Compare commits

..

1 Commits

Author SHA1 Message Date
7a625eee09 Change entropy function with scipy (#38) 2021-11-01 18:41:15 +01:00
13 changed files with 124 additions and 340 deletions

View File

@@ -12,8 +12,8 @@ jobs:
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [macos-latest, ubuntu-latest, windows-latest]
python: [3.8, "3.10"]
os: [macos-latest, ubuntu-latest]
python: [3.8]
steps:
- uses: actions/checkout@v2

View File

@@ -1,37 +0,0 @@
cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: "Montañana"
given-names: "Ricardo"
orcid: "https://orcid.org/0000-0003-3242-5452"
- family-names: "Gámez"
given-names: "José A."
orcid: "https://orcid.org/0000-0003-1188-1117"
- family-names: "Puerta"
given-names: "José M."
orcid: "https://orcid.org/0000-0002-9164-5191"
title: "STree"
version: 1.2.3
doi: 10.5281/zenodo.5504083
date-released: 2021-11-02
url: "https://github.com/Doctorado-ML/STree"
preferred-citation:
type: article
authors:
- family-names: "Montañana"
given-names: "Ricardo"
orcid: "https://orcid.org/0000-0003-3242-5452"
- family-names: "Gámez"
given-names: "José A."
orcid: "https://orcid.org/0000-0003-1188-1117"
- family-names: "Puerta"
given-names: "José M."
orcid: "https://orcid.org/0000-0002-9164-5191"
doi: "10.1007/978-3-030-85713-4_6"
journal: "Lecture Notes in Computer Science"
month: 9
start: 54
end: 64
title: "STree: A Single Multi-class Oblique Decision Tree Based on Support Vector Machines"
volume: 12882
year: 2021

View File

@@ -10,9 +10,6 @@ coverage: ## Run tests with coverage
deps: ## Install dependencies
pip install -r requirements.txt
devdeps: ## Install development dependencies
pip install black pip-audit flake8 mypy coverage
lint: ## Lint and static-check
black stree
flake8 stree
@@ -35,9 +32,6 @@ build: ## Build package
doc-clean: ## Update documentation
make -C docs --makefile=Makefile clean
audit: ## Audit pip
pip-audit
help: ## Show help message
@IFS=$$'\n' ; \
help_lines=(`fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \

View File

@@ -36,23 +36,23 @@ Can be found in [stree.readthedocs.io](https://stree.readthedocs.io/en/stable/)
## Hyperparameters
| | **Hyperparameter** | **Type/Values** | **Default** | **Meaning** |
| --- | ------------------- | -------------------------------------------------------------- | ----------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| \* | C | \<float\> | 1.0 | Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. |
| \* | kernel | {"liblinear", "linear", "poly", "rbf", "sigmoid"} | linear | Specifies the kernel type to be used in the algorithm. It must be one of liblinear, linear, poly or rbf. liblinear uses [liblinear](https://www.csie.ntu.edu.tw/~cjlin/liblinear/) library and the rest uses [libsvm](https://www.csie.ntu.edu.tw/~cjlin/libsvm/) library through scikit-learn library |
| \* | max_iter | \<int\> | 1e5 | Hard limit on iterations within solver, or -1 for no limit. |
| \* | random_state | \<int\> | None | Controls the pseudo random number generation for shuffling the data for probability estimates. Ignored when probability is False.<br>Pass an int for reproducible output across multiple function calls |
| | max_depth | \<int\> | None | Specifies the maximum depth of the tree |
| \* | tol | \<float\> | 1e-4 | Tolerance for stopping criterion. |
| \* | degree | \<int\> | 3 | Degree of the polynomial kernel function (poly). Ignored by all other kernels. |
| \* | gamma | {"scale", "auto"} or \<float\> | scale | Kernel coefficient for rbf, poly and sigmoid.<br>if gamma='scale' (default) is passed then it uses 1 / (n_features \* X.var()) as value of gamma,<br>if auto, uses 1 / n_features. |
| | split_criteria | {"impurity", "max_samples"} | impurity | Decides (just in case of a multi class classification) which column (class) use to split the dataset in a node\*\*. max_samples is incompatible with 'ovo' multiclass_strategy |
| | criterion | {“gini”, “entropy”} | entropy | The function to measure the quality of a split (only used if max_features != num_features). <br>Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain. |
| | min_samples_split | \<int\> | 0 | The minimum number of samples required to split an internal node. 0 (default) for any |
| | max_features | \<int\>, \<float\> <br><br>or {“auto”, “sqrt”, “log2”} | None | The number of features to consider when looking for the split:<br>If int, then consider max_features features at each split.<br>If float, then max_features is a fraction and int(max_features \* n_features) features are considered at each split.<br>If “auto”, then max_features=sqrt(n_features).<br>If “sqrt”, then max_features=sqrt(n_features).<br>If “log2”, then max_features=log2(n_features).<br>If None, then max_features=n_features. |
| | splitter | {"best", "random", "trandom", "mutual", "cfs", "fcbf", "iwss"} | "random" | The strategy used to choose the feature set at each node (only used if max_features < num_features). Supported strategies are: **best”**: sklearn SelectKBest algorithm is used in every node to choose the max_features best features. **random”**: The algorithm generates 5 candidates and choose the best (max. info. gain) of them. **trandom”**: The algorithm generates only one random combination. **"mutual"**: Chooses the best features w.r.t. their mutual info with the label. **"cfs"**: Apply Correlation-based Feature Selection. **"fcbf"**: Apply Fast Correlation-Based Filter. **"iwss"**: IWSS based algorithm |
| | normalize | \<bool\> | False | If standardization of features should be applied on each node with the samples that reach it |
| \* | multiclass_strategy | {"ovo", "ovr"} | "ovo" | Strategy to use with multiclass datasets, **"ovo"**: one versus one. **"ovr"**: one versus rest |
| | **Hyperparameter** | **Type/Values** | **Default** | **Meaning** |
| --- | ------------------- | ------------------------------------------------------ | ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| \* | C | \<float\> | 1.0 | Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. |
| \* | kernel | {"liblinear", "linear", "poly", "rbf", "sigmoid"} | linear | Specifies the kernel type to be used in the algorithm. It must be one of liblinear, linear, poly or rbf. liblinear uses [liblinear](https://www.csie.ntu.edu.tw/~cjlin/liblinear/) library and the rest uses [libsvm](https://www.csie.ntu.edu.tw/~cjlin/libsvm/) library through scikit-learn library |
| \* | max_iter | \<int\> | 1e5 | Hard limit on iterations within solver, or -1 for no limit. |
| \* | random_state | \<int\> | None | Controls the pseudo random number generation for shuffling the data for probability estimates. Ignored when probability is False.<br>Pass an int for reproducible output across multiple function calls |
| | max_depth | \<int\> | None | Specifies the maximum depth of the tree |
| \* | tol | \<float\> | 1e-4 | Tolerance for stopping criterion. |
| \* | degree | \<int\> | 3 | Degree of the polynomial kernel function (poly). Ignored by all other kernels. |
| \* | gamma | {"scale", "auto"} or \<float\> | scale | Kernel coefficient for rbf, poly and sigmoid.<br>if gamma='scale' (default) is passed then it uses 1 / (n_features \* X.var()) as value of gamma,<br>if auto, uses 1 / n_features. |
| | split_criteria | {"impurity", "max_samples"} | impurity | Decides (just in case of a multi class classification) which column (class) use to split the dataset in a node\*\*. max_samples is incompatible with 'ovo' multiclass_strategy |
| | criterion | {“gini”, “entropy”} | entropy | The function to measure the quality of a split (only used if max_features != num_features). <br>Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain. |
| | min_samples_split | \<int\> | 0 | The minimum number of samples required to split an internal node. 0 (default) for any |
| | max_features | \<int\>, \<float\> <br><br>or {“auto”, “sqrt”, “log2”} | None | The number of features to consider when looking for the split:<br>If int, then consider max_features features at each split.<br>If float, then max_features is a fraction and int(max_features \* n_features) features are considered at each split.<br>If “auto”, then max_features=sqrt(n_features).<br>If “sqrt”, then max_features=sqrt(n_features).<br>If “log2”, then max_features=log2(n_features).<br>If None, then max_features=n_features. |
| | splitter | {"best", "random", "mutual", "cfs", "fcbf", "iwss"} | "random" | The strategy used to choose the feature set at each node (only used if max_features < num_features). Supported strategies are: **best”**: sklearn SelectKBest algorithm is used in every node to choose the max_features best features. **random”**: The algorithm generates 5 candidates and choose the best (max. info. gain) of them. **trandom”**: The algorithm generates a true random combination. **"mutual"**: Chooses the best features w.r.t. their mutual info with the label. **"cfs"**: Apply Correlation-based Feature Selection. **"fcbf"**: Apply Fast Correlation-Based Filter. **"iwss"**: IWSS based algorithm |
| | normalize | \<bool\> | False | If standardization of features should be applied on each node with the samples that reach it |
| \* | multiclass_strategy | {"ovo", "ovr"} | "ovo" | Strategy to use with multiclass datasets, **"ovo"**: one versus one. **"ovr"**: one versus rest |
\* Hyperparameter used by the support vector classifier of every node
@@ -73,7 +73,3 @@ python -m unittest -v stree.tests
## License
STree is [MIT](https://github.com/doctorado-ml/stree/blob/master/LICENSE) licensed
## Reference
R. Montañana, J. A. Gámez, J. M. Puerta, "STree: a single multi-class oblique decision tree based on support vector machines.", 2021 LNAI 12882, pg. 54-64

View File

@@ -54,4 +54,4 @@ html_theme = "sphinx_rtd_theme"
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = []
html_static_path = ["_static"]

View File

@@ -1,22 +1,22 @@
# Hyperparameters
| | **Hyperparameter** | **Type/Values** | **Default** | **Meaning** |
| --- | ------------------- | -------------------------------------------------------------- | ----------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| \* | C | \<float\> | 1.0 | Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. |
| \* | kernel | {"liblinear", "linear", "poly", "rbf", "sigmoid"} | linear | Specifies the kernel type to be used in the algorithm. It must be one of liblinear, linear, poly or rbf. liblinear uses [liblinear](https://www.csie.ntu.edu.tw/~cjlin/liblinear/) library and the rest uses [libsvm](https://www.csie.ntu.edu.tw/~cjlin/libsvm/) library through scikit-learn library |
| \* | max_iter | \<int\> | 1e5 | Hard limit on iterations within solver, or -1 for no limit. |
| \* | random_state | \<int\> | None | Controls the pseudo random number generation for shuffling the data for probability estimates. Ignored when probability is False.<br>Pass an int for reproducible output across multiple function calls |
| | max_depth | \<int\> | None | Specifies the maximum depth of the tree |
| \* | tol | \<float\> | 1e-4 | Tolerance for stopping criterion. |
| \* | degree | \<int\> | 3 | Degree of the polynomial kernel function (poly). Ignored by all other kernels. |
| \* | gamma | {"scale", "auto"} or \<float\> | scale | Kernel coefficient for rbf, poly and sigmoid.<br>if gamma='scale' (default) is passed then it uses 1 / (n_features \* X.var()) as value of gamma,<br>if auto, uses 1 / n_features. |
| | split_criteria | {"impurity", "max_samples"} | impurity | Decides (just in case of a multi class classification) which column (class) use to split the dataset in a node\*\*. max_samples is incompatible with 'ovo' multiclass_strategy |
| | criterion | {“gini”, “entropy”} | entropy | The function to measure the quality of a split (only used if max_features != num_features). <br>Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain. |
| | min_samples_split | \<int\> | 0 | The minimum number of samples required to split an internal node. 0 (default) for any |
| | max_features | \<int\>, \<float\> <br><br>or {“auto”, “sqrt”, “log2”} | None | The number of features to consider when looking for the split:<br>If int, then consider max_features features at each split.<br>If float, then max_features is a fraction and int(max_features \* n_features) features are considered at each split.<br>If “auto”, then max_features=sqrt(n_features).<br>If “sqrt”, then max_features=sqrt(n_features).<br>If “log2”, then max_features=log2(n_features).<br>If None, then max_features=n_features. |
| | splitter | {"best", "random", "trandom", "mutual", "cfs", "fcbf", "iwss"} | "random" | The strategy used to choose the feature set at each node (only used if max_features < num_features). Supported strategies are: **best”**: sklearn SelectKBest algorithm is used in every node to choose the max_features best features. **random”**: The algorithm generates 5 candidates and choose the best (max. info. gain) of them. **trandom”**: The algorithm generates only one random combination. **"mutual"**: Chooses the best features w.r.t. their mutual info with the label. **"cfs"**: Apply Correlation-based Feature Selection. **"fcbf"**: Apply Fast Correlation-Based Filter. **"iwss"**: IWSS based algorithm |
| | normalize | \<bool\> | False | If standardization of features should be applied on each node with the samples that reach it |
| \* | multiclass_strategy | {"ovo", "ovr"} | "ovo" | Strategy to use with multiclass datasets, **"ovo"**: one versus one. **"ovr"**: one versus rest |
| | **Hyperparameter** | **Type/Values** | **Default** | **Meaning** |
| --- | ------------------- | ------------------------------------------------------ | ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| \* | C | \<float\> | 1.0 | Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. |
| \* | kernel | {"liblinear", "linear", "poly", "rbf", "sigmoid"} | linear | Specifies the kernel type to be used in the algorithm. It must be one of liblinear, linear, poly or rbf. liblinear uses [liblinear](https://www.csie.ntu.edu.tw/~cjlin/liblinear/) library and the rest uses [libsvm](https://www.csie.ntu.edu.tw/~cjlin/libsvm/) library through scikit-learn library |
| \* | max_iter | \<int\> | 1e5 | Hard limit on iterations within solver, or -1 for no limit. |
| \* | random_state | \<int\> | None | Controls the pseudo random number generation for shuffling the data for probability estimates. Ignored when probability is False.<br>Pass an int for reproducible output across multiple function calls |
| | max_depth | \<int\> | None | Specifies the maximum depth of the tree |
| \* | tol | \<float\> | 1e-4 | Tolerance for stopping criterion. |
| \* | degree | \<int\> | 3 | Degree of the polynomial kernel function (poly). Ignored by all other kernels. |
| \* | gamma | {"scale", "auto"} or \<float\> | scale | Kernel coefficient for rbf, poly and sigmoid.<br>if gamma='scale' (default) is passed then it uses 1 / (n_features \* X.var()) as value of gamma,<br>if auto, uses 1 / n_features. |
| | split_criteria | {"impurity", "max_samples"} | impurity | Decides (just in case of a multi class classification) which column (class) use to split the dataset in a node\*\*. max_samples is incompatible with 'ovo' multiclass_strategy |
| | criterion | {“gini”, “entropy”} | entropy | The function to measure the quality of a split (only used if max_features != num_features). <br>Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain. |
| | min_samples_split | \<int\> | 0 | The minimum number of samples required to split an internal node. 0 (default) for any |
| | max_features | \<int\>, \<float\> <br><br>or {“auto”, “sqrt”, “log2”} | None | The number of features to consider when looking for the split:<br>If int, then consider max_features features at each split.<br>If float, then max_features is a fraction and int(max_features \* n_features) features are considered at each split.<br>If “auto”, then max_features=sqrt(n_features).<br>If “sqrt”, then max_features=sqrt(n_features).<br>If “log2”, then max_features=log2(n_features).<br>If None, then max_features=n_features. |
| | splitter | {"best", "random", "mutual", "cfs", "fcbf", "iwss"} | "random" | The strategy used to choose the feature set at each node (only used if max_features < num_features). Supported strategies are: **best”**: sklearn SelectKBest algorithm is used in every node to choose the max_features best features. **random”**: The algorithm generates 5 candidates and choose the best (max. info. gain) of them. **trandom”**: The algorithm generates a true random combination. **"mutual"**: Chooses the best features w.r.t. their mutual info with the label. **"cfs"**: Apply Correlation-based Feature Selection. **"fcbf"**: Apply Fast Correlation-Based Filter. **"iwss"**: IWSS based algorithm |
| | normalize | \<bool\> | False | If standardization of features should be applied on each node with the samples that reach it |
| \* | multiclass_strategy | {"ovo", "ovr"} | "ovo" | Strategy to use with multiclass datasets, **"ovo"**: one versus one. **"ovr"**: one versus rest |
\* Hyperparameter used by the support vector classifier of every node

View File

@@ -1,5 +1,4 @@
import setuptools
import os
def readme():
@@ -9,8 +8,7 @@ def readme():
def get_data(field):
item = ""
file_name = "_version.py" if field == "version" else "__init__.py"
with open(os.path.join("stree", file_name)) as f:
with open("stree/__init__.py") as f:
for line in f.readlines():
if line.startswith(f"__{field}__"):
delim = '"' if '"' in line else "'"

View File

@@ -68,7 +68,6 @@ class Snode:
self._impurity = impurity
self._partition_column: int = -1
self._scaler = scaler
self._proba = None
@classmethod
def copy(cls, node: "Snode") -> "Snode":
@@ -128,44 +127,23 @@ class Snode:
def get_up(self) -> "Snode":
return self._up
def make_predictor(self, num_classes: int) -> None:
def make_predictor(self):
"""Compute the class of the predictor and its belief based on the
subdataset of the node only if it is a leaf
"""
if not self.is_leaf():
return
classes, card = np.unique(self._y, return_counts=True)
self._proba = np.zeros((num_classes,), dtype=np.int64)
for c, n in zip(classes, card):
self._proba[c] = n
try:
if len(classes) > 1:
max_card = max(card)
self._class = classes[card == max_card][0]
self._belief = max_card / np.sum(card)
except ValueError:
self._class = None
def graph(self):
"""
Return a string representing the node in graphviz format
"""
output = ""
count_values = np.unique(self._y, return_counts=True)
if self.is_leaf():
output += (
f'N{id(self)} [shape=box style=filled label="'
f"class={self._class} impurity={self._impurity:.3f} "
f'counts={self._proba}"];\n'
)
else:
output += (
f'N{id(self)} [label="#features={len(self._features)} '
f"classes={count_values[0]} samples={count_values[1]} "
f'({sum(count_values[1])})" fontcolor=black];\n'
)
output += f"N{id(self)} -> N{id(self.get_up())} [color=black];\n"
output += f"N{id(self)} -> N{id(self.get_down())} [color=black];\n"
return output
self._belief = 1
try:
self._class = classes[0]
except IndexError:
self._class = None
def __str__(self) -> str:
count_values = np.unique(self._y, return_counts=True)
@@ -224,8 +202,7 @@ class Splitter:
max_features < num_features). Supported strategies are: “best”: sklearn
SelectKBest algorithm is used in every node to choose the max_features
best features. “random”: The algorithm generates 5 candidates and
choose the best (max. info. gain) of them. “trandom”: The algorithm
generates only one random combination. "mutual": Chooses the best
choose the best (max. info. gain) of them. "mutual": Chooses the best
features w.r.t. their mutual info with the label. "cfs": Apply
Correlation-based Feature Selection. "fcbf": Apply Fast Correlation-
Based, by default None
@@ -389,8 +366,9 @@ class Splitter:
.get_support(indices=True)
)
@staticmethod
def _fs_mutual(
self, dataset: np.array, labels: np.array, max_features: int
dataset: np.array, labels: np.array, max_features: int
) -> tuple:
"""Return the best features with mutual information with labels
@@ -410,9 +388,7 @@ class Splitter:
indices of the features selected
"""
# return best features with mutual info with the label
feature_list = mutual_info_classif(
dataset, labels, random_state=self._random_state
)
feature_list = mutual_info_classif(dataset, labels)
return tuple(
sorted(
range(len(feature_list)), key=lambda sub: feature_list[sub]
@@ -502,18 +478,6 @@ class Splitter:
@staticmethod
def _entropy(y: np.array) -> float:
"""Compute entropy of a labels set
Parameters
----------
y : np.array
set of labels
Returns
-------
float
entropy
"""
n_labels = len(y)
if n_labels <= 1:
return 0
@@ -521,13 +485,10 @@ class Splitter:
proportions = counts / n_labels
n_classes = np.count_nonzero(proportions)
if n_classes <= 1:
return 0
entropy = 0.0
# Compute standard entropy.
for prop in proportions:
if prop != 0.0:
entropy -= prop * log(prop, n_classes)
return entropy
return 0.0
from scipy.stats import entropy
return entropy(y, base=n_classes)
def information_gain(
self, labels: np.array, labels_up: np.array, labels_dn: np.array

View File

@@ -17,7 +17,6 @@ from sklearn.utils.validation import (
_check_sample_weight,
)
from .Splitter import Splitter, Snode, Siterator
from ._version import __version__
class Stree(BaseEstimator, ClassifierMixin):
@@ -83,8 +82,7 @@ class Stree(BaseEstimator, ClassifierMixin):
max_features < num_features). Supported strategies are: “best”: sklearn
SelectKBest algorithm is used in every node to choose the max_features
best features. “random”: The algorithm generates 5 candidates and
choose the best (max. info. gain) of them. “trandom”: The algorithm
generates only one random combination. "mutual": Chooses the best
choose the best (max. info. gain) of them. "mutual": Chooses the best
features w.r.t. their mutual info with the label. "cfs": Apply
Correlation-based Feature Selection. "fcbf": Apply Fast Correlation-
Based , by default "random"
@@ -130,7 +128,7 @@ class Stree(BaseEstimator, ClassifierMixin):
References
----------
R. Montañana, J. A. Gámez, J. M. Puerta, "STree: a single multi-class
oblique decision tree based on support vector machines.", 2021 LNAI 12882
oblique decision tree based on support vector machines.", 2021 LNAI...
"""
@@ -170,11 +168,6 @@ class Stree(BaseEstimator, ClassifierMixin):
self.normalize = normalize
self.multiclass_strategy = multiclass_strategy
@staticmethod
def version() -> str:
"""Return the version of the package."""
return __version__
def _more_tags(self) -> dict:
"""Required by sklearn to supply features of the classifier
make mandatory the labels array
@@ -314,7 +307,7 @@ class Stree(BaseEstimator, ClassifierMixin):
if np.unique(y).shape[0] == 1:
# only 1 class => pure dataset
node.set_title(title + ", <pure>")
node.make_predictor(self.n_classes_)
node.make_predictor()
return node
# Train the model
clf = self._build_clf()
@@ -333,7 +326,7 @@ class Stree(BaseEstimator, ClassifierMixin):
if X_U is None or X_D is None:
# didn't part anything
node.set_title(title + ", <cgaf>")
node.make_predictor(self.n_classes_)
node.make_predictor()
return node
node.set_up(
self._train(X_U, y_u, sw_u, depth + 1, title + f" - Up({depth+1})")
@@ -367,66 +360,28 @@ class Stree(BaseEstimator, ClassifierMixin):
)
)
def __predict_class(self, X: np.array) -> np.array:
def compute_prediction(xp, indices, node):
if xp is None:
return
if node.is_leaf():
# set a class for indices
result[indices] = node._proba
return
self.splitter_.partition(xp, node, train=False)
x_u, x_d = self.splitter_.part(xp)
i_u, i_d = self.splitter_.part(indices)
compute_prediction(x_u, i_u, node.get_up())
compute_prediction(x_d, i_d, node.get_down())
# setup prediction & make it happen
result = np.zeros((X.shape[0], self.n_classes_))
indices = np.arange(X.shape[0])
compute_prediction(X, indices, self.tree_)
return result
def check_predict(self, X) -> np.array:
check_is_fitted(self, ["tree_"])
# Input validation
X = check_array(X)
if X.shape[1] != self.n_features_:
raise ValueError(
f"Expected {self.n_features_} features but got "
f"({X.shape[1]})"
)
return X
def predict_proba(self, X: np.array) -> np.array:
"""Predict class probabilities of the input samples X.
The predicted class probability is the fraction of samples of the same
class in a leaf.
@staticmethod
def _reorder_results(y: np.array, indices: np.array) -> np.array:
"""Reorder an array based on the array of indices passed
Parameters
----------
X : dataset of samples.
y : np.array
data untidy
indices : np.array
indices used to set order
Returns
-------
proba : array of shape (n_samples, n_classes)
The class probabilities of the input samples.
Raises
------
ValueError
if dataset with inconsistent number of features
NotFittedError
if model is not fitted
np.array
array y ordered
"""
X = self.check_predict(X)
# return # of samples of each class in leaf node
values = self.__predict_class(X)
normalizer = values.sum(axis=1)[:, np.newaxis]
normalizer[normalizer == 0.0] = 1.0
return values / normalizer
# return array of same type given in y
y_ordered = y.copy()
indices = indices.astype(int)
for i, index in enumerate(indices):
y_ordered[index] = y[i]
return y_ordered
def predict(self, X: np.array) -> np.array:
"""Predict labels for each sample in dataset passed
@@ -448,8 +403,40 @@ class Stree(BaseEstimator, ClassifierMixin):
NotFittedError
if model is not fitted
"""
X = self.check_predict(X)
return self.classes_[np.argmax(self.__predict_class(X), axis=1)]
def predict_class(
xp: np.array, indices: np.array, node: Snode
) -> np.array:
if xp is None:
return [], []
if node.is_leaf():
# set a class for every sample in dataset
prediction = np.full((xp.shape[0], 1), node._class)
return prediction, indices
self.splitter_.partition(xp, node, train=False)
x_u, x_d = self.splitter_.part(xp)
i_u, i_d = self.splitter_.part(indices)
prx_u, prin_u = predict_class(x_u, i_u, node.get_up())
prx_d, prin_d = predict_class(x_d, i_d, node.get_down())
return np.append(prx_u, prx_d), np.append(prin_u, prin_d)
# sklearn check
check_is_fitted(self, ["tree_"])
# Input validation
X = check_array(X)
if X.shape[1] != self.n_features_:
raise ValueError(
f"Expected {self.n_features_} features but got "
f"({X.shape[1]})"
)
# setup prediction & make it happen
indices = np.arange(X.shape[0])
result = (
self._reorder_results(*predict_class(X, indices, self.tree_))
.astype(int)
.ravel()
)
return self.classes_[result]
def nodes_leaves(self) -> tuple:
"""Compute the number of nodes and leaves in the built tree
@@ -482,23 +469,6 @@ class Stree(BaseEstimator, ClassifierMixin):
tree = None
return Siterator(tree)
def graph(self, title="") -> str:
"""Graphviz code representing the tree
Returns
-------
str
graphviz code
"""
output = (
"digraph STree {\nlabel=<STree "
f"{title}>\nfontsize=30\nfontcolor=blue\nlabelloc=t\n"
)
for node in self:
output += node.graph()
output += "}\n"
return output
def __str__(self) -> str:
"""String representation of the tree

View File

@@ -1,5 +1,7 @@
from .Strees import Stree, Siterator
__version__ = "1.2.1"
__author__ = "Ricardo Montañana Gómez"
__copyright__ = "Copyright 2020-2021, Ricardo Montañana Gómez"
__license__ = "MIT License"

View File

@@ -1 +0,0 @@
__version__ = "1.2.4"

View File

@@ -67,28 +67,10 @@ class Snode_test(unittest.TestCase):
def test_make_predictor_on_leaf(self):
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test")
test.make_predictor(2)
test.make_predictor()
self.assertEqual(1, test._class)
self.assertEqual(0.75, test._belief)
self.assertEqual(-1, test._partition_column)
self.assertListEqual([1, 3], test._proba.tolist())
def test_make_predictor_on_not_leaf(self):
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test")
test.set_up(Snode(None, [1], [1], [], 0.0, "another_test"))
test.make_predictor(2)
self.assertIsNone(test._class)
self.assertEqual(0, test._belief)
self.assertEqual(-1, test._partition_column)
self.assertEqual(-1, test.get_up()._partition_column)
self.assertIsNone(test._proba)
def test_make_predictor_on_leaf_bogus_data(self):
test = Snode(None, [1, 2, 3, 4], [], [], 0.0, "test")
test.make_predictor(2)
self.assertIsNone(test._class)
self.assertEqual(-1, test._partition_column)
self.assertListEqual([0, 0], test._proba.tolist())
def test_set_title(self):
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test")
@@ -115,6 +97,21 @@ class Snode_test(unittest.TestCase):
test.set_features([1, 2])
self.assertListEqual([1, 2], test.get_features())
def test_make_predictor_on_not_leaf(self):
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test")
test.set_up(Snode(None, [1], [1], [], 0.0, "another_test"))
test.make_predictor()
self.assertIsNone(test._class)
self.assertEqual(0, test._belief)
self.assertEqual(-1, test._partition_column)
self.assertEqual(-1, test.get_up()._partition_column)
def test_make_predictor_on_leaf_bogus_data(self):
test = Snode(None, [1, 2, 3, 4], [], [], 0.0, "test")
test.make_predictor()
self.assertIsNone(test._class)
self.assertEqual(-1, test._partition_column)
def test_copy_node(self):
px = [1, 2, 3, 4]
py = [1]

View File

@@ -10,7 +10,6 @@ from sklearn.svm import LinearSVC
from stree import Stree
from stree.Splitter import Snode
from .utils import load_dataset
from .._version import __version__
class Stree_test(unittest.TestCase):
@@ -115,38 +114,6 @@ class Stree_test(unittest.TestCase):
yp = clf.fit(X, y).predict(X[:num, :])
self.assertListEqual(y[:num].tolist(), yp.tolist())
def test_multiple_predict_proba(self):
expected = {
"liblinear": {
0: [0.02401129943502825, 0.9759887005649718],
17: [0.9282970550576184, 0.07170294494238157],
},
"linear": {
0: [0.029329608938547486, 0.9706703910614525],
17: [0.9298469387755102, 0.07015306122448979],
},
"rbf": {
0: [0.023448275862068966, 0.976551724137931],
17: [0.9458064516129032, 0.05419354838709677],
},
"poly": {
0: [0.01601164483260553, 0.9839883551673945],
17: [0.9089790897908979, 0.0910209102091021],
},
}
indices = [0, 17]
X, y = load_dataset(self._random_state)
for kernel in ["liblinear", "linear", "rbf", "poly"]:
clf = Stree(
kernel=kernel,
multiclass_strategy="ovr" if kernel == "liblinear" else "ovo",
random_state=self._random_state,
)
yp = clf.fit(X, y).predict_proba(X)
for index in indices:
for exp, comp in zip(expected[kernel][index], yp[index]):
self.assertAlmostEqual(exp, comp)
def test_single_vs_multiple_prediction(self):
"""Check if predicting sample by sample gives the same result as
predicting all samples at once
@@ -390,7 +357,6 @@ class Stree_test(unittest.TestCase):
# Tests of score
def test_score_binary(self):
"""Check score for binary classification."""
X, y = load_dataset(self._random_state)
accuracies = [
0.9506666666666667,
@@ -413,7 +379,6 @@ class Stree_test(unittest.TestCase):
self.assertAlmostEqual(accuracy_expected, accuracy_score)
def test_score_max_features(self):
"""Check score using max_features."""
X, y = load_dataset(self._random_state)
clf = Stree(
kernel="liblinear",
@@ -425,7 +390,6 @@ class Stree_test(unittest.TestCase):
self.assertAlmostEqual(0.9453333333333334, clf.score(X, y))
def test_bogus_splitter_parameter(self):
"""Check that bogus splitter parameter raises exception."""
clf = Stree(splitter="duck")
with self.assertRaises(ValueError):
clf.fit(*load_dataset())
@@ -481,7 +445,6 @@ class Stree_test(unittest.TestCase):
self.assertListEqual([47], resdn[1].tolist())
def test_score_multiclass_rbf(self):
"""Test score for multiclass classification with rbf kernel."""
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
@@ -499,7 +462,6 @@ class Stree_test(unittest.TestCase):
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
def test_score_multiclass_poly(self):
"""Test score for multiclass classification with poly kernel."""
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
@@ -521,7 +483,6 @@ class Stree_test(unittest.TestCase):
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
def test_score_multiclass_liblinear(self):
"""Test score for multiclass classification with liblinear kernel."""
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
@@ -547,7 +508,6 @@ class Stree_test(unittest.TestCase):
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
def test_score_multiclass_sigmoid(self):
"""Test score for multiclass classification with sigmoid kernel."""
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
@@ -568,7 +528,6 @@ class Stree_test(unittest.TestCase):
self.assertEqual(0.9662921348314607, clf2.fit(X, y).score(X, y))
def test_score_multiclass_linear(self):
"""Test score for multiclass classification with linear kernel."""
warnings.filterwarnings("ignore", category=ConvergenceWarning)
warnings.filterwarnings("ignore", category=RuntimeWarning)
X, y = load_dataset(
@@ -596,13 +555,11 @@ class Stree_test(unittest.TestCase):
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
def test_zero_all_sample_weights(self):
"""Test exception raises when all sample weights are zero."""
X, y = load_dataset(self._random_state)
with self.assertRaises(ValueError):
Stree().fit(X, y, np.zeros(len(y)))
def test_mask_samples_weighted_zero(self):
"""Check that the weighted zero samples are masked."""
X = np.array(
[
[1, 1],
@@ -630,7 +587,6 @@ class Stree_test(unittest.TestCase):
self.assertEqual(model2.score(X, y, w), 1)
def test_depth(self):
"""Check depth of the tree."""
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
@@ -646,7 +602,6 @@ class Stree_test(unittest.TestCase):
self.assertEqual(4, clf.depth_)
def test_nodes_leaves(self):
"""Check number of nodes and leaves."""
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
@@ -666,7 +621,6 @@ class Stree_test(unittest.TestCase):
self.assertEqual(6, leaves)
def test_nodes_leaves_artificial(self):
"""Check leaves of artificial dataset."""
n1 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test1")
n2 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test2")
n3 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test3")
@@ -685,14 +639,12 @@ class Stree_test(unittest.TestCase):
self.assertEqual(2, leaves)
def test_bogus_multiclass_strategy(self):
"""Check invalid multiclass strategy."""
clf = Stree(multiclass_strategy="other")
X, y = load_wine(return_X_y=True)
with self.assertRaises(ValueError):
clf.fit(X, y)
def test_multiclass_strategy(self):
"""Check multiclass strategy."""
X, y = load_wine(return_X_y=True)
clf_o = Stree(multiclass_strategy="ovo")
clf_r = Stree(multiclass_strategy="ovr")
@@ -702,7 +654,6 @@ class Stree_test(unittest.TestCase):
self.assertEqual(0.9269662921348315, score_r)
def test_incompatible_hyperparameters(self):
"""Check incompatible hyperparameters."""
X, y = load_wine(return_X_y=True)
clf = Stree(kernel="liblinear", multiclass_strategy="ovo")
with self.assertRaises(ValueError):
@@ -710,50 +661,3 @@ class Stree_test(unittest.TestCase):
clf = Stree(multiclass_strategy="ovo", split_criteria="max_samples")
with self.assertRaises(ValueError):
clf.fit(X, y)
def test_version(self):
"""Check STree version."""
clf = Stree()
self.assertEqual(__version__, clf.version())
def test_graph(self):
"""Check graphviz representation of the tree."""
X, y = load_wine(return_X_y=True)
clf = Stree(random_state=self._random_state)
expected_head = (
"digraph STree {\nlabel=<STree >\nfontsize=30\n"
"fontcolor=blue\nlabelloc=t\n"
)
expected_tail = (
' [shape=box style=filled label="class=1 impurity=0.000 '
'counts=[0 1 0]"];\n}\n'
)
self.assertEqual(clf.graph(), expected_head + "}\n")
clf.fit(X, y)
computed = clf.graph()
computed_head = computed[: len(expected_head)]
num = -len(expected_tail)
computed_tail = computed[num:]
self.assertEqual(computed_head, expected_head)
self.assertEqual(computed_tail, expected_tail)
def test_graph_title(self):
X, y = load_wine(return_X_y=True)
clf = Stree(random_state=self._random_state)
expected_head = (
"digraph STree {\nlabel=<STree Sample title>\nfontsize=30\n"
"fontcolor=blue\nlabelloc=t\n"
)
expected_tail = (
' [shape=box style=filled label="class=1 impurity=0.000 '
'counts=[0 1 0]"];\n}\n'
)
self.assertEqual(clf.graph("Sample title"), expected_head + "}\n")
clf.fit(X, y)
computed = clf.graph("Sample title")
computed_head = computed[: len(expected_head)]
num = -len(expected_tail)
computed_tail = computed[num:]
self.assertEqual(computed_head, expected_head)
self.assertEqual(computed_tail, expected_tail)