mirror of
https://github.com/Doctorado-ML/STree.git
synced 2025-08-17 00:16:07 +00:00
Compare commits
16 Commits
predict_pr
...
0.9rc4
Author | SHA1 | Date | |
---|---|---|---|
b4816b2995
|
|||
5e5fea9c6a
|
|||
724a4855fb
|
|||
a22ae81b54
|
|||
ed98054f0d
|
|||
e95bd9697a
|
|||
5956cd0cd2
|
|||
27b278860d
|
|||
d5d723c67f
|
|||
77f10281c1
|
|||
ac1483ae1d
|
|||
e51690ed95
|
|||
a4595f5815
|
|||
316f84cc63
|
|||
6e35628c85
|
|||
c0ef71f139
|
@@ -10,4 +10,4 @@ notifications:
|
||||
on_success: never # default: change
|
||||
on_failure: always # default: always
|
||||
# command to run tests
|
||||
script: python -m unittest tests.Stree_test tests.Snode_test
|
||||
script: python -m unittest stree.tests
|
32
README.md
32
README.md
@@ -2,22 +2,40 @@
|
||||
|
||||
# Stree
|
||||
|
||||
Oblique Tree classifier based on SVM nodes
|
||||
Oblique Tree classifier based on SVM nodes. The nodes are built and splitted with sklearn LinearSVC models.Stree is a sklearn estimator and can be integrated in pipelines, grid searches, etc.
|
||||
|
||||
## Example
|
||||

|
||||
|
||||
### Jupyter
|
||||
## Installation
|
||||
|
||||
[](https://mybinder.org/v2/gh/Doctorado-ML/STree/master?urlpath=lab/tree/test.ipynb)
|
||||
```bash
|
||||
pip install git+https://github.com/doctorado-ml/stree
|
||||
```
|
||||
|
||||
## Examples
|
||||
|
||||
### Jupyter notebooks
|
||||
|
||||
##### Slow launch but better integration
|
||||
|
||||
* [](https://mybinder.org/v2/gh/Doctorado-ML/STree/master?urlpath=lab/tree/notebooks/test.ipynb) Test notebook
|
||||
|
||||
##### Fast launch but have to run first commented out cell for setup
|
||||
|
||||
* [](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/test.ipynb) Test notebook
|
||||
|
||||
* [](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/test2.ipynb) Another Test notebook
|
||||
|
||||
* [](https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/test_graphs.ipynb) Test Graphics notebook
|
||||
|
||||
### Command line
|
||||
|
||||
```python
|
||||
```bash
|
||||
python main.py
|
||||
```
|
||||
|
||||
## Tests
|
||||
|
||||
```python
|
||||
python -m unittest -v tests.Stree_test tests.Snode_test
|
||||
```bash
|
||||
python -m unittest -v stree.tests
|
||||
```
|
||||
|
2
data/.gitignore
vendored
2
data/.gitignore
vendored
@@ -1,2 +0,0 @@
|
||||
*.csv
|
||||
*.txt
|
BIN
example.png
Normal file
BIN
example.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 3.1 MiB |
11
main.py
11
main.py
@@ -1,6 +1,6 @@
|
||||
import time
|
||||
from sklearn.model_selection import train_test_split
|
||||
from trees.Stree import Stree
|
||||
from stree import Stree
|
||||
|
||||
random_state=1
|
||||
|
||||
@@ -50,9 +50,8 @@ print(f"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}")
|
||||
proba = clf.predict_proba(Xtest)
|
||||
print("Checking that we have correct probabilities, these are probabilities of sample belonging to class 1")
|
||||
res0 = proba[proba[:, 0] == 0]
|
||||
res1 = proba[proba[:, 0] == 0]
|
||||
print("++++++++++res0++++++++++++")
|
||||
res1 = proba[proba[:, 0] == 1]
|
||||
print("++++++++++res0 > .8++++++++++++")
|
||||
print(res0[res0[:, 1] > .8])
|
||||
print("**********res1************")
|
||||
print(res1[res1[:, 1] < .4])
|
||||
print(clf.predict_proba(Xtest))
|
||||
print("**********res1 < .4************")
|
||||
print(res1[res1[:, 1] < .4])
|
190
notebooks/adaboost.ipynb
Normal file
190
notebooks/adaboost.ipynb
Normal file
@@ -0,0 +1,190 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import time\n",
|
||||
"from sklearn.ensemble import AdaBoostClassifier\n",
|
||||
"from sklearn.tree import DecisionTreeClassifier\n",
|
||||
"from sklearn.svm import LinearSVC\n",
|
||||
"from sklearn.model_selection import GridSearchCV, train_test_split\n",
|
||||
"from sklearn.datasets import load_iris\n",
|
||||
"from stree import Stree"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"if not os.path.isfile('data/creditcard.csv'):\n",
|
||||
" !wget --no-check-certificate --content-disposition http://nube.jccm.es/index.php/s/Zs7SYtZQJ3RQ2H2/download\n",
|
||||
" !tar xzf creditcard.tgz"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": "Fraud: 0.244% 196\nValid: 99.755% 80234\nX.shape (1196, 28) y.shape (1196,)\nFraud: 16.722% 200\nValid: 83.278% 996\n"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"random_state=1\n",
|
||||
"\n",
|
||||
"def load_creditcard(n_examples=0):\n",
|
||||
" import pandas as pd\n",
|
||||
" import numpy as np\n",
|
||||
" import random\n",
|
||||
" df = pd.read_csv('data/creditcard.csv')\n",
|
||||
" print(\"Fraud: {0:.3f}% {1}\".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))\n",
|
||||
" print(\"Valid: {0:.3f}% {1}\".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))\n",
|
||||
" y = df.Class\n",
|
||||
" X = df.drop(['Class', 'Time', 'Amount'], axis=1).values\n",
|
||||
" if n_examples > 0:\n",
|
||||
" # Take first n_examples samples\n",
|
||||
" X = X[:n_examples, :]\n",
|
||||
" y = y[:n_examples, :]\n",
|
||||
" else:\n",
|
||||
" # Take all the positive samples with a number of random negatives\n",
|
||||
" if n_examples < 0:\n",
|
||||
" Xt = X[(y == 1).ravel()]\n",
|
||||
" yt = y[(y == 1).ravel()]\n",
|
||||
" indices = random.sample(range(X.shape[0]), -1 * n_examples)\n",
|
||||
" X = np.append(Xt, X[indices], axis=0)\n",
|
||||
" y = np.append(yt, y[indices], axis=0)\n",
|
||||
" print(\"X.shape\", X.shape, \" y.shape\", y.shape)\n",
|
||||
" print(\"Fraud: {0:.3f}% {1}\".format(len(y[y == 1])*100/X.shape[0], len(y[y == 1])))\n",
|
||||
" print(\"Valid: {0:.3f}% {1}\".format(len(y[y == 0]) * 100 / X.shape[0], len(y[y == 0])))\n",
|
||||
" Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=0.7, shuffle=True, random_state=random_state, stratify=y)\n",
|
||||
" return Xtrain, Xtest, ytrain, ytest\n",
|
||||
"\n",
|
||||
"data = load_creditcard(-1000) # Take all true samples + 1000 of the others\n",
|
||||
"# data = load_creditcard(5000) # Take the first 5000 samples\n",
|
||||
"# data = load_creditcard(0) # Take all the samples\n",
|
||||
"\n",
|
||||
"Xtrain = data[0]\n",
|
||||
"Xtest = data[1]\n",
|
||||
"ytrain = data[2]\n",
|
||||
"ytest = data[3]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": "Score Train: 0.986857825567503\nScore Test: 0.9805013927576601\nTook 0.12 seconds\n"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"now = time.time()\n",
|
||||
"clf = Stree(max_depth=3, random_state=random_state)\n",
|
||||
"clf.fit(Xtrain, ytrain)\n",
|
||||
"print(\"Score Train: \", clf.score(Xtrain, ytrain))\n",
|
||||
"print(\"Score Test: \", clf.score(Xtest, ytest))\n",
|
||||
"print(f\"Took {time.time() - now:.2f} seconds\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": "Score Train: 0.997610513739546\nScore Test: 0.9721448467966574\nTook 7.80 seconds\n"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"now = time.time()\n",
|
||||
"clf2 = AdaBoostClassifier(Stree(max_depth=3, random_state=random_state), n_estimators=100, random_state=random_state)\n",
|
||||
"clf2.fit(Xtrain, ytrain)\n",
|
||||
"print(\"Score Train: \", clf2.score(Xtrain, ytrain))\n",
|
||||
"print(\"Score Test: \", clf2.score(Xtest, ytest))\n",
|
||||
"print(f\"Took {time.time() - now:.2f} seconds\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": "Score Train: 0.9796893667861409\nScore Test: 0.9554317548746518\nTook 0.48 seconds\n"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"now = time.time()\n",
|
||||
"clf3 = AdaBoostClassifier(LinearSVC(random_state=random_state), n_estimators=100, random_state=random_state, algorithm='SAMME')\n",
|
||||
"clf3.fit(Xtrain, ytrain)\n",
|
||||
"print(\"Score Train: \", clf3.score(Xtrain, ytrain))\n",
|
||||
"print(\"Score Test: \", clf3.score(Xtest, ytest))\n",
|
||||
"print(f\"Took {time.time() - now:.2f} seconds\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": "Score Train: 1.0\nScore Test: 0.9721448467966574\nTook 0.86 seconds\n"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"now = time.time()\n",
|
||||
"clf4 = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1, random_state=random_state), n_estimators=100, random_state=random_state)\n",
|
||||
"clf4.fit(Xtrain, ytrain)\n",
|
||||
"print(\"Score Train: \", clf4.score(Xtrain, ytrain))\n",
|
||||
"print(\"Score Test: \", clf4.score(Xtest, ytest))\n",
|
||||
"print(f\"Took {time.time() - now:.2f} seconds\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.6-final"
|
||||
},
|
||||
"orig_nbformat": 2,
|
||||
"kernelspec": {
|
||||
"name": "python37664bitgeneralvenvfbd0a23e74cf4e778460f5ffc6761f39",
|
||||
"display_name": "Python 3.7.6 64-bit ('general': venv)"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
199
notebooks/crcard_graphs.ipynb
Normal file
199
notebooks/crcard_graphs.ipynb
Normal file
File diff suppressed because one or more lines are too long
236
notebooks/gridsearch.ipynb
Normal file
236
notebooks/gridsearch.ipynb
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
225
notebooks/test2.ipynb
Normal file
225
notebooks/test2.ipynb
Normal file
@@ -0,0 +1,225 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#\n",
|
||||
"# Google Colab setup\n",
|
||||
"#\n",
|
||||
"#!pip install git+https://github.com/doctorado-ml/stree"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd\n",
|
||||
"from sklearn.svm import LinearSVC\n",
|
||||
"from sklearn.tree import DecisionTreeClassifier\n",
|
||||
"from sklearn.datasets import make_classification, load_iris, load_wine\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"from stree import Stree\n",
|
||||
"import time"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"if not os.path.isfile('data/creditcard.csv'):\n",
|
||||
" !wget --no-check-certificate --content-disposition http://nube.jccm.es/index.php/s/Zs7SYtZQJ3RQ2H2/download\n",
|
||||
" !tar xzf creditcard.tgz"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": "Fraud: 0.244% 196\nValid: 99.755% 80234\nX.shape (1196, 28) y.shape (1196,)\nFraud: 16.472% 197\nValid: 83.528% 999\n"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"random_state=1\n",
|
||||
"\n",
|
||||
"def load_creditcard(n_examples=0):\n",
|
||||
" import pandas as pd\n",
|
||||
" import numpy as np\n",
|
||||
" import random\n",
|
||||
" df = pd.read_csv('data/creditcard.csv')\n",
|
||||
" print(\"Fraud: {0:.3f}% {1}\".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))\n",
|
||||
" print(\"Valid: {0:.3f}% {1}\".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))\n",
|
||||
" y = df.Class\n",
|
||||
" X = df.drop(['Class', 'Time', 'Amount'], axis=1).values\n",
|
||||
" if n_examples > 0:\n",
|
||||
" # Take first n_examples samples\n",
|
||||
" X = X[:n_examples, :]\n",
|
||||
" y = y[:n_examples, :]\n",
|
||||
" else:\n",
|
||||
" # Take all the positive samples with a number of random negatives\n",
|
||||
" if n_examples < 0:\n",
|
||||
" Xt = X[(y == 1).ravel()]\n",
|
||||
" yt = y[(y == 1).ravel()]\n",
|
||||
" indices = random.sample(range(X.shape[0]), -1 * n_examples)\n",
|
||||
" X = np.append(Xt, X[indices], axis=0)\n",
|
||||
" y = np.append(yt, y[indices], axis=0)\n",
|
||||
" print(\"X.shape\", X.shape, \" y.shape\", y.shape)\n",
|
||||
" print(\"Fraud: {0:.3f}% {1}\".format(len(y[y == 1])*100/X.shape[0], len(y[y == 1])))\n",
|
||||
" print(\"Valid: {0:.3f}% {1}\".format(len(y[y == 0]) * 100 / X.shape[0], len(y[y == 0])))\n",
|
||||
" Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=0.7, shuffle=True, random_state=random_state, stratify=y)\n",
|
||||
" return Xtrain, Xtest, ytrain, ytest\n",
|
||||
"\n",
|
||||
"# data = load_creditcard(-5000) # Take all true samples + 5000 of the others\n",
|
||||
"# data = load_creditcard(5000) # Take the first 5000 samples\n",
|
||||
"data = load_creditcard(-1000) # Take all the samples\n",
|
||||
"\n",
|
||||
"Xtrain = data[0]\n",
|
||||
"Xtest = data[1]\n",
|
||||
"ytrain = data[2]\n",
|
||||
"ytest = data[3]\n",
|
||||
"# Set weights inverse to its count class in dataset\n",
|
||||
"weights = np.ones(Xtrain.shape[0],) * 1.00244\n",
|
||||
"weights[ytrain==1] = 1.99755 "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": "Accuracy of Train without weights 0.996415770609319\nAccuracy of Train with weights 0.994026284348865\nAccuracy of Tests without weights 0.9665738161559888\nAccuracy of Tests with weights 0.9721448467966574\n"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"C = 23\n",
|
||||
"print(\"Accuracy of Train without weights\", Stree(C=C, random_state=1).fit(Xtrain, ytrain).score(Xtrain, ytrain))\n",
|
||||
"print(\"Accuracy of Train with weights\", Stree(C=C, random_state=1).fit(Xtrain, ytrain, sample_weight=weights).score(Xtrain, ytrain))\n",
|
||||
"print(\"Accuracy of Tests without weights\", Stree(C=C, random_state=1).fit(Xtrain, ytrain).score(Xtest, ytest))\n",
|
||||
"print(\"Accuracy of Tests with weights\", Stree(C=C, random_state=1).fit(Xtrain, ytrain, sample_weight=weights).score(Xtest, ytest))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"outputPrepend"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"t = time.time()\n",
|
||||
"for C in (.001, .01, 1, 5, 17):\n",
|
||||
" clf = Stree(C=C, random_state=random_state)\n",
|
||||
" clf.fit(Xtrain, ytrain)\n",
|
||||
" print(f\"************** C={C} ****************************\")\n",
|
||||
" print(f\"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}\")\n",
|
||||
" print(f\"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}\")\n",
|
||||
" print(clf)\n",
|
||||
" print(f\"**************************************************\")\n",
|
||||
"print(f\"{time.time() - t:.4f} secs\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"from sklearn.preprocessing import StandardScaler\n",
|
||||
"from sklearn.svm import LinearSVC\n",
|
||||
"from sklearn.calibration import CalibratedClassifierCV\n",
|
||||
"scaler = StandardScaler()\n",
|
||||
"cclf = CalibratedClassifierCV(base_estimator=LinearSVC(), cv=5)\n",
|
||||
"cclf.fit(Xtrain, ytrain)\n",
|
||||
"res = cclf.predict_proba(Xtest)\n",
|
||||
"print(res[:4, :])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#check iterator\n",
|
||||
"for i in list(clf):\n",
|
||||
" print(i)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#check iterator again\n",
|
||||
"for i in clf:\n",
|
||||
" print(i)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Check if the classifier is a sklearn estimator\n",
|
||||
"from sklearn.utils.estimator_checks import check_estimator\n",
|
||||
"check_estimator(Stree())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Make checks one by one\n",
|
||||
"c = 0\n",
|
||||
"checks = check_estimator(Stree(), generate_only=True)\n",
|
||||
"for check in checks:\n",
|
||||
" c += 1\n",
|
||||
" print(c, check[1])\n",
|
||||
" check[1](check[0])"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.7.6 64-bit ('general': venv)",
|
||||
"language": "python",
|
||||
"name": "python37664bitgeneralvenvfbd0a23e74cf4e778460f5ffc6761f39"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.6-final"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
197
notebooks/test_graphs.ipynb
Normal file
197
notebooks/test_graphs.ipynb
Normal file
@@ -0,0 +1,197 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#\n",
|
||||
"# Google Colab setup\n",
|
||||
"#\n",
|
||||
"#!pip install git+https://github.com/doctorado-ml/stree"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "error",
|
||||
"ename": "ModuleNotFoundError",
|
||||
"evalue": "No module named 'stree'",
|
||||
"traceback": [
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
|
||||
"\u001b[0;32m<ipython-input-12-36af63297651>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msklearn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdatasets\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmake_blobs\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msklearn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msvm\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mLinearSVC\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mstree\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mStree\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mStree_grapher\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
||||
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'stree'"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import time\n",
|
||||
"import random\n",
|
||||
"import numpy as np\n",
|
||||
"from sklearn.datasets import make_blobs\n",
|
||||
"from sklearn.svm import LinearSVC\n",
|
||||
"from stree import Stree, Stree_grapher"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def build_data(random_state):\n",
|
||||
" random.seed(random_state)\n",
|
||||
" X, y = make_blobs(centers=10, n_features=3, n_samples=500, random_state=random_state)\n",
|
||||
" def make_binary(y):\n",
|
||||
" for i in range(2, 10):\n",
|
||||
" y[y==i] = random.randint(0, 1)\n",
|
||||
" return y\n",
|
||||
" y = make_binary(y)\n",
|
||||
" #print(X.shape, np.unique(y), y[y==0].shape, y[y==1].shape)\n",
|
||||
" return X, y"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "error",
|
||||
"ename": "NameError",
|
||||
"evalue": "name 'Stree_grapher' is not defined",
|
||||
"traceback": [
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
||||
"\u001b[0;32m<ipython-input-4-b909470cb406>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbuild_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mgr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mStree_grapher\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mC\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m.01\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmax_iter\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m200\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m#gr.save_all(save_folder='data/', save_prefix='7')\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;31mNameError\u001b[0m: name 'Stree_grapher' is not defined"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"X, y = build_data(10)\n",
|
||||
"gr = Stree_grapher(dict(C=.01, max_iter=200))\n",
|
||||
"gr.fit(X, y)\n",
|
||||
"#gr.save_all(save_folder='data/', save_prefix='7')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "error",
|
||||
"ename": "NameError",
|
||||
"evalue": "name 'gr' is not defined",
|
||||
"traceback": [
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
||||
"\u001b[0;32m<ipython-input-5-efa3db892bfd>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
||||
"\u001b[0;31mNameError\u001b[0m: name 'gr' is not defined"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(gr)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "error",
|
||||
"ename": "NameError",
|
||||
"evalue": "name 'gr' is not defined",
|
||||
"traceback": [
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
||||
"\u001b[0;32m<ipython-input-6-0e62f081c9aa>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0muse\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Agg'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave_all\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msave_folder\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'data/'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
||||
"\u001b[0;31mNameError\u001b[0m: name 'gr' is not defined"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import matplotlib\n",
|
||||
"matplotlib.use('Agg')\n",
|
||||
"gr.save_all(save_folder='data/')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "error",
|
||||
"ename": "NameError",
|
||||
"evalue": "name 'gr' is not defined",
|
||||
"traceback": [
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
||||
"\u001b[0;32m<ipython-input-7-b0484cfe9d26>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;31m#%matplotlib inline\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mget_ipython\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun_line_magic\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'matplotlib'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'widget'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_tree_gr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot_hyperplane\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
||||
"\u001b[0;31mNameError\u001b[0m: name 'gr' is not defined"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"#Uncomment one of the following lines to display graphics: static(inline), dynamic(widget)\n",
|
||||
"#%matplotlib inline\n",
|
||||
"%matplotlib widget\n",
|
||||
"gr._tree_gr.plot_hyperplane()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "error",
|
||||
"ename": "NameError",
|
||||
"evalue": "name 'gr' is not defined",
|
||||
"traceback": [
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
||||
"\u001b[0;32m<ipython-input-8-4277c1aacbe2>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mget_ipython\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun_line_magic\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'matplotlib'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'inline'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;31m#%matplotlib widget\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot_all\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
||||
"\u001b[0;31mNameError\u001b[0m: name 'gr' is not defined"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"#Uncomment one of the following lines to display graphics: static(inline), dynamic(widget)\n",
|
||||
"%matplotlib inline\n",
|
||||
"#%matplotlib widget\n",
|
||||
"gr.plot_all()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.6-final"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
@@ -1,3 +1,5 @@
|
||||
numpy==1.18.2
|
||||
scikit-learn==0.22.2
|
||||
pandas==1.0.3
|
||||
numpy
|
||||
scikit-learn
|
||||
pandas
|
||||
matplotlib
|
||||
ipympl
|
41
setup.py
Normal file
41
setup.py
Normal file
@@ -0,0 +1,41 @@
|
||||
import setuptools
|
||||
|
||||
__version__ = "0.9rc4"
|
||||
__author__ = "Ricardo Montañana Gómez"
|
||||
|
||||
|
||||
def readme():
|
||||
with open('README.md') as f:
|
||||
return f.read()
|
||||
|
||||
|
||||
setuptools.setup(
|
||||
name='STree',
|
||||
version=__version__,
|
||||
license='MIT License',
|
||||
description='Oblique decision tree with svm nodes',
|
||||
long_description=readme(),
|
||||
long_description_content_type='text/markdown',
|
||||
packages=setuptools.find_packages(),
|
||||
url='https://github.com/doctorado-ml/stree',
|
||||
author=__author__,
|
||||
author_email='ricardo.montanana@alu.uclm.es',
|
||||
keywords='scikit-learn oblique-classifier oblique-decision-tree decision-\
|
||||
tree svm svc',
|
||||
classifiers=[
|
||||
'Development Status :: 4 - Beta',
|
||||
'License :: OSI Approved :: MIT License',
|
||||
'Programming Language :: Python :: 3.7',
|
||||
'Natural Language :: English',
|
||||
'Topic :: Scientific/Engineering :: Artificial Intelligence',
|
||||
'Intended Audience :: Science/Research'
|
||||
],
|
||||
install_requires=[
|
||||
'scikit-learn>=0.23.0',
|
||||
'numpy',
|
||||
'matplotlib',
|
||||
'ipympl'
|
||||
],
|
||||
test_suite="stree.tests",
|
||||
zip_safe=False
|
||||
)
|
432
stree/Strees.py
Normal file
432
stree/Strees.py
Normal file
@@ -0,0 +1,432 @@
|
||||
'''
|
||||
__author__ = "Ricardo Montañana Gómez"
|
||||
__copyright__ = "Copyright 2020, Ricardo Montañana Gómez"
|
||||
__license__ = "MIT"
|
||||
__version__ = "0.9"
|
||||
Build an oblique tree classifier based on SVM Trees
|
||||
Uses LinearSVC
|
||||
'''
|
||||
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
from sklearn.base import BaseEstimator, ClassifierMixin
|
||||
from sklearn.svm import LinearSVC
|
||||
from sklearn.utils.multiclass import check_classification_targets
|
||||
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted, \
|
||||
_check_sample_weight
|
||||
|
||||
|
||||
class Snode:
|
||||
"""Nodes of the tree that keeps the svm classifier and if testing the
|
||||
dataset assigned to it
|
||||
"""
|
||||
|
||||
def __init__(self, clf: LinearSVC, X: np.ndarray, y: np.ndarray,
|
||||
title: str):
|
||||
self._clf = clf
|
||||
self._vector = None if clf is None else clf.coef_
|
||||
self._interceptor = 0. if clf is None else clf.intercept_
|
||||
self._title = title
|
||||
self._belief = 0.
|
||||
# Only store dataset in Testing
|
||||
self._X = X if os.environ.get('TESTING', 'NS') != 'NS' else None
|
||||
self._y = y
|
||||
self._down = None
|
||||
self._up = None
|
||||
self._class = None
|
||||
|
||||
@classmethod
|
||||
def copy(cls, node: 'Snode') -> 'Snode':
|
||||
return cls(node._clf, node._X, node._y, node._title)
|
||||
|
||||
def set_down(self, son):
|
||||
self._down = son
|
||||
|
||||
def set_up(self, son):
|
||||
self._up = son
|
||||
|
||||
def is_leaf(self) -> bool:
|
||||
return self._up is None and self._down is None
|
||||
|
||||
def get_down(self) -> 'Snode':
|
||||
return self._down
|
||||
|
||||
def get_up(self) -> 'Snode':
|
||||
return self._up
|
||||
|
||||
def make_predictor(self):
|
||||
"""Compute the class of the predictor and its belief based on the
|
||||
subdataset of the node only if it is a leaf
|
||||
"""
|
||||
if not self.is_leaf():
|
||||
return
|
||||
classes, card = np.unique(self._y, return_counts=True)
|
||||
if len(classes) > 1:
|
||||
max_card = max(card)
|
||||
min_card = min(card)
|
||||
try:
|
||||
self._belief = max_card / (max_card + min_card)
|
||||
except ZeroDivisionError:
|
||||
self._belief = 0.
|
||||
self._class = classes[card == max_card][0]
|
||||
else:
|
||||
self._belief = 1
|
||||
self._class = classes[0]
|
||||
|
||||
def __str__(self) -> str:
|
||||
if self.is_leaf():
|
||||
count_values = np.unique(self._y, return_counts=True)
|
||||
result = f"{self._title} - Leaf class={self._class} belief="\
|
||||
f"{self._belief: .6f} counts={count_values}"
|
||||
return result
|
||||
else:
|
||||
return f"{self._title}"
|
||||
|
||||
|
||||
class Siterator:
|
||||
"""Stree preorder iterator
|
||||
"""
|
||||
|
||||
def __init__(self, tree: Snode):
|
||||
self._stack = []
|
||||
self._push(tree)
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def _push(self, node: Snode):
|
||||
if node is not None:
|
||||
self._stack.append(node)
|
||||
|
||||
def __next__(self) -> Snode:
|
||||
if len(self._stack) == 0:
|
||||
raise StopIteration()
|
||||
node = self._stack.pop()
|
||||
self._push(node.get_up())
|
||||
self._push(node.get_down())
|
||||
return node
|
||||
|
||||
|
||||
class Stree(BaseEstimator, ClassifierMixin):
|
||||
"""Estimator that is based on binary trees of svm nodes
|
||||
can deal with sample_weights in predict, used in boosting sklearn methods
|
||||
inheriting from BaseEstimator implements get_params and set_params methods
|
||||
inheriting from ClassifierMixin implement the attribute _estimator_type
|
||||
with "classifier" as value
|
||||
"""
|
||||
|
||||
def __init__(self, C: float = 1.0, max_iter: int = 1000,
|
||||
random_state: int = None, max_depth: int = None,
|
||||
tol: float = 1e-4, use_predictions: bool = False):
|
||||
self.max_iter = max_iter
|
||||
self.C = C
|
||||
self.random_state = random_state
|
||||
self.use_predictions = use_predictions
|
||||
self.max_depth = max_depth
|
||||
self.tol = tol
|
||||
|
||||
def _more_tags(self) -> dict:
|
||||
"""Required by sklearn to tell that this estimator is a binary classifier
|
||||
|
||||
:return: the tag required
|
||||
:rtype: dict
|
||||
"""
|
||||
return {'binary_only': True, 'requires_y': True}
|
||||
|
||||
def _linear_function(self, data: np.array, node: Snode) -> np.array:
|
||||
"""Compute the distance of set of samples to a hyperplane, in
|
||||
multiclass classification it should compute the distance to a
|
||||
hyperplane of each class
|
||||
|
||||
:param data: dataset of samples
|
||||
:type data: np.array
|
||||
:param node: the node that contains the hyperplance coefficients
|
||||
:type node: Snode
|
||||
:return: array of distances of each sample to the hyperplane
|
||||
:rtype: np.array
|
||||
"""
|
||||
coef = node._vector[0, :].reshape(-1, data.shape[1])
|
||||
return data.dot(coef.T) + node._interceptor[0]
|
||||
|
||||
def _split_array(self, origin: np.array, down: np.array) -> list:
|
||||
"""Split an array in two based on indices passed as down and its complement
|
||||
|
||||
:param origin: dataset to split
|
||||
:type origin: np.array
|
||||
:param down: indices to use to split array
|
||||
:type down: np.array
|
||||
:return: list with two splits of the array
|
||||
:rtype: list
|
||||
"""
|
||||
up = ~down
|
||||
return origin[up[:, 0]] if any(up) else None, \
|
||||
origin[down[:, 0]] if any(down) else None
|
||||
|
||||
def _distances(self, node: Snode, data: np.ndarray) -> np.array:
|
||||
"""Compute distances of the samples to the hyperplane of the node
|
||||
|
||||
:param node: node containing the svm classifier
|
||||
:type node: Snode
|
||||
:param data: samples to find out distance to hyperplane
|
||||
:type data: np.ndarray
|
||||
:return: array of shape (m, 1) with the distances of every sample to
|
||||
the hyperplane of the node
|
||||
:rtype: np.array
|
||||
"""
|
||||
if self.use_predictions:
|
||||
res = np.expand_dims(node._clf.decision_function(data), 1)
|
||||
else:
|
||||
"""doesn't work with multiclass as each sample has to do inner
|
||||
product with its own coefficients computes positition of every
|
||||
sample is w.r.t. the hyperplane
|
||||
"""
|
||||
res = self._linear_function(data, node)
|
||||
return res
|
||||
|
||||
def _split_criteria(self, data: np.array) -> np.array:
|
||||
"""Set the criteria to split arrays
|
||||
|
||||
:param data: [description]
|
||||
:type data: np.array
|
||||
:return: [description]
|
||||
:rtype: np.array
|
||||
"""
|
||||
return data > 0
|
||||
|
||||
def fit(self, X: np.ndarray, y: np.ndarray,
|
||||
sample_weight: np.array = None) -> 'Stree':
|
||||
"""Build the tree based on the dataset of samples and its labels
|
||||
|
||||
:raises ValueError: if parameters C or max_depth are out of bounds
|
||||
:return: itself to be able to chain actions: fit().predict() ...
|
||||
:rtype: Stree
|
||||
"""
|
||||
# Check parameters are Ok.
|
||||
if type(y).__name__ == 'np.ndarray':
|
||||
y = y.ravel()
|
||||
if self.C < 0:
|
||||
raise ValueError(
|
||||
f"Penalty term must be positive... got (C={self.C:f})")
|
||||
self.__max_depth = np.iinfo(
|
||||
np.int32).max if self.max_depth is None else self.max_depth
|
||||
if self.__max_depth < 1:
|
||||
raise ValueError(
|
||||
f"Maximum depth has to be greater than 1... got (max_depth=\
|
||||
{self.max_depth})")
|
||||
check_classification_targets(y)
|
||||
X, y = check_X_y(X, y)
|
||||
sample_weight = _check_sample_weight(sample_weight, X)
|
||||
check_classification_targets(y)
|
||||
# Initialize computed parameters
|
||||
self.classes_, y = np.unique(y, return_inverse=True)
|
||||
self.n_iter_ = self.max_iter
|
||||
self.depth_ = 0
|
||||
self.n_features_in_ = X.shape[1]
|
||||
self.tree_ = self.train(X, y, sample_weight, 1, 'root')
|
||||
self._build_predictor()
|
||||
return self
|
||||
|
||||
def _build_predictor(self):
|
||||
"""Process the leaves to make them predictors
|
||||
"""
|
||||
def run_tree(node: Snode):
|
||||
if node.is_leaf():
|
||||
node.make_predictor()
|
||||
return
|
||||
run_tree(node.get_down())
|
||||
run_tree(node.get_up())
|
||||
|
||||
run_tree(self.tree_)
|
||||
|
||||
def train(self, X: np.ndarray, y: np.ndarray, sample_weight: np.ndarray,
|
||||
depth: int, title: str) -> Snode:
|
||||
"""Recursive function to split the original dataset into predictor
|
||||
nodes (leaves)
|
||||
|
||||
:param X: samples dataset
|
||||
:type X: np.ndarray
|
||||
:param y: samples labels
|
||||
:type y: np.ndarray
|
||||
:param sample_weight: weight of samples (used in boosting)
|
||||
:type sample_weight: np.ndarray
|
||||
:param depth: actual depth in the tree
|
||||
:type depth: int
|
||||
:param title: description of the node
|
||||
:type title: str
|
||||
:return: binary tree
|
||||
:rtype: Snode
|
||||
"""
|
||||
if depth > self.__max_depth:
|
||||
return None
|
||||
if np.unique(y).shape[0] == 1:
|
||||
# only 1 class => pure dataset
|
||||
return Snode(None, X, y, title + ', <pure>')
|
||||
# Train the model
|
||||
clf = LinearSVC(max_iter=self.max_iter, random_state=self.random_state,
|
||||
C=self.C) # , sample_weight=sample_weight)
|
||||
clf.fit(X, y, sample_weight=sample_weight)
|
||||
tree = Snode(clf, X, y, title)
|
||||
self.depth_ = max(depth, self.depth_)
|
||||
down = self._split_criteria(self._distances(tree, X))
|
||||
X_U, X_D = self._split_array(X, down)
|
||||
y_u, y_d = self._split_array(y, down)
|
||||
sw_u, sw_d = self._split_array(sample_weight, down)
|
||||
if X_U is None or X_D is None:
|
||||
# didn't part anything
|
||||
return Snode(clf, X, y, title + ', <cgaf>')
|
||||
tree.set_up(self.train(X_U, y_u, sw_u, depth + 1, title + ' - Up'))
|
||||
tree.set_down(self.train(X_D, y_d, sw_d, depth + 1, title + ' - Down'))
|
||||
return tree
|
||||
|
||||
def _reorder_results(self, y: np.array, indices: np.array) -> np.array:
|
||||
"""Reorder an array based on the array of indices passed
|
||||
|
||||
:param y: data untidy
|
||||
:type y: np.array
|
||||
:param indices: indices used to set order
|
||||
:type indices: np.array
|
||||
:return: array y ordered
|
||||
:rtype: np.array
|
||||
"""
|
||||
if y.ndim > 1 and y.shape[1] > 1:
|
||||
# if predict_proba return np.array of floats
|
||||
y_ordered = np.zeros(y.shape, dtype=float)
|
||||
else:
|
||||
# return array of same type given in y
|
||||
y_ordered = y.copy()
|
||||
indices = indices.astype(int)
|
||||
for i, index in enumerate(indices):
|
||||
y_ordered[index] = y[i]
|
||||
return y_ordered
|
||||
|
||||
def predict(self, X: np.array) -> np.array:
|
||||
"""Predict labels for each sample in dataset passed
|
||||
|
||||
:param X: dataset of samples
|
||||
:type X: np.array
|
||||
:return: array of labels
|
||||
:rtype: np.array
|
||||
"""
|
||||
def predict_class(xp: np.array, indices: np.array,
|
||||
node: Snode) -> np.array:
|
||||
if xp is None:
|
||||
return [], []
|
||||
if node.is_leaf():
|
||||
# set a class for every sample in dataset
|
||||
prediction = np.full((xp.shape[0], 1), node._class)
|
||||
return prediction, indices
|
||||
down = self._split_criteria(self._distances(node, xp))
|
||||
X_U, X_D = self._split_array(xp, down)
|
||||
i_u, i_d = self._split_array(indices, down)
|
||||
prx_u, prin_u = predict_class(X_U, i_u, node.get_up())
|
||||
prx_d, prin_d = predict_class(X_D, i_d, node.get_down())
|
||||
return np.append(prx_u, prx_d), np.append(prin_u, prin_d)
|
||||
# sklearn check
|
||||
check_is_fitted(self, ['tree_'])
|
||||
# Input validation
|
||||
X = check_array(X)
|
||||
# setup prediction & make it happen
|
||||
indices = np.arange(X.shape[0])
|
||||
result = self._reorder_results(
|
||||
*predict_class(X, indices, self.tree_)).astype(int).ravel()
|
||||
return self.classes_[result]
|
||||
|
||||
def predict_proba(self, X: np.array) -> np.array:
|
||||
"""Computes an approximation of the probability of samples belonging to
|
||||
class 0 and 1
|
||||
:param X: dataset
|
||||
:type X: np.array
|
||||
:return: array array of shape (m, num_classes), probability of being
|
||||
each class
|
||||
:rtype: np.array
|
||||
"""
|
||||
def predict_class(xp: np.array, indices: np.array, dist: np.array,
|
||||
node: Snode) -> np.array:
|
||||
"""Run the tree to compute predictions
|
||||
|
||||
:param xp: subdataset of samples
|
||||
:type xp: np.array
|
||||
:param indices: indices of subdataset samples to rebuild original
|
||||
order
|
||||
:type indices: np.array
|
||||
:param dist: distances of every sample to the hyperplane or the
|
||||
father node
|
||||
:type dist: np.array
|
||||
:param node: node of the leaf with the class
|
||||
:type node: Snode
|
||||
:return: array of labels and distances, array of indices
|
||||
:rtype: np.array
|
||||
"""
|
||||
if xp is None:
|
||||
return [], []
|
||||
if node.is_leaf():
|
||||
# set a class for every sample in dataset
|
||||
prediction = np.full((xp.shape[0], 1), node._class)
|
||||
prediction_proba = dist
|
||||
return np.append(prediction, prediction_proba, axis=1), indices
|
||||
distances = self._distances(node, xp)
|
||||
down = self._split_criteria(distances)
|
||||
X_U, X_D = self._split_array(xp, down)
|
||||
i_u, i_d = self._split_array(indices, down)
|
||||
di_u, di_d = self._split_array(distances, down)
|
||||
prx_u, prin_u = predict_class(X_U, i_u, di_u, node.get_up())
|
||||
prx_d, prin_d = predict_class(X_D, i_d, di_d, node.get_down())
|
||||
return np.append(prx_u, prx_d), np.append(prin_u, prin_d)
|
||||
|
||||
# sklearn check
|
||||
check_is_fitted(self, ['tree_'])
|
||||
# Input validation
|
||||
X = check_array(X)
|
||||
# setup prediction & make it happen
|
||||
indices = np.arange(X.shape[0])
|
||||
empty_dist = np.empty((X.shape[0], 1), dtype=float)
|
||||
result, indices = predict_class(X, indices, empty_dist, self.tree_)
|
||||
result = result.reshape(X.shape[0], 2)
|
||||
# Turn distances to hyperplane into probabilities based on fitting
|
||||
# distances of samples to its hyperplane that classified them, to the
|
||||
# sigmoid function
|
||||
# Probability of being 1
|
||||
result[:, 1] = 1 / (1 + np.exp(-result[:, 1]))
|
||||
# Probability of being 0
|
||||
result[:, 0] = 1 - result[:, 1]
|
||||
return self._reorder_results(result, indices)
|
||||
|
||||
def score(self, X: np.array, y: np.array) -> float:
|
||||
"""Compute accuracy of the prediction
|
||||
|
||||
:param X: dataset of samples to make predictions
|
||||
:type X: np.array
|
||||
:param y: samples labels
|
||||
:type y: np.array
|
||||
:return: accuracy of the prediction
|
||||
:rtype: float
|
||||
"""
|
||||
# sklearn check
|
||||
check_is_fitted(self)
|
||||
yp = self.predict(X).reshape(y.shape)
|
||||
return np.mean(yp == y)
|
||||
|
||||
def __iter__(self) -> Siterator:
|
||||
"""Create an iterator to be able to visit the nodes of the tree in preorder,
|
||||
can make a list with all the nodes in preorder
|
||||
|
||||
:return: an iterator, can for i in... and list(...)
|
||||
:rtype: Siterator
|
||||
"""
|
||||
try:
|
||||
tree = self.tree_
|
||||
except AttributeError:
|
||||
tree = None
|
||||
return Siterator(tree)
|
||||
|
||||
def __str__(self) -> str:
|
||||
"""String representation of the tree
|
||||
|
||||
:return: description of nodes in the tree in preorder
|
||||
:rtype: str
|
||||
"""
|
||||
output = ''
|
||||
for i in self:
|
||||
output += str(i) + '\n'
|
||||
return output
|
189
stree/Strees_grapher.py
Normal file
189
stree/Strees_grapher.py
Normal file
@@ -0,0 +1,189 @@
|
||||
'''
|
||||
__author__ = "Ricardo Montañana Gómez"
|
||||
__copyright__ = "Copyright 2020, Ricardo Montañana Gómez"
|
||||
__license__ = "MIT"
|
||||
__version__ = "0.9"
|
||||
Plot 3D views of nodes in Stree
|
||||
'''
|
||||
|
||||
import os
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from sklearn.decomposition import PCA
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
|
||||
from .Strees import Stree, Snode, Siterator
|
||||
|
||||
|
||||
class Snode_graph(Snode):
|
||||
|
||||
def __init__(self, node: Stree):
|
||||
self._plot_size = (8, 8)
|
||||
self._xlimits = (None, None)
|
||||
self._ylimits = (None, None)
|
||||
self._zlimits = (None, None)
|
||||
n = Snode.copy(node)
|
||||
super().__init__(n._clf, n._X, n._y, n._title)
|
||||
|
||||
def set_plot_size(self, size: tuple):
|
||||
self._plot_size = size
|
||||
|
||||
def _is_pure(self) -> bool:
|
||||
"""is considered pure a leaf node with one label
|
||||
"""
|
||||
if self.is_leaf():
|
||||
return self._belief == 1.
|
||||
return False
|
||||
|
||||
def set_axis_limits(self, limits: tuple):
|
||||
self._xlimits = limits[0]
|
||||
self._ylimits = limits[1]
|
||||
self._zlimits = limits[2]
|
||||
|
||||
def _set_graphics_axis(self, ax: Axes3D):
|
||||
ax.set_xlim(self._xlimits)
|
||||
ax.set_ylim(self._ylimits)
|
||||
ax.set_zlim(self._zlimits)
|
||||
|
||||
def save_hyperplane(self, save_folder: str = './', save_prefix: str = '',
|
||||
save_seq: int = 1):
|
||||
_, fig = self.plot_hyperplane()
|
||||
name = f"{save_folder}{save_prefix}STnode{save_seq}.png"
|
||||
fig.savefig(name, bbox_inches='tight')
|
||||
plt.close(fig)
|
||||
|
||||
def _get_cmap(self):
|
||||
cmap = 'jet'
|
||||
if self._is_pure() and self._class == 1:
|
||||
cmap = 'jet_r'
|
||||
return cmap
|
||||
|
||||
def _graph_title(self):
|
||||
n_class, card = np.unique(self._y, return_counts=True)
|
||||
return f"{self._title} {n_class} {card}"
|
||||
|
||||
def plot_hyperplane(self, plot_distribution: bool = True):
|
||||
fig = plt.figure(figsize=self._plot_size)
|
||||
ax = fig.add_subplot(1, 1, 1, projection='3d')
|
||||
if not self._is_pure():
|
||||
# Can't plot hyperplane of leaves with one label because it hasn't
|
||||
# classiffier
|
||||
# get the splitting hyperplane
|
||||
def hyperplane(x, y): return (-self._interceptor
|
||||
- self._vector[0][0] * x
|
||||
- self._vector[0][1] * y) \
|
||||
/ self._vector[0][2]
|
||||
|
||||
tmpx = np.linspace(self._X[:, 0].min(), self._X[:, 0].max())
|
||||
tmpy = np.linspace(self._X[:, 1].min(), self._X[:, 1].max())
|
||||
xx, yy = np.meshgrid(tmpx, tmpy)
|
||||
ax.plot_surface(xx, yy, hyperplane(xx, yy), alpha=.5,
|
||||
antialiased=True, rstride=1, cstride=1,
|
||||
cmap='seismic')
|
||||
self._set_graphics_axis(ax)
|
||||
if plot_distribution:
|
||||
self.plot_distribution(ax)
|
||||
else:
|
||||
plt.title(self._graph_title())
|
||||
plt.show()
|
||||
return ax, fig
|
||||
|
||||
def plot_distribution(self, ax: Axes3D = None):
|
||||
if ax is None:
|
||||
fig = plt.figure(figsize=self._plot_size)
|
||||
ax = fig.add_subplot(1, 1, 1, projection='3d')
|
||||
plt.title(self._graph_title())
|
||||
cmap = self._get_cmap()
|
||||
ax.scatter(self._X[:, 0], self._X[:, 1],
|
||||
self._X[:, 2], c=self._y, cmap=cmap)
|
||||
ax.set_xlabel('X0')
|
||||
ax.set_ylabel('X1')
|
||||
ax.set_zlabel('X2')
|
||||
plt.show()
|
||||
|
||||
|
||||
class Stree_grapher(Stree):
|
||||
"""Build 3d graphs of any dataset, if it's more than 3 features PCA shall
|
||||
make its magic
|
||||
"""
|
||||
|
||||
def __init__(self, params: dict):
|
||||
self._plot_size = (8, 8)
|
||||
self._tree_gr = None
|
||||
# make Snode store X's
|
||||
os.environ['TESTING'] = '1'
|
||||
self._fitted = False
|
||||
self._pca = None
|
||||
super().__init__(**params)
|
||||
|
||||
def __del__(self):
|
||||
try:
|
||||
os.environ.pop('TESTING')
|
||||
except KeyError:
|
||||
pass
|
||||
plt.close('all')
|
||||
|
||||
def _copy_tree(self, node: Snode) -> Snode_graph:
|
||||
mirror = Snode_graph(node)
|
||||
# clone node
|
||||
mirror._class = node._class
|
||||
mirror._belief = node._belief
|
||||
if node.get_down() is not None:
|
||||
mirror.set_down(self._copy_tree(node.get_down()))
|
||||
if node.get_up() is not None:
|
||||
mirror.set_up(self._copy_tree(node.get_up()))
|
||||
return mirror
|
||||
|
||||
def fit(self, X: np.array, y: np.array) -> Stree:
|
||||
"""Fit the Stree and copy the tree in a Snode_graph tree
|
||||
|
||||
:param X: Dataset
|
||||
:type X: np.array
|
||||
:param y: Labels
|
||||
:type y: np.array
|
||||
:return: Stree model
|
||||
:rtype: Stree
|
||||
"""
|
||||
if X.shape[1] != 3:
|
||||
self._pca = PCA(n_components=3)
|
||||
X = self._pca.fit_transform(X)
|
||||
res = super().fit(X, y)
|
||||
self._tree_gr = self._copy_tree(self.tree_)
|
||||
self._fitted = True
|
||||
return res
|
||||
|
||||
def score(self, X: np.array, y: np.array) -> float:
|
||||
self._check_fitted()
|
||||
if X.shape[1] != 3:
|
||||
X = self._pca.transform(X)
|
||||
return super().score(X, y)
|
||||
|
||||
def _check_fitted(self):
|
||||
if not self._fitted:
|
||||
raise Exception('Have to fit the grapher first!')
|
||||
|
||||
def save_all(self, save_folder: str = './', save_prefix: str = ''):
|
||||
"""Save all the node plots in png format, each with a sequence number
|
||||
|
||||
:param save_folder: folder where the plots are saved, defaults to './'
|
||||
:type save_folder: str, optional
|
||||
"""
|
||||
self._check_fitted()
|
||||
if not os.path.isdir(save_folder):
|
||||
os.mkdir(save_folder)
|
||||
seq = 1
|
||||
for node in self:
|
||||
node.save_hyperplane(save_folder=save_folder,
|
||||
save_prefix=save_prefix, save_seq=seq)
|
||||
seq += 1
|
||||
|
||||
def plot_all(self):
|
||||
"""Plots all the nodes
|
||||
"""
|
||||
self._check_fitted()
|
||||
for node in self:
|
||||
node.plot_hyperplane()
|
||||
|
||||
def __iter__(self):
|
||||
return Siterator(self._tree_gr)
|
2
stree/__init__.py
Normal file
2
stree/__init__.py
Normal file
@@ -0,0 +1,2 @@
|
||||
from .Strees import Stree, Snode, Siterator
|
||||
from .Strees_grapher import Stree_grapher, Snode_graph
|
357
stree/tests/Strees_test.py
Normal file
357
stree/tests/Strees_test.py
Normal file
@@ -0,0 +1,357 @@
|
||||
import os
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
from sklearn.datasets import make_classification
|
||||
|
||||
from stree import Stree, Snode
|
||||
|
||||
|
||||
class Stree_test(unittest.TestCase):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
os.environ['TESTING'] = '1'
|
||||
self._random_state = 1
|
||||
self._clf = Stree(random_state=self._random_state,
|
||||
use_predictions=False)
|
||||
self._clf.fit(*self._get_Xy())
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
@classmethod
|
||||
def tearDownClass(cls):
|
||||
try:
|
||||
os.environ.pop('TESTING')
|
||||
except KeyError:
|
||||
pass
|
||||
|
||||
def _get_Xy(self):
|
||||
X, y = make_classification(n_samples=1500, n_features=3,
|
||||
n_informative=3, n_redundant=0,
|
||||
n_repeated=0, n_classes=2,
|
||||
n_clusters_per_class=2, class_sep=1.5,
|
||||
flip_y=0, weights=[0.5, 0.5],
|
||||
random_state=self._random_state)
|
||||
return X, y
|
||||
|
||||
def _check_tree(self, node: Snode):
|
||||
"""Check recursively that the nodes that are not leaves have the
|
||||
correct number of labels and its sons have the right number of elements
|
||||
in their dataset
|
||||
|
||||
Arguments:
|
||||
node {Snode} -- node to check
|
||||
"""
|
||||
if node.is_leaf():
|
||||
return
|
||||
y_prediction = node._clf.predict(node._X)
|
||||
y_down = node.get_down()._y
|
||||
y_up = node.get_up()._y
|
||||
# Is a correct partition in terms of cadinality?
|
||||
# i.e. The partition algorithm didn't forget any sample
|
||||
self.assertEqual(node._y.shape[0], y_down.shape[0] + y_up.shape[0])
|
||||
unique_y, count_y = np.unique(node._y, return_counts=True)
|
||||
_, count_d = np.unique(y_down, return_counts=True)
|
||||
_, count_u = np.unique(y_up, return_counts=True)
|
||||
#
|
||||
for i in unique_y:
|
||||
try:
|
||||
number_down = count_d[i]
|
||||
except IndexError:
|
||||
number_down = 0
|
||||
try:
|
||||
number_up = count_u[i]
|
||||
except IndexError:
|
||||
number_up = 0
|
||||
self.assertEqual(count_y[i], number_down + number_up)
|
||||
# Is the partition made the same as the prediction?
|
||||
# as the node is not a leaf...
|
||||
_, count_yp = np.unique(y_prediction, return_counts=True)
|
||||
self.assertEqual(count_yp[0], y_up.shape[0])
|
||||
self.assertEqual(count_yp[1], y_down.shape[0])
|
||||
self._check_tree(node.get_down())
|
||||
self._check_tree(node.get_up())
|
||||
|
||||
def test_build_tree(self):
|
||||
"""Check if the tree is built the same way as predictions of models
|
||||
"""
|
||||
self._check_tree(self._clf.tree_)
|
||||
|
||||
def _get_file_data(self, file_name: str) -> tuple:
|
||||
"""Return X, y from data, y is the last column in array
|
||||
|
||||
Arguments:
|
||||
file_name {str} -- the file name
|
||||
|
||||
Returns:
|
||||
tuple -- tuple with samples, categories
|
||||
"""
|
||||
data = np.genfromtxt(file_name, delimiter=',')
|
||||
data = np.array(data)
|
||||
column_y = data.shape[1] - 1
|
||||
fy = data[:, column_y]
|
||||
fx = np.delete(data, column_y, axis=1)
|
||||
return fx, fy
|
||||
|
||||
def _find_out(self, px: np.array, x_original: np.array,
|
||||
y_original) -> list:
|
||||
"""Find the original values of y for a given array of samples
|
||||
|
||||
Arguments:
|
||||
px {np.array} -- array of samples to search for
|
||||
x_original {np.array} -- original dataset
|
||||
y_original {[type]} -- original classes
|
||||
|
||||
Returns:
|
||||
np.array -- classes of the given samples
|
||||
"""
|
||||
res = []
|
||||
for needle in px:
|
||||
for row in range(x_original.shape[0]):
|
||||
if all(x_original[row, :] == needle):
|
||||
res.append(y_original[row])
|
||||
return res
|
||||
|
||||
def test_single_prediction(self):
|
||||
X, y = self._get_Xy()
|
||||
yp = self._clf.predict((X[0, :].reshape(-1, X.shape[1])))
|
||||
self.assertEqual(yp[0], y[0])
|
||||
|
||||
def test_multiple_prediction(self):
|
||||
# First 27 elements the predictions are the same as the truth
|
||||
num = 27
|
||||
X, y = self._get_Xy()
|
||||
yp = self._clf.predict(X[:num, :])
|
||||
self.assertListEqual(y[:num].tolist(), yp.tolist())
|
||||
|
||||
def test_score(self):
|
||||
X, y = self._get_Xy()
|
||||
accuracy_score = self._clf.score(X, y)
|
||||
yp = self._clf.predict(X)
|
||||
accuracy_computed = np.mean(yp == y)
|
||||
self.assertEqual(accuracy_score, accuracy_computed)
|
||||
self.assertGreater(accuracy_score, 0.9)
|
||||
|
||||
def test_single_predict_proba(self):
|
||||
"""Check that element 28 has a prediction different that the current
|
||||
label
|
||||
"""
|
||||
# Element 28 has a different prediction than the truth
|
||||
decimals = 5
|
||||
prob = 0.29026400766
|
||||
X, y = self._get_Xy()
|
||||
yp = self._clf.predict_proba(X[28, :].reshape(-1, X.shape[1]))
|
||||
self.assertEqual(np.round(1 - prob, decimals),
|
||||
np.round(yp[0:, 0], decimals))
|
||||
self.assertEqual(1, y[28])
|
||||
|
||||
self.assertAlmostEqual(
|
||||
round(prob, decimals),
|
||||
round(yp[0, 1], decimals),
|
||||
decimals
|
||||
)
|
||||
|
||||
def test_multiple_predict_proba(self):
|
||||
# First 27 elements the predictions are the same as the truth
|
||||
num = 27
|
||||
decimals = 5
|
||||
X, y = self._get_Xy()
|
||||
yp = self._clf.predict_proba(X[:num, :])
|
||||
self.assertListEqual(
|
||||
y[:num].tolist(), np.argmax(yp[:num], axis=1).tolist())
|
||||
expected_proba = [0.88395641, 0.36746962, 0.84158767, 0.34106833,
|
||||
0.14269291, 0.85193236,
|
||||
0.29876058, 0.7282164, 0.85958616, 0.89517877,
|
||||
0.99745224, 0.18860349,
|
||||
0.30756427, 0.8318412, 0.18981198, 0.15564624,
|
||||
0.25740655, 0.22923355,
|
||||
0.87365959, 0.49928689, 0.95574351, 0.28761257,
|
||||
0.28906333, 0.32643692,
|
||||
0.29788483, 0.01657364, 0.81149083]
|
||||
expected = np.round(expected_proba, decimals=decimals).tolist()
|
||||
computed = np.round(yp[:, 1], decimals=decimals).tolist()
|
||||
for i in range(len(expected)):
|
||||
self.assertAlmostEqual(expected[i], computed[i], decimals)
|
||||
|
||||
def build_models(self):
|
||||
"""Build and train two models, model_clf will use the sklearn
|
||||
classifier to compute predictions and split data. model_computed will
|
||||
use vector of coefficients to compute both predictions and splitted
|
||||
data
|
||||
"""
|
||||
model_clf = Stree(random_state=self._random_state,
|
||||
use_predictions=True)
|
||||
model_computed = Stree(random_state=self._random_state,
|
||||
use_predictions=False)
|
||||
X, y = self._get_Xy()
|
||||
model_clf.fit(X, y)
|
||||
model_computed.fit(X, y)
|
||||
return model_clf, model_computed, X, y
|
||||
|
||||
def test_use_model_predict(self):
|
||||
"""Check that we get the same results wether we use the estimator in
|
||||
nodes to compute labels or we use the hyperplane and the position of
|
||||
samples wrt to it
|
||||
"""
|
||||
use_clf, use_math, X, _ = self.build_models()
|
||||
self.assertListEqual(
|
||||
use_clf.predict(X).tolist(),
|
||||
use_math.predict(X).tolist()
|
||||
)
|
||||
|
||||
def test_use_model_score(self):
|
||||
use_clf, use_math, X, y = self.build_models()
|
||||
b = use_math.score(X, y)
|
||||
self.assertEqual(
|
||||
use_clf.score(X, y),
|
||||
b
|
||||
)
|
||||
self.assertGreater(b, .95)
|
||||
|
||||
def test_use_model_predict_proba(self):
|
||||
use_clf, use_math, X, _ = self.build_models()
|
||||
self.assertListEqual(
|
||||
use_clf.predict_proba(X).tolist(),
|
||||
use_math.predict_proba(X).tolist()
|
||||
)
|
||||
|
||||
def test_single_vs_multiple_prediction(self):
|
||||
"""Check if predicting sample by sample gives the same result as
|
||||
predicting all samples at once
|
||||
"""
|
||||
X, _ = self._get_Xy()
|
||||
# Compute prediction line by line
|
||||
yp_line = np.array([], dtype=int)
|
||||
for xp in X:
|
||||
yp_line = np.append(yp_line, self._clf.predict(
|
||||
xp.reshape(-1, X.shape[1])))
|
||||
# Compute prediction at once
|
||||
yp_once = self._clf.predict(X)
|
||||
#
|
||||
self.assertListEqual(yp_line.tolist(), yp_once.tolist())
|
||||
|
||||
def test_iterator(self):
|
||||
"""Check preorder iterator
|
||||
"""
|
||||
expected = [
|
||||
'root',
|
||||
'root - Down',
|
||||
'root - Down - Down, <cgaf> - Leaf class=1 belief= 0.975989 counts'
|
||||
'=(array([0, 1]), array([ 17, 691]))',
|
||||
'root - Down - Up',
|
||||
'root - Down - Up - Down, <cgaf> - Leaf class=1 belief= 0.750000 '
|
||||
'counts=(array([0, 1]), array([1, 3]))',
|
||||
'root - Down - Up - Up, <pure> - Leaf class=0 belief= 1.000000 '
|
||||
'counts=(array([0]), array([7]))',
|
||||
'root - Up, <cgaf> - Leaf class=0 belief= 0.928297 counts=(array('
|
||||
'[0, 1]), array([725, 56]))',
|
||||
]
|
||||
computed = []
|
||||
for node in self._clf:
|
||||
computed.append(str(node))
|
||||
self.assertListEqual(expected, computed)
|
||||
|
||||
def test_is_a_sklearn_classifier(self):
|
||||
import warnings
|
||||
from sklearn.exceptions import ConvergenceWarning
|
||||
warnings.filterwarnings('ignore', category=ConvergenceWarning)
|
||||
warnings.filterwarnings('ignore', category=RuntimeWarning)
|
||||
from sklearn.utils.estimator_checks import check_estimator
|
||||
check_estimator(Stree())
|
||||
|
||||
def test_exception_if_C_is_negative(self):
|
||||
tclf = Stree(C=-1)
|
||||
with self.assertRaises(ValueError):
|
||||
tclf.fit(*self._get_Xy())
|
||||
|
||||
def test_check_max_depth_is_positive_or_None(self):
|
||||
tcl = Stree()
|
||||
self.assertIsNone(tcl.max_depth)
|
||||
tcl = Stree(max_depth=1)
|
||||
self.assertGreaterEqual(1, tcl.max_depth)
|
||||
with self.assertRaises(ValueError):
|
||||
tcl = Stree(max_depth=-1)
|
||||
tcl.fit(*self._get_Xy())
|
||||
|
||||
def test_check_max_depth(self):
|
||||
depth = 3
|
||||
tcl = Stree(random_state=self._random_state, max_depth=depth)
|
||||
tcl.fit(*self._get_Xy())
|
||||
self.assertEqual(depth, tcl.depth_)
|
||||
|
||||
def test_unfitted_tree_is_iterable(self):
|
||||
tcl = Stree()
|
||||
self.assertEqual(0, len(list(tcl)))
|
||||
|
||||
|
||||
class Snode_test(unittest.TestCase):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
os.environ['TESTING'] = '1'
|
||||
self._random_state = 1
|
||||
self._clf = Stree(random_state=self._random_state,
|
||||
use_predictions=True)
|
||||
self._clf.fit(*self._get_Xy())
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
@classmethod
|
||||
def tearDownClass(cls):
|
||||
"""[summary]
|
||||
"""
|
||||
try:
|
||||
os.environ.pop('TESTING')
|
||||
except KeyError:
|
||||
pass
|
||||
|
||||
def _get_Xy(self):
|
||||
X, y = make_classification(n_samples=1500, n_features=3,
|
||||
n_informative=3, n_redundant=0, n_classes=2,
|
||||
n_repeated=0, n_clusters_per_class=2,
|
||||
class_sep=1.5, flip_y=0, weights=[0.5, 0.5],
|
||||
random_state=self._random_state)
|
||||
return X, y
|
||||
|
||||
def test_attributes_in_leaves(self):
|
||||
"""Check if the attributes in leaves have correct values so they form a
|
||||
predictor
|
||||
"""
|
||||
|
||||
def check_leave(node: Snode):
|
||||
if not node.is_leaf():
|
||||
check_leave(node.get_down())
|
||||
check_leave(node.get_up())
|
||||
return
|
||||
# Check Belief in leave
|
||||
classes, card = np.unique(node._y, return_counts=True)
|
||||
max_card = max(card)
|
||||
min_card = min(card)
|
||||
if len(classes) > 1:
|
||||
try:
|
||||
belief = max_card / (max_card + min_card)
|
||||
except ZeroDivisionError:
|
||||
belief = 0.
|
||||
else:
|
||||
belief = 1
|
||||
self.assertEqual(belief, node._belief)
|
||||
# Check Class
|
||||
class_computed = classes[card == max_card]
|
||||
self.assertEqual(class_computed, node._class)
|
||||
|
||||
check_leave(self._clf.tree_)
|
||||
|
||||
def test_nodes_coefs(self):
|
||||
"""Check if the nodes of the tree have the right attributes filled
|
||||
"""
|
||||
|
||||
def run_tree(node: Snode):
|
||||
if node._belief < 1:
|
||||
# only exclude pure leaves
|
||||
self.assertIsNotNone(node._clf)
|
||||
self.assertIsNotNone(node._clf.coef_)
|
||||
self.assertIsNotNone(node._vector)
|
||||
self.assertIsNotNone(node._interceptor)
|
||||
if node.is_leaf():
|
||||
return
|
||||
run_tree(node.get_down())
|
||||
run_tree(node.get_up())
|
||||
|
||||
run_tree(self._clf.tree_)
|
1
stree/tests/__init__.py
Normal file
1
stree/tests/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
from .Strees_test import Stree_test, Snode_test
|
249
test2.ipynb
249
test2.ipynb
@@ -1,249 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd\n",
|
||||
"from sklearn.svm import LinearSVC\n",
|
||||
"from sklearn.tree import DecisionTreeClassifier\n",
|
||||
"from sklearn.datasets import make_classification, load_iris, load_wine\n",
|
||||
"from trees.Stree import Stree\n",
|
||||
"import time"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"if not os.path.isfile('data/creditcard.csv'):\n",
|
||||
" !wget --no-check-certificate --content-disposition http://nube.jccm.es/index.php/s/Zs7SYtZQJ3RQ2H2/download\n",
|
||||
" !tar xzf creditcard.tgz"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": "Fraud: 0.173% 492\nValid: 99.827% 284315\nX.shape (1492, 28) y.shape (1492,)\nFraud: 32.976% 492\nValid: 67.024% 1000\n"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import time\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"from trees.Stree import Stree\n",
|
||||
"\n",
|
||||
"random_state=1\n",
|
||||
"\n",
|
||||
"def load_creditcard(n_examples=0):\n",
|
||||
" import pandas as pd\n",
|
||||
" import numpy as np\n",
|
||||
" import random\n",
|
||||
" df = pd.read_csv('data/creditcard.csv')\n",
|
||||
" print(\"Fraud: {0:.3f}% {1}\".format(df.Class[df.Class == 1].count()*100/df.shape[0], df.Class[df.Class == 1].count()))\n",
|
||||
" print(\"Valid: {0:.3f}% {1}\".format(df.Class[df.Class == 0].count()*100/df.shape[0], df.Class[df.Class == 0].count()))\n",
|
||||
" y = df.Class\n",
|
||||
" X = df.drop(['Class', 'Time', 'Amount'], axis=1).values\n",
|
||||
" if n_examples > 0:\n",
|
||||
" # Take first n_examples samples\n",
|
||||
" X = X[:n_examples, :]\n",
|
||||
" y = y[:n_examples, :]\n",
|
||||
" else:\n",
|
||||
" # Take all the positive samples with a number of random negatives\n",
|
||||
" if n_examples < 0:\n",
|
||||
" Xt = X[(y == 1).ravel()]\n",
|
||||
" yt = y[(y == 1).ravel()]\n",
|
||||
" indices = random.sample(range(X.shape[0]), -1 * n_examples)\n",
|
||||
" X = np.append(Xt, X[indices], axis=0)\n",
|
||||
" y = np.append(yt, y[indices], axis=0)\n",
|
||||
" print(\"X.shape\", X.shape, \" y.shape\", y.shape)\n",
|
||||
" print(\"Fraud: {0:.3f}% {1}\".format(len(y[y == 1])*100/X.shape[0], len(y[y == 1])))\n",
|
||||
" print(\"Valid: {0:.3f}% {1}\".format(len(y[y == 0]) * 100 / X.shape[0], len(y[y == 0])))\n",
|
||||
" Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=0.7, shuffle=True, random_state=random_state, stratify=y)\n",
|
||||
" return Xtrain, Xtest, ytrain, ytest\n",
|
||||
"\n",
|
||||
"# data = load_creditcard(-5000) # Take all true samples + 5000 of the others\n",
|
||||
"# data = load_creditcard(5000) # Take the first 5000 samples\n",
|
||||
"data = load_creditcard(-1000) # Take all the samples\n",
|
||||
"\n",
|
||||
"Xtrain = data[0]\n",
|
||||
"Xtest = data[1]\n",
|
||||
"ytrain = data[2]\n",
|
||||
"ytest = data[3]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": "************** C=0.001 ****************************\nClassifier's accuracy (train): 0.9550\nClassifier's accuracy (test) : 0.9487\nroot\nroot - Down\nroot - Down - Down, <cgaf> - Leaf class=1 belief=0.977346 counts=(array([0, 1]), array([ 7, 302]))\nroot - Up\nroot - Up - Down, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\nroot - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\nroot - Up - Up\nroot - Up - Up - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([2]))\nroot - Up - Up - Up, <cgaf> - Leaf class=0 belief=0.945280 counts=(array([0, 1]), array([691, 40]))\n\n**************************************************\n************** C=0.01 ****************************\nClassifier's accuracy (train): 0.9569\nClassifier's accuracy (test) : 0.9576\nroot\nroot - Down, <cgaf> - Leaf class=1 belief=0.986971 counts=(array([0, 1]), array([ 4, 303]))\nroot - Up, <cgaf> - Leaf class=0 belief=0.944369 counts=(array([0, 1]), array([696, 41]))\n\n**************************************************\n************** C=1 ****************************\nClassifier's accuracy (train): 0.9674\nClassifier's accuracy (test) : 0.9554\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([310]))\nroot - Up, <cgaf> - Leaf class=0 belief=0.953232 counts=(array([0, 1]), array([693, 34]))\nroot - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([7]))\n\n**************************************************\n************** C=5 ****************************\nClassifier's accuracy (train): 0.9693\nClassifier's accuracy (test) : 0.9487\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([310]))\nroot - Up\nroot - Up - Down, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\nroot - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([7]))\nroot - Up - Up\nroot - Up - Up - Down, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up - Up\nroot - Up - Up - Up - Down, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([2]))\nroot - Up - Up - Up - Up\nroot - Up - Up - Up - Up - Down\nroot - Up - Up - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([2]))\nroot - Up - Up - Up - Up - Up, <cgaf> - Leaf class=0 belief=0.955494 counts=(array([0, 1]), array([687, 32]))\nroot - Up - Up - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\n\n**************************************************\n************** C=17 ****************************\nClassifier's accuracy (train): 0.9780\nClassifier's accuracy (test) : 0.9487\nroot\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([301]))\nroot - Up\nroot - Up - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([2]))\nroot - Down - Up\nroot - Down - Up - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([15]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([3]))\nroot - Down - Up - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([15]))\nroot - Up - Up - Up, <cgaf> - Leaf class=0 belief=0.967468 counts=(array([0, 1]), array([684, 23]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\n\n**************************************************\n0.7277 secs\n"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"t = time.time()\n",
|
||||
"for C in (.001, .01, 1, 5, 17):\n",
|
||||
" clf = Stree(C=C, random_state=random_state)\n",
|
||||
" clf.fit(Xtrain, ytrain)\n",
|
||||
" print(f\"************** C={C} ****************************\")\n",
|
||||
" print(f\"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}\")\n",
|
||||
" print(f\"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}\")\n",
|
||||
" print(clf)\n",
|
||||
" print(f\"**************************************************\")\n",
|
||||
"print(f\"{time.time() - t:.4f} secs\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"from sklearn.preprocessing import StandardScaler\n",
|
||||
"from sklearn.svm import LinearSVC\n",
|
||||
"from sklearn.calibration import CalibratedClassifierCV\n",
|
||||
"scaler = StandardScaler()\n",
|
||||
"cclf = CalibratedClassifierCV(base_estimator=LinearSVC(), cv=5)\n",
|
||||
"cclf.fit(Xtrain, ytrain)\n",
|
||||
"res = cclf.predict_proba(Xtest)\n",
|
||||
"#an array containing probabilities of belonging to the 1st class"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": "root\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([301]))\nroot - Up\nroot - Up - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([2]))\nroot - Down - Up\nroot - Down - Up - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([15]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([3]))\nroot - Down - Up - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([15]))\nroot - Up - Up - Up, <cgaf> - Leaf class=0 belief=0.967468 counts=(array([0, 1]), array([684, 23]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\n"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for i in list(clf):\n",
|
||||
" print(i)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": "root\nroot - Down\nroot - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([301]))\nroot - Up\nroot - Up - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([2]))\nroot - Down - Up\nroot - Down - Up - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([15]))\nroot - Up - Up\nroot - Up - Up - Down\nroot - Up - Up - Down - Down, <pure> - Leaf class=1 belief=1.000000 counts=(array([1]), array([3]))\nroot - Down - Up - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([15]))\nroot - Up - Up - Up, <cgaf> - Leaf class=0 belief=0.967468 counts=(array([0, 1]), array([684, 23]))\nroot - Up - Up - Down - Up, <pure> - Leaf class=0 belief=1.000000 counts=(array([0]), array([1]))\n"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for i in clf:\n",
|
||||
" print(i)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "display_data",
|
||||
"data": {
|
||||
"text/plain": "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …",
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"version_major": 2,
|
||||
"version_minor": 0,
|
||||
"model_id": "0025f832c1734afc944021e5990c2d11"
|
||||
}
|
||||
},
|
||||
"metadata": {}
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%matplotlib widget\n",
|
||||
"from mpl_toolkits.mplot3d import Axes3D\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"from matplotlib import cm\n",
|
||||
"from matplotlib.ticker import LinearLocator, FormatStrFormatter\n",
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"fig = plt.figure()\n",
|
||||
"ax = fig.gca(projection='3d')\n",
|
||||
"\n",
|
||||
"scale = 8\n",
|
||||
"# Make data.\n",
|
||||
"X = np.arange(-scale, scale, 0.25)\n",
|
||||
"Y = np.arange(-scale, scale, 0.25)\n",
|
||||
"X, Y = np.meshgrid(X, Y)\n",
|
||||
"Z = X**2 + Y**2\n",
|
||||
"\n",
|
||||
"# Plot the surface.\n",
|
||||
"surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,\n",
|
||||
" linewidth=0, antialiased=False)\n",
|
||||
"\n",
|
||||
"# Customize the z axis.\n",
|
||||
"ax.set_zlim(0, 100)\n",
|
||||
"ax.zaxis.set_major_locator(LinearLocator(10))\n",
|
||||
"ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))\n",
|
||||
"\n",
|
||||
"# rotate the axes and update\n",
|
||||
"#for angle in range(0, 360):\n",
|
||||
"# ax.view_init(30, 40)\n",
|
||||
"\n",
|
||||
"# Add a color bar which maps values to colors.\n",
|
||||
"fig.colorbar(surf, shrink=0.5, aspect=5)\n",
|
||||
"\n",
|
||||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.6-final"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
@@ -1,72 +0,0 @@
|
||||
import os
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
from sklearn.datasets import make_classification
|
||||
|
||||
from trees.Stree import Stree, Snode
|
||||
|
||||
|
||||
class Snode_test(unittest.TestCase):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
os.environ['TESTING'] = '1'
|
||||
self._random_state = 1
|
||||
self._clf = Stree(random_state=self._random_state,
|
||||
use_predictions=True)
|
||||
self._clf.fit(*self._get_Xy())
|
||||
super(Snode_test, self).__init__(*args, **kwargs)
|
||||
|
||||
@classmethod
|
||||
def tearDownClass(cls):
|
||||
try:
|
||||
os.environ.pop('TESTING')
|
||||
except:
|
||||
pass
|
||||
|
||||
def _get_Xy(self):
|
||||
X, y = make_classification(n_samples=1500, n_features=3, n_informative=3,
|
||||
n_redundant=0, n_repeated=0, n_classes=2, n_clusters_per_class=2,
|
||||
class_sep=1.5, flip_y=0, weights=[0.5, 0.5], random_state=self._random_state)
|
||||
return X, y
|
||||
|
||||
def test_attributes_in_leaves(self):
|
||||
"""Check if the attributes in leaves have correct values so they form a predictor
|
||||
"""
|
||||
def check_leave(node: Snode):
|
||||
if not node.is_leaf():
|
||||
check_leave(node.get_down())
|
||||
check_leave(node.get_up())
|
||||
return
|
||||
# Check Belief in leave
|
||||
classes, card = np.unique(node._y, return_counts=True)
|
||||
max_card = max(card)
|
||||
min_card = min(card)
|
||||
if len(classes) > 1:
|
||||
try:
|
||||
belief = max_card / (max_card + min_card)
|
||||
except:
|
||||
belief = 0.
|
||||
else:
|
||||
belief = 1
|
||||
self.assertEqual(belief, node._belief)
|
||||
# Check Class
|
||||
class_computed = classes[card == max_card]
|
||||
self.assertEqual(class_computed, node._class)
|
||||
check_leave(self._clf._tree)
|
||||
|
||||
def test_nodes_coefs(self):
|
||||
"""Check if the nodes of the tree have the right attributes filled
|
||||
"""
|
||||
def run_tree(node: Snode):
|
||||
if node._belief < 1:
|
||||
# only exclude pure leaves
|
||||
self.assertIsNotNone(node._clf)
|
||||
self.assertIsNotNone(node._clf.coef_)
|
||||
self.assertIsNotNone(node._vector)
|
||||
self.assertIsNotNone(node._interceptor)
|
||||
if node.is_leaf():
|
||||
return
|
||||
run_tree(node.get_down())
|
||||
run_tree(node.get_up())
|
||||
run_tree(self._clf._tree)
|
@@ -1,223 +0,0 @@
|
||||
import csv
|
||||
import os
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
from sklearn.datasets import make_classification
|
||||
|
||||
from trees.Stree import Stree, Snode
|
||||
|
||||
|
||||
class Stree_test(unittest.TestCase):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
os.environ['TESTING'] = '1'
|
||||
self._random_state = 1
|
||||
self._clf = Stree(random_state=self._random_state,
|
||||
use_predictions=False)
|
||||
self._clf.fit(*self._get_Xy())
|
||||
super(Stree_test, self).__init__(*args, **kwargs)
|
||||
|
||||
@classmethod
|
||||
def tearDownClass(cls):
|
||||
try:
|
||||
os.environ.pop('TESTING')
|
||||
except:
|
||||
pass
|
||||
|
||||
def _get_Xy(self):
|
||||
X, y = make_classification(n_samples=1500, n_features=3, n_informative=3,
|
||||
n_redundant=0, n_repeated=0, n_classes=2, n_clusters_per_class=2,
|
||||
class_sep=1.5, flip_y=0, weights=[0.5, 0.5], random_state=self._random_state)
|
||||
return X, y
|
||||
|
||||
def _check_tree(self, node: Snode):
|
||||
"""Check recursively that the nodes that are not leaves have the correct
|
||||
number of labels and its sons have the right number of elements in their dataset
|
||||
|
||||
Arguments:
|
||||
node {Snode} -- node to check
|
||||
"""
|
||||
if node.is_leaf():
|
||||
return
|
||||
y_prediction = node._clf.predict(node._X)
|
||||
y_down = node.get_down()._y
|
||||
y_up = node.get_up()._y
|
||||
# Is a correct partition in terms of cadinality?
|
||||
# i.e. The partition algorithm didn't forget any sample
|
||||
self.assertEqual(node._y.shape[0], y_down.shape[0] + y_up.shape[0])
|
||||
unique_y, count_y = np.unique(node._y, return_counts=True)
|
||||
_, count_d = np.unique(y_down, return_counts=True)
|
||||
_, count_u = np.unique(y_up, return_counts=True)
|
||||
#
|
||||
for i in unique_y:
|
||||
try:
|
||||
number_down = count_d[i]
|
||||
except:
|
||||
number_down = 0
|
||||
try:
|
||||
number_up = count_u[i]
|
||||
except:
|
||||
number_up = 0
|
||||
self.assertEqual(count_y[i], number_down + number_up)
|
||||
# Is the partition made the same as the prediction?
|
||||
# as the node is not a leaf...
|
||||
_, count_yp = np.unique(y_prediction, return_counts=True)
|
||||
self.assertEqual(count_yp[0], y_up.shape[0])
|
||||
self.assertEqual(count_yp[1], y_down.shape[0])
|
||||
self._check_tree(node.get_down())
|
||||
self._check_tree(node.get_up())
|
||||
|
||||
def test_build_tree(self):
|
||||
"""Check if the tree is built the same way as predictions of models
|
||||
"""
|
||||
self._check_tree(self._clf._tree)
|
||||
|
||||
def _get_file_data(self, file_name: str) -> tuple:
|
||||
"""Return X, y from data, y is the last column in array
|
||||
|
||||
Arguments:
|
||||
file_name {str} -- the file name
|
||||
|
||||
Returns:
|
||||
tuple -- tuple with samples, categories
|
||||
"""
|
||||
data = np.genfromtxt(file_name, delimiter=',')
|
||||
data = np.array(data)
|
||||
column_y = data.shape[1] - 1
|
||||
fy = data[:, column_y]
|
||||
fx = np.delete(data, column_y, axis=1)
|
||||
return fx, fy
|
||||
|
||||
def _find_out(self, px: np.array, x_original: np.array, y_original) -> list:
|
||||
"""Find the original values of y for a given array of samples
|
||||
|
||||
Arguments:
|
||||
px {np.array} -- array of samples to search for
|
||||
x_original {np.array} -- original dataset
|
||||
y_original {[type]} -- original classes
|
||||
|
||||
Returns:
|
||||
np.array -- classes of the given samples
|
||||
"""
|
||||
res = []
|
||||
for needle in px:
|
||||
for row in range(x_original.shape[0]):
|
||||
if all(x_original[row, :] == needle):
|
||||
res.append(y_original[row])
|
||||
return res
|
||||
|
||||
def test_subdatasets(self):
|
||||
"""Check if the subdatasets files have the same labels as the original dataset
|
||||
"""
|
||||
self._clf.save_sub_datasets()
|
||||
with open(self._clf.get_catalog_name()) as cat_file:
|
||||
catalog = csv.reader(cat_file, delimiter=',')
|
||||
for row in catalog:
|
||||
X, y = self._get_Xy()
|
||||
x_file, y_file = self._get_file_data(row[0])
|
||||
y_original = np.array(self._find_out(x_file, X, y), dtype=int)
|
||||
self.assertTrue(np.array_equal(y_file, y_original))
|
||||
|
||||
def test_single_prediction(self):
|
||||
X, y = self._get_Xy()
|
||||
yp = self._clf.predict((X[0, :].reshape(-1, X.shape[1])))
|
||||
self.assertEqual(yp[0], y[0])
|
||||
|
||||
def test_multiple_prediction(self):
|
||||
# First 27 elements the predictions are the same as the truth
|
||||
num = 27
|
||||
X, y = self._get_Xy()
|
||||
yp = self._clf.predict(X[:num, :])
|
||||
self.assertListEqual(y[:num].tolist(), yp.tolist())
|
||||
|
||||
def test_score(self):
|
||||
X, y = self._get_Xy()
|
||||
accuracy_score = self._clf.score(X, y)
|
||||
yp = self._clf.predict(X)
|
||||
right = (yp == y).astype(int)
|
||||
accuracy_computed = sum(right) / len(y)
|
||||
self.assertEqual(accuracy_score, accuracy_computed)
|
||||
self.assertGreater(accuracy_score, 0.8)
|
||||
|
||||
def test_single_predict_proba(self):
|
||||
"""Check that element 28 has a prediction different that the current label
|
||||
"""
|
||||
# Element 28 has a different prediction than the truth
|
||||
X, y = self._get_Xy()
|
||||
yp = self._clf.predict_proba(X[28, :].reshape(-1, X.shape[1]))
|
||||
self.assertEqual(0, yp[0:, 0])
|
||||
self.assertEqual(1, y[28])
|
||||
self.assertEqual(0.29026400766, round(yp[0, 1], 11))
|
||||
|
||||
def test_multiple_predict_proba(self):
|
||||
# First 27 elements the predictions are the same as the truth
|
||||
num = 27
|
||||
X, y = self._get_Xy()
|
||||
yp = self._clf.predict_proba(X[:num, :])
|
||||
self.assertListEqual(y[:num].tolist(), yp[:, 0].tolist())
|
||||
expected_proba = [0.88395641, 0.36746962, 0.84158767, 0.34106833, 0.14269291, 0.85193236,
|
||||
0.29876058, 0.7282164, 0.85958616, 0.89517877, 0.99745224, 0.18860349,
|
||||
0.30756427, 0.8318412, 0.18981198, 0.15564624, 0.25740655, 0.22923355,
|
||||
0.87365959, 0.49928689, 0.95574351, 0.28761257, 0.28906333, 0.32643692,
|
||||
0.29788483, 0.01657364, 0.81149083]
|
||||
self.assertListEqual(expected_proba, np.round(yp[:, 1], decimals=8).tolist())
|
||||
|
||||
def build_models(self):
|
||||
"""Build and train two models, model_clf will use the sklearn classifier to
|
||||
compute predictions and split data. model_computed will use vector of
|
||||
coefficients to compute both predictions and splitted data
|
||||
"""
|
||||
model_clf = Stree(random_state=self._random_state,
|
||||
use_predictions=True)
|
||||
model_computed = Stree(random_state=self._random_state,
|
||||
use_predictions=False)
|
||||
X, y = self._get_Xy()
|
||||
model_clf.fit(X, y)
|
||||
model_computed.fit(X, y)
|
||||
return model_clf, model_computed, X, y
|
||||
|
||||
def test_use_model_predict(self):
|
||||
"""Check that we get the same results wether we use the estimator in nodes
|
||||
to compute labels or we use the hyperplane and the position of samples wrt to it
|
||||
"""
|
||||
use_clf, use_math, X, _ = self.build_models()
|
||||
self.assertListEqual(
|
||||
use_clf.predict(X).tolist(),
|
||||
use_math.predict(X).tolist()
|
||||
)
|
||||
|
||||
def test_use_model_score(self):
|
||||
use_clf, use_math, X, y = self.build_models()
|
||||
b = use_math.score(X, y)
|
||||
self.assertEqual(
|
||||
use_clf.score(X, y),
|
||||
b
|
||||
)
|
||||
self.assertGreater(b, .95)
|
||||
|
||||
def test_use_model_predict_proba(self):
|
||||
use_clf, use_math, X, _ = self.build_models()
|
||||
self.assertListEqual(
|
||||
use_clf.predict_proba(X).tolist(),
|
||||
use_math.predict_proba(X).tolist()
|
||||
)
|
||||
|
||||
def test_single_vs_multiple_prediction(self):
|
||||
"""Check if predicting sample by sample gives the same result as predicting
|
||||
all samples at once
|
||||
"""
|
||||
X, _ = self._get_Xy()
|
||||
# Compute prediction line by line
|
||||
yp_line = np.array([], dtype=int)
|
||||
for xp in X:
|
||||
yp_line = np.append(yp_line, self._clf.predict(xp.reshape(-1, X.shape[1])))
|
||||
# Compute prediction at once
|
||||
yp_once = self._clf.predict(X)
|
||||
#
|
||||
self.assertListEqual(yp_line.tolist(), yp_once.tolist())
|
||||
|
||||
|
||||
|
||||
|
||||
|
@@ -1,34 +0,0 @@
|
||||
'''
|
||||
__author__ = "Ricardo Montañana Gómez"
|
||||
__copyright__ = "Copyright 2020, Ricardo Montañana Gómez"
|
||||
__license__ = "MIT"
|
||||
__version__ = "0.9"
|
||||
Inorder iterator for the binary tree of Snodes
|
||||
Uses LinearSVC
|
||||
'''
|
||||
|
||||
from trees.Snode import Snode
|
||||
|
||||
|
||||
class Siterator:
|
||||
"""Inorder iterator
|
||||
"""
|
||||
|
||||
def __init__(self, tree: Snode):
|
||||
self._stack = []
|
||||
self._push(tree)
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def _push(self, node: Snode):
|
||||
while (node is not None):
|
||||
self._stack.insert(0, node)
|
||||
node = node.get_down()
|
||||
|
||||
def __next__(self) -> Snode:
|
||||
if len(self._stack) == 0:
|
||||
raise StopIteration()
|
||||
node = self._stack.pop()
|
||||
self._push(node.get_up())
|
||||
return node
|
@@ -1,70 +0,0 @@
|
||||
'''
|
||||
__author__ = "Ricardo Montañana Gómez"
|
||||
__copyright__ = "Copyright 2020, Ricardo Montañana Gómez"
|
||||
__license__ = "MIT"
|
||||
__version__ = "0.9"
|
||||
Node of the Stree (binary tree)
|
||||
'''
|
||||
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
from sklearn.svm import LinearSVC
|
||||
|
||||
|
||||
class Snode:
|
||||
def __init__(self, clf: LinearSVC, X: np.ndarray, y: np.ndarray, title: str):
|
||||
self._clf = clf
|
||||
self._vector = None if clf is None else clf.coef_
|
||||
self._interceptor = 0. if clf is None else clf.intercept_
|
||||
self._title = title
|
||||
self._belief = 0. # belief of the prediction in a leaf node based on samples
|
||||
# Only store dataset in Testing
|
||||
self._X = X if os.environ.get('TESTING', 'NS') != 'NS' else None
|
||||
self._y = y
|
||||
self._down = None
|
||||
self._up = None
|
||||
self._class = None
|
||||
|
||||
def set_down(self, son):
|
||||
self._down = son
|
||||
|
||||
def set_up(self, son):
|
||||
self._up = son
|
||||
|
||||
def is_leaf(self,) -> bool:
|
||||
return self._up is None and self._down is None
|
||||
|
||||
def get_down(self) -> 'Snode':
|
||||
return self._down
|
||||
|
||||
def get_up(self) -> 'Snode':
|
||||
return self._up
|
||||
|
||||
def make_predictor(self):
|
||||
"""Compute the class of the predictor and its belief based on the subdataset of the node
|
||||
only if it is a leaf
|
||||
"""
|
||||
# Clean memory
|
||||
#self._X = None
|
||||
#self._y = None
|
||||
if not self.is_leaf():
|
||||
return
|
||||
classes, card = np.unique(self._y, return_counts=True)
|
||||
if len(classes) > 1:
|
||||
max_card = max(card)
|
||||
min_card = min(card)
|
||||
try:
|
||||
self._belief = max_card / (max_card + min_card)
|
||||
except:
|
||||
self._belief = 0.
|
||||
self._class = classes[card == max_card][0]
|
||||
else:
|
||||
self._belief = 1
|
||||
self._class = classes[0]
|
||||
|
||||
def __str__(self) -> str:
|
||||
if self.is_leaf():
|
||||
return f"{self._title} - Leaf class={self._class} belief={self._belief:.6f} counts={np.unique(self._y, return_counts=True)}"
|
||||
else:
|
||||
return f"{self._title}"
|
222
trees/Stree.py
222
trees/Stree.py
@@ -1,222 +0,0 @@
|
||||
'''
|
||||
__author__ = "Ricardo Montañana Gómez"
|
||||
__copyright__ = "Copyright 2020, Ricardo Montañana Gómez"
|
||||
__license__ = "MIT"
|
||||
__version__ = "0.9"
|
||||
Build an oblique tree classifier based on SVM Trees
|
||||
Uses LinearSVC
|
||||
'''
|
||||
|
||||
import typing
|
||||
|
||||
import numpy as np
|
||||
from sklearn.base import BaseEstimator, ClassifierMixin
|
||||
from sklearn.svm import LinearSVC
|
||||
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted
|
||||
|
||||
from trees.Snode import Snode
|
||||
from trees.Siterator import Siterator
|
||||
|
||||
|
||||
class Stree(BaseEstimator, ClassifierMixin):
|
||||
"""
|
||||
"""
|
||||
|
||||
def __init__(self, C=1.0, max_iter: int = 1000, random_state: int = 0, use_predictions: bool = False):
|
||||
self._max_iter = max_iter
|
||||
self._C = C
|
||||
self._random_state = random_state
|
||||
self._tree = None
|
||||
self.__folder = 'data/'
|
||||
self.__use_predictions = use_predictions
|
||||
self.__trained = False
|
||||
self.__proba = False
|
||||
|
||||
def get_params(self, deep=True):
|
||||
"""Get dict with hyperparameters and its values to accomplish sklearn rules
|
||||
"""
|
||||
return {"C": self._C, "random_state": self._random_state, 'max_iter': self._max_iter}
|
||||
|
||||
def set_params(self, **parameters):
|
||||
"""Set hyperparmeters as specified by sklearn, needed in Gridsearchs
|
||||
"""
|
||||
for parameter, value in parameters.items():
|
||||
setattr(self, parameter, value)
|
||||
return self
|
||||
|
||||
def _linear_function(self, data: np.array, node: Snode) -> np.array:
|
||||
coef = node._vector[0, :].reshape(-1, data.shape[1])
|
||||
return data.dot(coef.T) + node._interceptor[0]
|
||||
|
||||
def _split_data(self, node: Snode, data: np.ndarray, indices: np.ndarray) -> list:
|
||||
if self.__use_predictions:
|
||||
yp = node._clf.predict(data)
|
||||
down = (yp == 1).reshape(-1, 1)
|
||||
res = np.expand_dims(node._clf.decision_function(data), 1)
|
||||
else:
|
||||
# doesn't work with multiclass as each sample has to do inner product with its own coeficients
|
||||
# computes positition of every sample is w.r.t. the hyperplane
|
||||
res = self._linear_function(data, node)
|
||||
down = res > 0
|
||||
up = ~down
|
||||
data_down = data[down[:, 0]] if any(down) else None
|
||||
indices_down = indices[down[:, 0]] if any(down) else None
|
||||
res_down = res[down[:, 0]] if any(down) else None
|
||||
data_up = data[up[:, 0]] if any(up) else None
|
||||
indices_up = indices[up[:, 0]] if any(up) else None
|
||||
res_up = res[up[:, 0]] if any(up) else None
|
||||
return [data_up, indices_up, data_down, indices_down, res_up, res_down]
|
||||
|
||||
def fit(self, X: np.ndarray, y: np.ndarray, title: str = 'root') -> 'Stree':
|
||||
X, y = check_X_y(X, y.ravel())
|
||||
self.n_features_in_ = X.shape[1]
|
||||
self._tree = self.train(X, y.ravel(), title)
|
||||
self._build_predictor()
|
||||
self.__trained = True
|
||||
return self
|
||||
|
||||
def _build_predictor(self):
|
||||
"""Process the leaves to make them predictors
|
||||
"""
|
||||
def run_tree(node: Snode):
|
||||
if node.is_leaf():
|
||||
node.make_predictor()
|
||||
return
|
||||
run_tree(node.get_down())
|
||||
run_tree(node.get_up())
|
||||
run_tree(self._tree)
|
||||
|
||||
def train(self, X: np.ndarray, y: np.ndarray, title: str = 'root') -> Snode:
|
||||
if np.unique(y).shape[0] == 1:
|
||||
# only 1 class => pure dataset
|
||||
return Snode(None, X, y, title + ', <pure>')
|
||||
# Train the model
|
||||
clf = LinearSVC(max_iter=self._max_iter, C=self._C,
|
||||
random_state=self._random_state)
|
||||
clf.fit(X, y)
|
||||
tree = Snode(clf, X, y, title)
|
||||
X_U, y_u, X_D, y_d, _, _ = self._split_data(tree, X, y)
|
||||
if X_U is None or X_D is None:
|
||||
# didn't part anything
|
||||
return Snode(clf, X, y, title + ', <cgaf>')
|
||||
tree.set_up(self.train(X_U, y_u, title + ' - Up'))
|
||||
tree.set_down(self.train(X_D, y_d, title + ' - Down'))
|
||||
return tree
|
||||
|
||||
def _reorder_results(self, y: np.array, indices: np.array) -> np.array:
|
||||
y_ordered = np.zeros(y.shape, dtype=int if y.ndim == 1 else float)
|
||||
indices = indices.astype(int)
|
||||
for i, index in enumerate(indices):
|
||||
y_ordered[index] = y[i]
|
||||
return y_ordered
|
||||
|
||||
def predict(self, X: np.array) -> np.array:
|
||||
def predict_class(xp: np.array, indices: np.array, node: Snode) -> np.array:
|
||||
if xp is None:
|
||||
return [], []
|
||||
if node.is_leaf():
|
||||
# set a class for every sample in dataset
|
||||
prediction = np.full((xp.shape[0], 1), node._class)
|
||||
return prediction, indices
|
||||
u, i_u, d, i_d, _, _ = self._split_data(node, xp, indices)
|
||||
k, l = predict_class(d, i_d, node.get_down())
|
||||
m, n = predict_class(u, i_u, node.get_up())
|
||||
return np.append(k, m), np.append(l, n)
|
||||
# sklearn check
|
||||
check_is_fitted(self)
|
||||
# Input validation
|
||||
X = check_array(X)
|
||||
# setup prediction & make it happen
|
||||
indices = np.arange(X.shape[0])
|
||||
return self._reorder_results(*predict_class(X, indices, self._tree))
|
||||
|
||||
def predict_proba(self, X: np.array) -> np.array:
|
||||
"""Computes an approximation of the probability of samples belonging to class 1
|
||||
(nothing more, nothing less)
|
||||
|
||||
:param X: dataset
|
||||
:type X: np.array
|
||||
"""
|
||||
def predict_class(xp: np.array, indices: np.array, dist: np.array, node: Snode) -> np.array:
|
||||
"""Run the tree to compute predictions
|
||||
|
||||
:param xp: subdataset of samples
|
||||
:type xp: np.array
|
||||
:param indices: indices of subdataset samples to rebuild original order
|
||||
:type indices: np.array
|
||||
:param dist: distances of every sample to the hyperplane or the father node
|
||||
:type dist: np.array
|
||||
:param node: node of the leaf with the class
|
||||
:type node: Snode
|
||||
:return: array of labels and distances, array of indices
|
||||
:rtype: np.array
|
||||
"""
|
||||
if xp is None:
|
||||
return [], []
|
||||
if node.is_leaf():
|
||||
# set a class for every sample in dataset
|
||||
prediction = np.full((xp.shape[0], 1), node._class)
|
||||
prediction_proba = dist
|
||||
return np.append(prediction, prediction_proba, axis=1), indices
|
||||
u, i_u, d, i_d, r_u, r_d = self._split_data(node, xp, indices)
|
||||
k, l = predict_class(d, i_d, r_d, node.get_down())
|
||||
m, n = predict_class(u, i_u, r_u, node.get_up())
|
||||
return np.append(k, m), np.append(l, n)
|
||||
# sklearn check
|
||||
check_is_fitted(self)
|
||||
# Input validation
|
||||
X = check_array(X)
|
||||
# setup prediction & make it happen
|
||||
indices = np.arange(X.shape[0])
|
||||
result, indices = predict_class(X, indices, [], self._tree)
|
||||
result = result.reshape(X.shape[0], 2)
|
||||
# Turn distances to hyperplane into probabilities based on fitting distances
|
||||
# of samples to its hyperplane that classified them, to the sigmoid function
|
||||
result[:, 1] = 1 / (1 + np.exp(-result[:, 1]))
|
||||
return self._reorder_results(result, indices)
|
||||
|
||||
def score(self, X: np.array, y: np.array) -> float:
|
||||
"""Return accuracy
|
||||
"""
|
||||
if not self.__trained:
|
||||
self.fit(X, y)
|
||||
yp = self.predict(X).reshape(y.shape)
|
||||
right = (yp == y).astype(int)
|
||||
return np.sum(right) / len(y)
|
||||
|
||||
def __iter__(self):
|
||||
return Siterator(self._tree)
|
||||
|
||||
def __str__(self) -> str:
|
||||
output = ''
|
||||
for i in self:
|
||||
output += str(i) + '\n'
|
||||
return output
|
||||
|
||||
def _save_datasets(self, tree: Snode, catalog: typing.TextIO, number: int):
|
||||
"""Save the dataset of the node in a csv file
|
||||
|
||||
:param tree: node with data to save
|
||||
:type tree: Snode
|
||||
:param catalog: catalog file handler
|
||||
:type catalog: typing.TextIO
|
||||
:param number: sequential number for the generated file name
|
||||
:type number: int
|
||||
"""
|
||||
data = np.append(tree._X, tree._y.reshape(-1, 1), axis=1)
|
||||
name = f"{self.__folder}dataset{number}.csv"
|
||||
np.savetxt(name, data, delimiter=",")
|
||||
catalog.write(f"{name}, - {str(tree)}")
|
||||
if tree.is_leaf():
|
||||
return
|
||||
self._save_datasets(tree.get_down(), catalog, number + 1)
|
||||
self._save_datasets(tree.get_up(), catalog, number + 2)
|
||||
|
||||
def get_catalog_name(self):
|
||||
return self.__folder + "catalog.txt"
|
||||
|
||||
def save_sub_datasets(self):
|
||||
"""Save the every dataset stored in the tree to check with manual classifier
|
||||
"""
|
||||
with open(self.get_catalog_name(), 'w', encoding='utf-8') as catalog:
|
||||
self._save_datasets(self._tree, catalog, 1)
|
Reference in New Issue
Block a user