
if node.is_leaf():
|
||||||
|
return
|
||||||
|
run_tree(node.get_down())
|
||||||
|
run_tree(node.get_up())
|
||||||
|
|
||||||
|
run_tree(self._clf.tree_)
|
1
stree/tests/__init__.py
Normal file
1
stree/tests/__init__.py
Normal file
@@ -0,0 +1 @@
|
|||||||
|
from .Strees_test import Stree_test, Snode_test
|
249
test2.ipynb
249
test2.ipynb
@@ -1,249 +0,0 @@
|
|||||||
{
|
|
||||||
"cells": [
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 1,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import numpy as np\n",
|
|
||||||
"import pandas as pd\n",
|
|
||||||
"from sklearn.svm import LinearSVC\n",
|
|
||||||
"from sklearn.tree import DecisionTreeClassifier\n",
|
|
||||||
"from sklearn.datasets import make_classification, load_iris, load_wine\n",
|
|
||||||
"from trees.Stree import Stree\n",
|
|
||||||
"import time"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 2,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import os\n",
|
|
||||||
"if not os.path.isfile('data/creditcard.csv'):\n",
|
|
||||||
" !wget --no-check-certificate --content-disposition http://nube.jccm.es/index.php/s/Zs7SYtZQJ3RQ2H2/download\n",
|
|
||||||
" !tar xzf creditcard.tgz"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 3,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"output_type": "stream",
|
|
||||||
"name": "stdout",
|
|
||||||
"text": "Fraud: 0.173% 492\nValid: 99.827% 284315\nX.shape (1492, 28) y.shape (1492,)\nFraud: 32.976% 492\nValid: 67.024% 1000\n"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"import time\n",
|
|
||||||
"from sklearn.model_selection import train_test_split\n",
|
|
||||||
"from trees.Stree import Stree\n",
|
|
||||||
"\n",
|
|
||||||
"random_state=1\n",
|
|
||||||
"\n",
|
|
||||||
"def load_creditcard(n_examples=0):\n",
|
|
||||||
" import pandas as pd\n",
|
|
||||||
" import numpy as np\n",
|
|
||||||
" import random\n",
|
|
||||||
" df = pd.read_csv('data/creditcard.csv')\n",
|
|
||||||
" print(\"Fraud: {0:.3f}% {1}\".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))\n",
|
|
||||||
" print(\"Valid: {0:.3f}% {1}\".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))\n",
|
|
||||||
" y = df.Class\n",
|
|
||||||
" X = df.drop(['Class', 'Time', 'Amount'], axis=1).values\n",
|
|
||||||
" if n_examples > 0:\n",
|
|
||||||
" # Take first n_examples samples\n",
|
|
||||||
" X = X[:n_examples, :]\n",
|
|
||||||
" y = y[:n_examples, :]\n",
|
|
||||||
" else:\n",
|
|
||||||
" # Take all the positive samples with a number of random negatives\n",
|
|
||||||
" if n_examples < 0:\n",
|
|
||||||
" Xt = X[(y == 1).ravel()]\n",
|
|
||||||
" yt = y[(y == 1).ravel()]\n",
|
|
||||||
" indices = random.sample(range(X.shape[0]), -1 * n_examples)\n",
|
|
||||||
" X = np.append(Xt, X[indices], axis=0)\n",
|
|
||||||
" y = np.append(yt, y[indices], axis=0)\n",
|
|
||||||
" print(\"X.shape\", X.shape, \" y.shape\", y.shape)\n",
|
|
||||||
" print(\"Fraud: {0:.3f}% {1}\".format(len(y[y == 1])*100/X.shape[0], len(y[y == 1])))\n",
|
|
||||||
" print(\"Valid: {0:.3f}% {1}\".format(len(y[y == 0]) * 100 / X.shape[0], len(y[y == 0])))\n",
|
|
||||||
" Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=0.7, shuffle=True, random_state=random_state, stratify=y)\n",
|
|
||||||
" return Xtrain, Xtest, ytrain, ytest\n",
|
|
||||||
"\n",
|
|
||||||
"# data = load_creditcard(-5000) # Take all true samples + 5000 of the others\n",
|
|
||||||
"# data = load_creditcard(5000) # Take the first 5000 samples\n",
|
|
||||||
"data = load_creditcard(-1000) # Take all the samples\n",
|
|
||||||
"\n",
|
|
||||||
"Xtrain = data[0]\n",
|
|
||||||
"Xtest = data[1]\n",
|
|
||||||
"ytrain = data[2]\n",
|
|
||||||
"ytest = data[3]"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 15,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": []
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 4,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"output_type": "stream",
|
|
||||||
"name": "stdout",
|
|
||||||
"text": "************** C=0.001 ****************************\nClassifier's accuracy (train): 0.9550\nClassifier's accuracy (test) : 0.9487\nroot\nroot - Down\nroot - Down - Down, <cgaf> - Leaf class=1 belief=0.977346 counts=(array([0, 1]), array([ 7, 302]))\nroot - Up\nroot - Up - Down, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\nroot - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\nroot - Up - Up\nroot - Up - Up - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([2]))\nroot - Up - Up - Up, <cgaf> - Leaf class=0 belief=0.945280 counts=(array([0, 1]), array([691, 40]))\n\n**************************************************\n************** C=0.01 ****************************\nClassifier's accuracy (train): 0.9569\nClassifier's accuracy (test) : 0.9576\nroot\nroot - Down, <cgaf> - Leaf class=1 belief=0.986971 counts=(array([0, 1]), array([ 4, 303]))\nroot - Up, <cgaf> - Leaf class=0 belief=0.944369 counts=(array([0, 1]), array([696, 41]))\n\n**************************************************\n************** C=1 ****************************\nClassifier's accuracy (train): 0.9674\nClassifier's accuracy (test) : 0.9554\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([310]))\nroot - Up, <cgaf> - Leaf class=0 belief=0.953232 counts=(array([0, 1]), array([693, 34]))\nroot - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([7]))\n\n**************************************************\n************** C=5 ****************************\nClassifier's accuracy (train): 0.9693\nClassifier's accuracy (test) : 0.9487\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([310]))\nroot - Up\nroot - Up - Down, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\nroot - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([7]))\nroot - Up - Up\nroot - Up - Up - Down, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Down\nroot - Up - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([2]))\nroot - Up - Up - Up - Up - Up, <cgaf> - Leaf class=0 belief=0.955494 counts=(array([0, 1]), array([687, 32]))\nroot - Up - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\n\n**************************************************\n************** C=17 ****************************\nClassifier's accuracy (train): 0.9780\nClassifier's accuracy (test) : 0.9487\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([301]))\nroot - Up\nroot - Up - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([2]))\nroot - Down - Up\nroot - Down - Up - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([15]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([3]))\nroot - Down - Up - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([15]))\nroot - Up - Up - Up, <cgaf> - Leaf class=0 belief=0.967468 counts=(array([0, 1]), array([684, 23]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\n\n**************************************************\n0.7277 secs\n"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"t = time.time()\n",
|
|
||||||
"for C in (.001, .01, 1, 5, 17):\n",
|
|
||||||
" clf = Stree(C=C, random_state=random_state)\n",
|
|
||||||
" clf.fit(Xtrain, ytrain)\n",
|
|
||||||
" print(f\"************** C={C} ****************************\")\n",
|
|
||||||
" print(f\"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}\")\n",
|
|
||||||
" print(f\"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}\")\n",
|
|
||||||
" print(clf)\n",
|
|
||||||
" print(f\"**************************************************\")\n",
|
|
||||||
"print(f\"{time.time() - t:.4f} secs\")"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 5,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import numpy as np\n",
|
|
||||||
"from sklearn.preprocessing import StandardScaler\n",
|
|
||||||
"from sklearn.svm import LinearSVC\n",
|
|
||||||
"from sklearn.calibration import CalibratedClassifierCV\n",
|
|
||||||
"scaler = StandardScaler()\n",
|
|
||||||
"cclf = CalibratedClassifierCV(base_estimator=LinearSVC(), cv=5)\n",
|
|
||||||
"cclf.fit(Xtrain, ytrain)\n",
|
|
||||||
"res = cclf.predict_proba(Xtest)\n",
|
|
||||||
"#an array containing probabilities of belonging to the 1st class"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 7,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"output_type": "stream",
|
|
||||||
"name": "stdout",
|
|
||||||
"text": "root\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([301]))\nroot - Up\nroot - Up - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([2]))\nroot - Down - Up\nroot - Down - Up - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([15]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([3]))\nroot - Down - Up - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([15]))\nroot - Up - Up - Up, <cgaf> - Leaf class=0 belief=0.967468 counts=(array([0, 1]), array([684, 23]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\n"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"for i in list(clf):\n",
|
|
||||||
" print(i)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 8,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"output_type": "stream",
|
|
||||||
"name": "stdout",
|
|
||||||
"text": "root\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([301]))\nroot - Up\nroot - Up - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([2]))\nroot - Down - Up\nroot - Down - Up - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([15]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([3]))\nroot - Down - Up - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([15]))\nroot - Up - Up - Up, <cgaf> - Leaf class=0 belief=0.967468 counts=(array([0, 1]), array([684, 23]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\n"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"for i in clf:\n",
|
|
||||||
" print(i)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 11,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"output_type": "display_data",
|
|
||||||
"data": {
|
|
||||||
"text/plain": "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …",
|
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
|
||||||
"version_major": 2,
|
|
||||||
"version_minor": 0,
|
|
||||||
"model_id": "0025f832c1734afc944021e5990c2d11"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"metadata": {}
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"%matplotlib widget\n",
|
|
||||||
"from mpl_toolkits.mplot3d import Axes3D\n",
|
|
||||||
"import matplotlib.pyplot as plt\n",
|
|
||||||
"from matplotlib import cm\n",
|
|
||||||
"from matplotlib.ticker import LinearLocator, FormatStrFormatter\n",
|
|
||||||
"import numpy as np\n",
|
|
||||||
"\n",
|
|
||||||
"fig = plt.figure()\n",
|
|
||||||
"ax = fig.gca(projection='3d')\n",
|
|
||||||
"\n",
|
|
||||||
"scale = 8\n",
|
|
||||||
"# Make data.\n",
|
|
||||||
"X = np.arange(-scale, scale, 0.25)\n",
|
|
||||||
"Y = np.arange(-scale, scale, 0.25)\n",
|
|
||||||
"X, Y = np.meshgrid(X, Y)\n",
|
|
||||||
"Z = X**2 + Y**2\n",
|
|
||||||
"\n",
|
|
||||||
"# Plot the surface.\n",
|
|
||||||
"surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,\n",
|
|
||||||
" linewidth=0, antialiased=False)\n",
|
|
||||||
"\n",
|
|
||||||
"# Customize the z axis.\n",
|
|
||||||
"ax.set_zlim(0, 100)\n",
|
|
||||||
"ax.zaxis.set_major_locator(LinearLocator(10))\n",
|
|
||||||
"ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))\n",
|
|
||||||
"\n",
|
|
||||||
"# rotate the axes and update\n",
|
|
||||||
"#for angle in range(0, 360):\n",
|
|
||||||
"# ax.view_init(30, 40)\n",
|
|
||||||
"\n",
|
|
||||||
"# Add a color bar which maps values to colors.\n",
|
|
||||||
"fig.colorbar(surf, shrink=0.5, aspect=5)\n",
|
|
||||||
"\n",
|
|
||||||
"plt.show()"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": []
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"kernelspec": {
|
|
||||||
"display_name": "Python 3",
|
|
||||||
"language": "python",
|
|
||||||
"name": "python3"
|
|
||||||
},
|
|
||||||
"language_info": {
|
|
||||||
"codemirror_mode": {
|
|
||||||
"name": "ipython",
|
|
||||||
"version": 3
|
|
||||||
},
|
|
||||||
"file_extension": ".py",
|
|
||||||
"mimetype": "text/x-python",
|
|
||||||
"name": "python",
|
|
||||||
"nbconvert_exporter": "python",
|
|
||||||
"pygments_lexer": "ipython3",
|
|
||||||
"version": "3.7.6-final"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"nbformat": 4,
|
|
||||||
"nbformat_minor": 2
|
|
||||||
}
|
|
@@ -1,72 +0,0 @@
|
|||||||
import os
|
|
||||||
import unittest
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
from sklearn.datasets import make_classification
|
|
||||||
|
|
||||||
from trees.Stree import Stree, Snode
|
|
||||||
|
|
||||||
|
|
||||||
class Snode_test(unittest.TestCase):
|
|
||||||
|
|
||||||
def __init__(self, *args, **kwargs):
|
|
||||||
os.environ['TESTING'] = '1'
|
|
||||||
self._random_state = 1
|
|
||||||
self._clf = Stree(random_state=self._random_state,
|
|
||||||
use_predictions=True)
|
|
||||||
self._clf.fit(*self._get_Xy())
|
|
||||||
super(Snode_test, self).__init__(*args, **kwargs)
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def tearDownClass(cls):
|
|
||||||
try:
|
|
||||||
os.environ.pop('TESTING')
|
|
||||||
except:
|
|
||||||
pass
|
|
||||||
|
|
||||||
def _get_Xy(self):
|
|
||||||
X, y = make_classification(n_samples=1500, n_features=3, n_informative=3,
|
|
||||||
n_redundant=0, n_repeated=0, n_classes=2, n_clusters_per_class=2,
|
|
||||||
class_sep=1.5, flip_y=0, weights=[0.5, 0.5], random_state=self._random_state)
|
|
||||||
return X, y
|
|
||||||
|
|
||||||
def test_attributes_in_leaves(self):
|
|
||||||
"""Check if the attributes in leaves have correct values so they form a predictor
|
|
||||||
"""
|
|
||||||
def check_leave(node: Snode):
|
|
||||||
if not node.is_leaf():
|
|
||||||
check_leave(node.get_down())
|
|
||||||
check_leave(node.get_up())
|
|
||||||
return
|
|
||||||
# Check Belief in leave
|
|
||||||
classes, card = np.unique(node._y, return_counts=True)
|
|
||||||
max_card = max(card)
|
|
||||||
min_card = min(card)
|
|
||||||
if len(classes) > 1:
|
|
||||||
try:
|
|
||||||
belief = max_card / (max_card + min_card)
|
|
||||||
except:
|
|
||||||
belief = 0.
|
|
||||||
else:
|
|
||||||
belief = 1
|
|
||||||
self.assertEqual(belief, node._belief)
|
|
||||||
# Check Class
|
|
||||||
class_computed = classes[card == max_card]
|
|
||||||
self.assertEqual(class_computed, node._class)
|
|
||||||
check_leave(self._clf._tree)
|
|
||||||
|
|
||||||
def test_nodes_coefs(self):
|
|
||||||
"""Check if the nodes of the tree have the right attributes filled
|
|
||||||
"""
|
|
||||||
def run_tree(node: Snode):
|
|
||||||
if node._belief < 1:
|
|
||||||
# only exclude pure leaves
|
|
||||||
self.assertIsNotNone(node._clf)
|
|
||||||
self.assertIsNotNone(node._clf.coef_)
|
|
||||||
self.assertIsNotNone(node._vector)
|
|
||||||
self.assertIsNotNone(node._interceptor)
|
|
||||||
if node.is_leaf():
|
|
||||||
return
|
|
||||||
run_tree(node.get_down())
|
|
||||||
run_tree(node.get_up())
|
|
||||||
run_tree(self._clf._tree)
|
|
@@ -1,34 +0,0 @@
|
|||||||
'''
|
|
||||||
__author__ = "Ricardo Montañana Gómez"
|
|
||||||
__copyright__ = "Copyright 2020, Ricardo Montañana Gómez"
|
|
||||||
__license__ = "MIT"
|
|
||||||
__version__ = "0.9"
|
|
||||||
Inorder iterator for the binary tree of Snodes
|
|
||||||
Uses LinearSVC
|
|
||||||
'''
|
|
||||||
|
|
||||||
from trees.Snode import Snode
|
|
||||||
|
|
||||||
|
|
||||||
class Siterator:
|
|
||||||
"""Inorder iterator
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, tree: Snode):
|
|
||||||
self._stack = []
|
|
||||||
self._push(tree)
|
|
||||||
|
|
||||||
def __iter__(self):
|
|
||||||
return self
|
|
||||||
|
|
||||||
def _push(self, node: Snode):
|
|
||||||
while (node is not None):
|
|
||||||
self._stack.insert(0, node)
|
|
||||||
node = node.get_down()
|
|
||||||
|
|
||||||
def __next__(self) -> Snode:
|
|
||||||
if len(self._stack) == 0:
|
|
||||||
raise StopIteration()
|
|
||||||
node = self._stack.pop()
|
|
||||||
self._push(node.get_up())
|
|
||||||
return node
|
|
@@ -1,70 +0,0 @@
|
|||||||
'''
|
|
||||||
__author__ = "Ricardo Montañana Gómez"
|
|
||||||
__copyright__ = "Copyright 2020, Ricardo Montañana Gómez"
|
|
||||||
__license__ = "MIT"
|
|
||||||
__version__ = "0.9"
|
|
||||||
Node of the Stree (binary tree)
|
|
||||||
'''
|
|
||||||
|
|
||||||
import os
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
from sklearn.svm import LinearSVC
|
|
||||||
|
|
||||||
|
|
||||||
class Snode:
|
|
||||||
def __init__(self, clf: LinearSVC, X: np.ndarray, y: np.ndarray, title: str):
|
|
||||||
self._clf = clf
|
|
||||||
self._vector = None if clf is None else clf.coef_
|
|
||||||
self._interceptor = 0. if clf is None else clf.intercept_
|
|
||||||
self._title = title
|
|
||||||
self._belief = 0. # belief of the prediction in a leaf node based on samples
|
|
||||||
# Only store dataset in Testing
|
|
||||||
self._X = X if os.environ.get('TESTING', 'NS') != 'NS' else None
|
|
||||||
self._y = y
|
|
||||||
self._down = None
|
|
||||||
self._up = None
|
|
||||||
self._class = None
|
|
||||||
|
|
||||||
def set_down(self, son):
|
|
||||||
self._down = son
|
|
||||||
|
|
||||||
def set_up(self, son):
|
|
||||||
self._up = son
|
|
||||||
|
|
||||||
def is_leaf(self,) -> bool:
|
|
||||||
return self._up is None and self._down is None
|
|
||||||
|
|
||||||
def get_down(self) -> 'Snode':
|
|
||||||
return self._down
|
|
||||||
|
|
||||||
def get_up(self) -> 'Snode':
|
|
||||||
return self._up
|
|
||||||
|
|
||||||
def make_predictor(self):
|
|
||||||
"""Compute the class of the predictor and its belief based on the subdataset of the node
|
|
||||||
only if it is a leaf
|
|
||||||
"""
|
|
||||||
# Clean memory
|
|
||||||
#self._X = None
|
|
||||||
#self._y = None
|
|
||||||
if not self.is_leaf():
|
|
||||||
return
|
|
||||||
classes, card = np.unique(self._y, return_counts=True)
|
|
||||||
if len(classes) > 1:
|
|
||||||
max_card = max(card)
|
|
||||||
min_card = min(card)
|
|
||||||
try:
|
|
||||||
self._belief = max_card / (max_card + min_card)
|
|
||||||
except:
|
|
||||||
self._belief = 0.
|
|
||||||
self._class = classes[card == max_card][0]
|
|
||||||
else:
|
|
||||||
self._belief = 1
|
|
||||||
self._class = classes[0]
|
|
||||||
|
|
||||||
def __str__(self) -> str:
|
|
||||||
if self.is_leaf():
|
|
||||||
return f"{self._title} - Leaf class={self._class} belief={self._belief:.6f} counts={np.unique(self._y, return_counts=True)}"
|
|
||||||
else:
|
|
||||||
return f"{self._title}"
|
|
222
trees/Stree.py
222
trees/Stree.py
@@ -1,222 +0,0 @@
|
|||||||
'''
|
|
||||||
__author__ = "Ricardo Montañana Gómez"
|
|
||||||
__copyright__ = "Copyright 2020, Ricardo Montañana Gómez"
|
|
||||||
__license__ = "MIT"
|
|
||||||
__version__ = "0.9"
|
|
||||||
Build an oblique tree classifier based on SVM Trees
|
|
||||||
Uses LinearSVC
|
|
||||||
'''
|
|
||||||
|
|
||||||
import typing
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
from sklearn.base import BaseEstimator, ClassifierMixin
|
|
||||||
from sklearn.svm import LinearSVC
|
|
||||||
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted
|
|
||||||
|
|
||||||
from trees.Snode import Snode
|
|
||||||
from trees.Siterator import Siterator
|
|
||||||
|
|
||||||
|
|
||||||
class Stree(BaseEstimator, ClassifierMixin):
|
|
||||||
"""
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, C=1.0, max_iter: int = 1000, random_state: int = 0, use_predictions: bool = False):
|
|
||||||
self._max_iter = max_iter
|
|
||||||
self._C = C
|
|
||||||
self._random_state = random_state
|
|
||||||
self._tree = None
|
|
||||||
self.__folder = 'data/'
|
|
||||||
self.__use_predictions = use_predictions
|
|
||||||
self.__trained = False
|
|
||||||
self.__proba = False
|
|
||||||
|
|
||||||
def get_params(self, deep=True):
|
|
||||||
"""Get dict with hyperparameters and its values to accomplish sklearn rules
|
|
||||||
"""
|
|
||||||
return {"C": self._C, "random_state": self._random_state, 'max_iter': self._max_iter}
|
|
||||||
|
|
||||||
def set_params(self, **parameters):
|
|
||||||
"""Set hyperparmeters as specified by sklearn, needed in Gridsearchs
|
|
||||||
"""
|
|
||||||
for parameter, value in parameters.items():
|
|
||||||
setattr(self, parameter, value)
|
|
||||||
return self
|
|
||||||
|
|
||||||
def _linear_function(self, data: np.array, node: Snode) -> np.array:
|
|
||||||
coef = node._vector[0, :].reshape(-1, data.shape[1])
|
|
||||||
return data.dot(coef.T) + node._interceptor[0]
|
|
||||||
|
|
||||||
def _split_data(self, node: Snode, data: np.ndarray, indices: np.ndarray) -> list:
|
|
||||||
if self.__use_predictions:
|
|
||||||
yp = node._clf.predict(data)
|
|
||||||
down = (yp == 1).reshape(-1, 1)
|
|
||||||
res = np.expand_dims(node._clf.decision_function(data), 1)
|
|
||||||
else:
|
|
||||||
# doesn't work with multiclass as each sample has to do inner product with its own coeficients
|
|
||||||
# computes positition of every sample is w.r.t. the hyperplane
|
|
||||||
res = self._linear_function(data, node)
|
|
||||||
down = res > 0
|
|
||||||
up = ~down
|
|
||||||
data_down = data[down[:, 0]] if any(down) else None
|
|
||||||
indices_down = indices[down[:, 0]] if any(down) else None
|
|
||||||
res_down = res[down[:, 0]] if any(down) else None
|
|
||||||
data_up = data[up[:, 0]] if any(up) else None
|
|
||||||
indices_up = indices[up[:, 0]] if any(up) else None
|
|
||||||
res_up = res[up[:, 0]] if any(up) else None
|
|
||||||
return [data_up, indices_up, data_down, indices_down, res_up, res_down]
|
|
||||||
|
|
||||||
def fit(self, X: np.ndarray, y: np.ndarray, title: str = 'root') -> 'Stree':
|
|
||||||
X, y = check_X_y(X, y.ravel())
|
|
||||||
self.n_features_in_ = X.shape[1]
|
|
||||||
self._tree = self.train(X, y.ravel(), title)
|
|
||||||
self._build_predictor()
|
|
||||||
self.__trained = True
|
|
||||||
return self
|
|
||||||
|
|
||||||
def _build_predictor(self):
|
|
||||||
"""Process the leaves to make them predictors
|
|
||||||
"""
|
|
||||||
def run_tree(node: Snode):
|
|
||||||
if node.is_leaf():
|
|
||||||
node.make_predictor()
|
|
||||||
return
|
|
||||||
run_tree(node.get_down())
|
|
||||||
run_tree(node.get_up())
|
|
||||||
run_tree(self._tree)
|
|
||||||
|
|
||||||
def train(self, X: np.ndarray, y: np.ndarray, title: str = 'root') -> Snode:
|
|
||||||
if np.unique(y).shape[0] == 1:
|
|
||||||
# only 1 class => pure dataset
|
|
||||||
return Snode(None, X, y, title + ', <pure>')
|
|
||||||
# Train the model
|
|
||||||
clf = LinearSVC(max_iter=self._max_iter, C=self._C,
|
|
||||||
random_state=self._random_state)
|
|
||||||
clf.fit(X, y)
|
|
||||||
tree = Snode(clf, X, y, title)
|
|
||||||
X_U, y_u, X_D, y_d, _, _ = self._split_data(tree, X, y)
|
|
||||||
if X_U is None or X_D is None:
|
|
||||||
# didn't part anything
|
|
||||||
return Snode(clf, X, y, title + ', <cgaf>')
|
|
||||||
tree.set_up(self.train(X_U, y_u, title + ' - Up'))
|
|
||||||
tree.set_down(self.train(X_D, y_d, title + ' - Down'))
|
|
||||||
return tree
|
|
||||||
|
|
||||||
def _reorder_results(self, y: np.array, indices: np.array) -> np.array:
|
|
||||||
y_ordered = np.zeros(y.shape, dtype=int if y.ndim == 1 else float)
|
|
||||||
indices = indices.astype(int)
|
|
||||||
for i, index in enumerate(indices):
|
|
||||||
y_ordered[index] = y[i]
|
|
||||||
return y_ordered
|
|
||||||
|
|
||||||
def predict(self, X: np.array) -> np.array:
|
|
||||||
def predict_class(xp: np.array, indices: np.array, node: Snode) -> np.array:
|
|
||||||
if xp is None:
|
|
||||||
return [], []
|
|
||||||
if node.is_leaf():
|
|
||||||
# set a class for every sample in dataset
|
|
||||||
prediction = np.full((xp.shape[0], 1), node._class)
|
|
||||||
return prediction, indices
|
|
||||||
u, i_u, d, i_d, _, _ = self._split_data(node, xp, indices)
|
|
||||||
k, l = predict_class(d, i_d, node.get_down())
|
|
||||||
m, n = predict_class(u, i_u, node.get_up())
|
|
||||||
return np.append(k, m), np.append(l, n)
|
|
||||||
# sklearn check
|
|
||||||
check_is_fitted(self)
|
|
||||||
# Input validation
|
|
||||||
X = check_array(X)
|
|
||||||
# setup prediction & make it happen
|
|
||||||
indices = np.arange(X.shape[0])
|
|
||||||
return self._reorder_results(*predict_class(X, indices, self._tree))
|
|
||||||
|
|
||||||
def predict_proba(self, X: np.array) -> np.array:
|
|
||||||
"""Computes an approximation of the probability of samples belonging to class 1
|
|
||||||
(nothing more, nothing less)
|
|
||||||
|
|
||||||
:param X: dataset
|
|
||||||
:type X: np.array
|
|
||||||
"""
|
|
||||||
def predict_class(xp: np.array, indices: np.array, dist: np.array, node: Snode) -> np.array:
|
|
||||||
"""Run the tree to compute predictions
|
|
||||||
|
|
||||||
:param xp: subdataset of samples
|
|
||||||
:type xp: np.array
|
|
||||||
:param indices: indices of subdataset samples to rebuild original order
|
|
||||||
:type indices: np.array
|
|
||||||
:param dist: distances of every sample to the hyperplane or the father node
|
|
||||||
:type dist: np.array
|
|
||||||
:param node: node of the leaf with the class
|
|
||||||
:type node: Snode
|
|
||||||
:return: array of labels and distances, array of indices
|
|
||||||
:rtype: np.array
|
|
||||||
"""
|
|
||||||
if xp is None:
|
|
||||||
return [], []
|
|
||||||
if node.is_leaf():
|
|
||||||
# set a class for every sample in dataset
|
|
||||||
prediction = np.full((xp.shape[0], 1), node._class)
|
|
||||||
prediction_proba = dist
|
|
||||||
return np.append(prediction, prediction_proba, axis=1), indices
|
|
||||||
u, i_u, d, i_d, r_u, r_d = self._split_data(node, xp, indices)
|
|
||||||
k, l = predict_class(d, i_d, r_d, node.get_down())
|
|
||||||
m, n = predict_class(u, i_u, r_u, node.get_up())
|
|
||||||
return np.append(k, m), np.append(l, n)
|
|
||||||
# sklearn check
|
|
||||||
check_is_fitted(self)
|
|
||||||
# Input validation
|
|
||||||
X = check_array(X)
|
|
||||||
# setup prediction & make it happen
|
|
||||||
indices = np.arange(X.shape[0])
|
|
||||||
result, indices = predict_class(X, indices, [], self._tree)
|
|
||||||
result = result.reshape(X.shape[0], 2)
|
|
||||||
# Turn distances to hyperplane into probabilities based on fitting distances
|
|
||||||
# of samples to its hyperplane that classified them, to the sigmoid function
|
|
||||||
result[:, 1] = 1 / (1 + np.exp(-result[:, 1]))
|
|
||||||
return self._reorder_results(result, indices)
|
|
||||||
|
|
||||||
def score(self, X: np.array, y: np.array) -> float:
|
|
||||||
"""Return accuracy
|
|
||||||
"""
|
|
||||||
if not self.__trained:
|
|
||||||
self.fit(X, y)
|
|
||||||
yp = self.predict(X).reshape(y.shape)
|
|
||||||
right = (yp == y).astype(int)
|
|
||||||
return np.sum(right) / len(y)
|
|
||||||
|
|
||||||
def __iter__(self):
|
|
||||||
return Siterator(self._tree)
|
|
||||||
|
|
||||||
def __str__(self) -> str:
|
|
||||||
output = ''
|
|
||||||
for i in self:
|
|
||||||
output += str(i) + '\n'
|
|
||||||
return output
|
|
||||||
|
|
||||||
def _save_datasets(self, tree: Snode, catalog: typing.TextIO, number: int):
|
|
||||||
"""Save the dataset of the node in a csv file
|
|
||||||
|
|
||||||
:param tree: node with data to save
|
|
||||||
:type tree: Snode
|
|
||||||
:param catalog: catalog file handler
|
|
||||||
:type catalog: typing.TextIO
|
|
||||||
:param number: sequential number for the generated file name
|
|
||||||
:type number: int
|
|
||||||
"""
|
|
||||||
data = np.append(tree._X, tree._y.reshape(-1, 1), axis=1)
|
|
||||||
name = f"{self.__folder}dataset{number}.csv"
|
|
||||||
np.savetxt(name, data, delimiter=",")
|
|
||||||
catalog.write(f"{name}, - {str(tree)}")
|
|
||||||
if tree.is_leaf():
|
|
||||||
return
|
|
||||||
self._save_datasets(tree.get_down(), catalog, number + 1)
|
|
||||||
self._save_datasets(tree.get_up(), catalog, number + 2)
|
|
||||||
|
|
||||||
def get_catalog_name(self):
|
|
||||||
return self.__folder + "catalog.txt"
|
|
||||||
|
|
||||||
def save_sub_datasets(self):
|
|
||||||
"""Save the every dataset stored in the tree to check with manual classifier
|
|
||||||
"""
|
|
||||||
with open(self.get_catalog_name(), 'w', encoding='utf-8') as catalog:
|
|
||||||
self._save_datasets(self._tree, catalog, 1)
|
|
Reference in New Issue
Block a user