Compare commits

...

9 Commits

Author SHA1 Message Date
f5706c3159 Update version and notebooks 2020-06-28 10:44:29 +02:00
be552fdd6c Add test for getting 3 feature_sets in Splitter
Add ensemble notebook
2020-06-28 02:45:08 +02:00
5e3a8e3ec5 Change adaboost notebook 2020-06-27 23:34:15 +02:00
554ec03c32 Get only 3 sets for best split
Fix flaky test in Splitter_test
2020-06-27 18:29:40 +02:00
4b7e4a3fb0 better solution to the sklearn bagging problem
Add better tests
enhance .coveragerc
2020-06-26 11:22:45 +02:00
76723993fd Solve Warning class label not found when bagging 2020-06-25 13:07:50 +02:00
ecd0b86f4d Solve the mistake of min and max distance
The split criteria functions min and max distance return classes while
max_samples return distances positives and negatives to hyperplane of
the class with more samples in node
2020-06-17 00:13:52 +02:00
3e52a4746c Fix entroy and information_gain functions 2020-06-16 13:56:02 +02:00
Ricardo Montañana Gómez
a20e45e8e7 Merge pull request #10 from Doctorado-ML/add_subspaces
#2 Add subspaces
2020-06-15 11:30:53 +02:00
11 changed files with 518 additions and 225 deletions

View File

@@ -10,5 +10,4 @@ exclude_lines =
if __name__ == .__main__.:
ignore_errors = True
omit =
stree/tests/*
stree/__init__.py

4
.gitignore vendored
View File

@@ -130,4 +130,6 @@ dmypy.json
.idea
.vscode
.pre-commit-config.yaml
.pre-commit-config.yaml
**.csv

File diff suppressed because one or more lines are too long

View File

@@ -4,7 +4,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Test AdaBoost with different configurations"
"# Test Stree with AdaBoost and Bagging with different configurations"
]
},
{
@@ -34,11 +34,8 @@
"outputs": [],
"source": [
"import time\n",
"from sklearn.ensemble import AdaBoostClassifier\n",
"from sklearn.tree import DecisionTreeClassifier\n",
"from sklearn.svm import LinearSVC, SVC\n",
"from sklearn.model_selection import GridSearchCV, train_test_split\n",
"from sklearn.datasets import load_iris\n",
"from sklearn.ensemble import AdaBoostClassifier, BaggingClassifier\n",
"from sklearn.model_selection import train_test_split\n",
"from stree import Stree"
]
},
@@ -57,12 +54,14 @@
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Fraud: 0.173% 492\nValid: 99.827% 284315\nX.shape (100492, 28) y.shape (100492,)\nFraud: 0.659% 662\nValid: 99.341% 99830\n"
"text": "Fraud: 0.173% 492\nValid: 99.827% 284315\nX.shape (100492, 28) y.shape (100492,)\nFraud: 0.644% 647\nValid: 99.356% 99845\n"
}
],
"source": [
@@ -117,18 +116,20 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## STree alone on the whole dataset and linear kernel"
"## STree alone with 100.000 samples and linear kernel"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Score Train: 0.9985499829409757\nScore Test: 0.998407854584052\nTook 39.45 seconds\n"
"text": "Score Train: 0.9985784146480154\nScore Test: 0.9981093273185617\nTook 73.27 seconds\n"
}
],
"source": [
@@ -144,7 +145,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Different kernels with different configuations"
"## Adaboost"
]
},
{
@@ -161,18 +162,20 @@
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Kernel: linear\tTime: 87.00 seconds\tScore Train: 0.9982372\tScore Test: 0.9981425\nKernel: rbf\tTime: 60.60 seconds\tScore Train: 0.9934181\tScore Test: 0.9933992\nKernel: poly\tTime: 88.08 seconds\tScore Train: 0.9937450\tScore Test: 0.9938968\n"
"text": "Kernel: linear\tTime: 93.78 seconds\tScore Train: 0.9983083\tScore Test: 0.9983083\nKernel: rbf\tTime: 18.32 seconds\tScore Train: 0.9935602\tScore Test: 0.9935651\nKernel: poly\tTime: 69.68 seconds\tScore Train: 0.9973132\tScore Test: 0.9972801\n"
}
],
"source": [
"for kernel in ['linear', 'rbf', 'poly']:\n",
" now = time.time()\n",
" clf = AdaBoostClassifier(Stree(C=7, kernel=kernel, max_depth=max_depth, random_state=random_state), n_estimators=n_estimators, random_state=random_state)\n",
" clf = AdaBoostClassifier(base_estimator=Stree(C=C, kernel=kernel, max_depth=max_depth, random_state=random_state), algorithm=\"SAMME\", n_estimators=n_estimators, random_state=random_state)\n",
" clf.fit(Xtrain, ytrain)\n",
" score_train = clf.score(Xtrain, ytrain)\n",
" score_test = clf.score(Xtest, ytest)\n",
@@ -183,24 +186,37 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test algorithm SAMME in AdaBoost to check speed/accuracy"
"## Bagging"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"n_estimators = 10\n",
"C = 7\n",
"max_depth = 3"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Kernel: linear\tTime: 58.75 seconds\tScore Train: 0.9980524\tScore Test: 0.9978771\nKernel: rbf\tTime: 12.49 seconds\tScore Train: 0.9934181\tScore Test: 0.9933992\nKernel: poly\tTime: 97.85 seconds\tScore Train: 0.9972137\tScore Test: 0.9971806\n"
"text": "Kernel: linear\tTime: 387.06 seconds\tScore Train: 0.9985784\tScore Test: 0.9981093\nKernel: rbf\tTime: 144.00 seconds\tScore Train: 0.9992750\tScore Test: 0.9983415\nKernel: poly\tTime: 101.78 seconds\tScore Train: 0.9992466\tScore Test: 0.9981757\n"
}
],
"source": [
"for kernel in ['linear', 'rbf', 'poly']:\n",
" now = time.time()\n",
" clf = AdaBoostClassifier(Stree(C=7, kernel=kernel, max_depth=max_depth, random_state=random_state), n_estimators=n_estimators, random_state=random_state, algorithm=\"SAMME\")\n",
" clf = BaggingClassifier(base_estimator=Stree(C=C, kernel=kernel, max_depth=max_depth, random_state=random_state), n_estimators=n_estimators, random_state=random_state)\n",
" clf.fit(Xtrain, ytrain)\n",
" score_train = clf.score(Xtrain, ytrain)\n",
" score_test = clf.score(Xtest, ytest)\n",
@@ -223,7 +239,7 @@
},
"orig_nbformat": 2,
"kernelspec": {
"name": "python37664bitgeneralvenvfbd0a23e74cf4e778460f5ffc6761f39",
"name": "python37664bitgeneralvenve3128601eb614c5da59c5055670b6040",
"display_name": "Python 3.7.6 64-bit ('general': venv)"
}
},

File diff suppressed because one or more lines are too long

View File

@@ -66,7 +66,8 @@
"id": "z9Q-YUfBDZEq",
"colab_type": "code",
"colab": {},
"outputId": "afc822fb-f16a-4302-8a67-2b9e2880159b"
"outputId": "afc822fb-f16a-4302-8a67-2b9e2880159b",
"tags": []
},
"source": [
"random_state=1\n",
@@ -112,7 +113,7 @@
{
"output_type": "stream",
"name": "stdout",
"text": "Fraud: 0.173% 492\nValid: 99.827% 284315\nX.shape (1492, 28) y.shape (1492,)\nFraud: 33.244% 496\nValid: 66.756% 996\n"
"text": "Fraud: 0.173% 492\nValid: 99.827% 284315\nX.shape (1492, 28) y.shape (1492,)\nFraud: 32.976% 492\nValid: 67.024% 1000\n"
}
]
},
@@ -137,25 +138,25 @@
" 'learning_rate': [.5, 1],\n",
" 'base_estimator__tol': [.1, 1e-02],\n",
" 'base_estimator__max_depth': [3, 5],\n",
" 'base_estimator__C': [1, 3],\n",
" 'base_estimator__C': [7, 55],\n",
" 'base_estimator__kernel': ['linear', 'poly', 'rbf']\n",
"}"
],
"execution_count": 9,
"execution_count": 5,
"outputs": []
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 6,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": "{'C': 1.0,\n 'degree': 3,\n 'gamma': 'scale',\n 'kernel': 'linear',\n 'max_depth': None,\n 'max_iter': 1000,\n 'min_samples_split': 0,\n 'random_state': None,\n 'tol': 0.0001}"
"text/plain": "{'C': 1.0,\n 'criterion': 'gini',\n 'degree': 3,\n 'gamma': 'scale',\n 'kernel': 'linear',\n 'max_depth': None,\n 'max_features': None,\n 'max_iter': 1000,\n 'min_samples_split': 0,\n 'random_state': None,\n 'split_criteria': 'max_samples',\n 'splitter': 'random',\n 'tol': 0.0001}"
},
"metadata": {},
"execution_count": 14
"execution_count": 6
}
],
"source": [
@@ -168,28 +169,29 @@
"id": "CrcB8o6EDZE5",
"colab_type": "code",
"colab": {},
"outputId": "7703413a-d563-4289-a13b-532f38f82762"
"outputId": "7703413a-d563-4289-a13b-532f38f82762",
"tags": []
},
"source": [
"random_state=2020\n",
"clf = AdaBoostClassifier(random_state=random_state)\n",
"clf = AdaBoostClassifier(random_state=random_state, algorithm=\"SAMME\")\n",
"grid = GridSearchCV(clf, parameters, verbose=10, n_jobs=-1, return_train_score=True)\n",
"grid.fit(Xtrain, ytrain)"
],
"execution_count": 11,
"execution_count": 7,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Fitting 5 folds for each of 96 candidates, totalling 480 fits\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 2 tasks | elapsed: 3.6s\n[Parallel(n_jobs=-1)]: Done 9 tasks | elapsed: 4.2s\n[Parallel(n_jobs=-1)]: Done 16 tasks | elapsed: 4.8s\n[Parallel(n_jobs=-1)]: Done 25 tasks | elapsed: 5.3s\n[Parallel(n_jobs=-1)]: Done 34 tasks | elapsed: 6.2s\n[Parallel(n_jobs=-1)]: Done 45 tasks | elapsed: 7.2s\n[Parallel(n_jobs=-1)]: Done 56 tasks | elapsed: 8.9s\n[Parallel(n_jobs=-1)]: Done 69 tasks | elapsed: 10.7s\n[Parallel(n_jobs=-1)]: Done 82 tasks | elapsed: 12.7s\n[Parallel(n_jobs=-1)]: Done 97 tasks | elapsed: 16.7s\n[Parallel(n_jobs=-1)]: Done 112 tasks | elapsed: 19.4s\n[Parallel(n_jobs=-1)]: Done 129 tasks | elapsed: 24.4s\n[Parallel(n_jobs=-1)]: Done 146 tasks | elapsed: 29.3s\n[Parallel(n_jobs=-1)]: Done 165 tasks | elapsed: 32.7s\n[Parallel(n_jobs=-1)]: Done 184 tasks | elapsed: 36.4s\n[Parallel(n_jobs=-1)]: Done 205 tasks | elapsed: 39.7s\n[Parallel(n_jobs=-1)]: Done 226 tasks | elapsed: 43.7s\n[Parallel(n_jobs=-1)]: Done 249 tasks | elapsed: 46.6s\n[Parallel(n_jobs=-1)]: Done 272 tasks | elapsed: 48.8s\n[Parallel(n_jobs=-1)]: Done 297 tasks | elapsed: 52.0s\n[Parallel(n_jobs=-1)]: Done 322 tasks | elapsed: 55.9s\n[Parallel(n_jobs=-1)]: Done 349 tasks | elapsed: 1.0min\n[Parallel(n_jobs=-1)]: Done 376 tasks | elapsed: 1.2min\n[Parallel(n_jobs=-1)]: Done 405 tasks | elapsed: 1.3min\n[Parallel(n_jobs=-1)]: Done 434 tasks | elapsed: 1.3min\n[Parallel(n_jobs=-1)]: Done 465 tasks | elapsed: 1.4min\n[Parallel(n_jobs=-1)]: Done 480 out of 480 | elapsed: 1.5min finished\n"
"text": "Fitting 5 folds for each of 96 candidates, totalling 480 fits\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 2 tasks | elapsed: 2.0s\n[Parallel(n_jobs=-1)]: Done 9 tasks | elapsed: 2.4s\n[Parallel(n_jobs=-1)]: Done 16 tasks | elapsed: 2.7s\n[Parallel(n_jobs=-1)]: Done 25 tasks | elapsed: 3.3s\n[Parallel(n_jobs=-1)]: Done 34 tasks | elapsed: 4.3s\n[Parallel(n_jobs=-1)]: Done 45 tasks | elapsed: 5.3s\n[Parallel(n_jobs=-1)]: Done 56 tasks | elapsed: 6.6s\n[Parallel(n_jobs=-1)]: Done 69 tasks | elapsed: 8.1s\n[Parallel(n_jobs=-1)]: Done 82 tasks | elapsed: 9.4s\n[Parallel(n_jobs=-1)]: Done 97 tasks | elapsed: 10.1s\n[Parallel(n_jobs=-1)]: Done 112 tasks | elapsed: 11.1s\n[Parallel(n_jobs=-1)]: Done 129 tasks | elapsed: 12.3s\n[Parallel(n_jobs=-1)]: Done 146 tasks | elapsed: 13.6s\n[Parallel(n_jobs=-1)]: Done 165 tasks | elapsed: 14.9s\n[Parallel(n_jobs=-1)]: Done 184 tasks | elapsed: 16.2s\n[Parallel(n_jobs=-1)]: Done 205 tasks | elapsed: 17.6s\n[Parallel(n_jobs=-1)]: Done 226 tasks | elapsed: 19.1s\n[Parallel(n_jobs=-1)]: Done 249 tasks | elapsed: 21.6s\n[Parallel(n_jobs=-1)]: Done 272 tasks | elapsed: 25.9s\n[Parallel(n_jobs=-1)]: Done 297 tasks | elapsed: 30.4s\n[Parallel(n_jobs=-1)]: Done 322 tasks | elapsed: 36.7s\n[Parallel(n_jobs=-1)]: Done 349 tasks | elapsed: 38.1s\n[Parallel(n_jobs=-1)]: Done 376 tasks | elapsed: 39.6s\n[Parallel(n_jobs=-1)]: Done 405 tasks | elapsed: 41.9s\n[Parallel(n_jobs=-1)]: Done 434 tasks | elapsed: 44.9s\n[Parallel(n_jobs=-1)]: Done 465 tasks | elapsed: 48.2s\n[Parallel(n_jobs=-1)]: Done 480 out of 480 | elapsed: 49.2s finished\n"
},
{
"output_type": "execute_result",
"data": {
"text/plain": "GridSearchCV(estimator=AdaBoostClassifier(random_state=2020), n_jobs=-1,\n param_grid={'base_estimator': [Stree(C=1, max_depth=3, tol=0.1)],\n 'base_estimator__C': [1, 3],\n 'base_estimator__kernel': ['linear', 'poly', 'rbf'],\n 'base_estimator__max_depth': [3, 5],\n 'base_estimator__tol': [0.1, 0.01],\n 'learning_rate': [0.5, 1], 'n_estimators': [10, 25]},\n return_train_score=True, verbose=10)"
"text/plain": "GridSearchCV(estimator=AdaBoostClassifier(algorithm='SAMME', random_state=2020),\n n_jobs=-1,\n param_grid={'base_estimator': [Stree(C=55, max_depth=3, tol=0.01)],\n 'base_estimator__C': [7, 55],\n 'base_estimator__kernel': ['linear', 'poly', 'rbf'],\n 'base_estimator__max_depth': [3, 5],\n 'base_estimator__tol': [0.1, 0.01],\n 'learning_rate': [0.5, 1], 'n_estimators': [10, 25]},\n return_train_score=True, verbose=10)"
},
"metadata": {},
"execution_count": 11
"execution_count": 7
}
]
},
@@ -199,19 +201,20 @@
"id": "ZjX88NoYDZE8",
"colab_type": "code",
"colab": {},
"outputId": "285163c8-fa33-4915-8ae7-61c4f7844344"
"outputId": "285163c8-fa33-4915-8ae7-61c4f7844344",
"tags": []
},
"source": [
"print(\"Best estimator: \", grid.best_estimator_)\n",
"print(\"Best hyperparameters: \", grid.best_params_)\n",
"print(\"Best accuracy: \", grid.best_score_)"
],
"execution_count": 16,
"execution_count": 8,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Best estimator: AdaBoostClassifier(base_estimator=Stree(C=1, max_depth=3, tol=0.1),\n learning_rate=0.5, n_estimators=10, random_state=2020)\nBest hyperparameters: {'base_estimator': Stree(C=1, max_depth=3, tol=0.1), 'base_estimator__C': 1, 'base_estimator__kernel': 'linear', 'base_estimator__max_depth': 3, 'base_estimator__tol': 0.1, 'learning_rate': 0.5, 'n_estimators': 10}\nBest accuracy: 0.9492316893632683\n"
"text": "Best estimator: AdaBoostClassifier(algorithm='SAMME',\n base_estimator=Stree(C=55, max_depth=3, tol=0.01),\n learning_rate=0.5, n_estimators=25, random_state=2020)\nBest hyperparameters: {'base_estimator': Stree(C=55, max_depth=3, tol=0.01), 'base_estimator__C': 55, 'base_estimator__kernel': 'linear', 'base_estimator__max_depth': 3, 'base_estimator__tol': 0.01, 'learning_rate': 0.5, 'n_estimators': 25}\nBest accuracy: 0.9559440559440558\n"
}
]
}

View File

@@ -1,6 +1,6 @@
import setuptools
__version__ = "0.9rc4"
__version__ = "0.9rc5"
__author__ = "Ricardo Montañana Gómez"

View File

@@ -10,6 +10,7 @@ import os
import numbers
import random
import warnings
from math import log
from itertools import combinations
import numpy as np
from sklearn.base import BaseEstimator, ClassifierMixin
@@ -39,6 +40,7 @@ class Snode:
features: np.array,
impurity: float,
title: str,
weight: np.ndarray = None,
):
self._clf = clf
self._title = title
@@ -50,7 +52,9 @@ class Snode:
self._up = None
self._class = None
self._feature = None
self._sample_weight = None
self._sample_weight = (
weight if os.environ.get("TESTING", "NS") != "NS" else None
)
self._features = features
self._impurity = impurity
@@ -163,10 +167,10 @@ class Splitter:
f"criterion must be gini or entropy got({criterion})"
)
if criteria not in ["min_distance", "max_samples"]:
if criteria not in ["min_distance", "max_samples", "max_distance"]:
raise ValueError(
f"split_criteria has to be min_distance or \
max_samples got ({criteria})"
"split_criteria has to be min_distance "
f"max_distance or max_samples got ({criteria})"
)
if splitter_type not in ["random", "best"]:
@@ -186,24 +190,47 @@ class Splitter:
@staticmethod
def _entropy(y: np.array) -> float:
_, count = np.unique(y, return_counts=True)
proportion = count / np.sum(count)
return -np.sum(proportion * np.log2(proportion))
n_labels = len(y)
if n_labels <= 1:
return 0
counts = np.bincount(y)
proportions = counts / n_labels
n_classes = np.count_nonzero(proportions)
if n_classes <= 1:
return 0
entropy = 0.0
# Compute standard entropy.
for prop in proportions:
if prop != 0.0:
entropy -= prop * log(prop, n_classes)
return entropy
def information_gain(
self, labels_up: np.array, labels_dn: np.array
self, labels: np.array, labels_up: np.array, labels_dn: np.array
) -> float:
card_up = labels_up.shape[0] if labels_up is not None else 0
card_dn = labels_dn.shape[0] if labels_dn is not None else 0
imp_prev = self.criterion_function(labels)
card_up = card_dn = imp_up = imp_dn = 0
if labels_up is not None:
card_up = labels_up.shape[0]
imp_up = self.criterion_function(labels_up)
if labels_dn is not None:
card_dn = labels_dn.shape[0] if labels_dn is not None else 0
imp_dn = self.criterion_function(labels_dn)
samples = card_up + card_dn
up = card_up / samples * self.criterion_function(labels_up)
dn = card_dn / samples * self.criterion_function(labels_dn)
return up + dn
if samples == 0:
return 0.0
else:
result = (
imp_prev
- (card_up / samples) * imp_up
- (card_dn / samples) * imp_dn
)
return result
def _select_best_set(
self, dataset: np.array, labels: np.array, features_sets: list
) -> list:
min_impurity = 1
max_gain = 0
selected = None
warnings.filterwarnings("ignore", category=ConvergenceWarning)
for feature_set in features_sets:
@@ -213,11 +240,11 @@ class Splitter:
)
self.partition(dataset, node)
y1, y2 = self.part(labels)
impurity = self.information_gain(y1, y2)
if impurity < min_impurity:
min_impurity = impurity
gain = self.information_gain(labels, y1, y2)
if gain > max_gain:
max_gain = gain
selected = feature_set
return selected
return selected if selected is not None else feature_set
def _get_subspaces_set(
self, dataset: np.array, labels: np.array, max_features: int
@@ -226,8 +253,12 @@ class Splitter:
features_sets = list(combinations(features, max_features))
if len(features_sets) > 1:
if self._splitter_type == "random":
return features_sets[random.randint(0, len(features_sets) - 1)]
index = random.randint(0, len(features_sets) - 1)
return features_sets[index]
else:
# get only 3 sets at most
if len(features_sets) > 3:
features_sets = random.sample(features_sets, 3)
return self._select_best_set(dataset, labels, features_sets)
else:
return features_sets[0]
@@ -242,21 +273,56 @@ class Splitter:
@staticmethod
def _min_distance(data: np.array, _) -> np.array:
# chooses the lowest distance of every sample
indices = np.argmin(np.abs(data), axis=1)
return np.array(
[data[x, y] for x, y in zip(range(len(data[:, 0])), indices)]
)
"""Assign class to min distances
return a vector of classes so partition can separate class 0 from
the rest of classes, ie. class 0 goes to one splitted node and the
rest of classes go to the other
:param data: distances to hyper plane of every class
:type data: np.array (m, n_classes)
:param _: enable call compat with other measures
:type _: None
:return: vector with the class assigned to each sample
:rtype: np.array shape (m,)
"""
return np.argmin(data, axis=1)
@staticmethod
def _max_distance(data: np.array, _) -> np.array:
"""Assign class to max distances
return a vector of classes so partition can separate class 0 from
the rest of classes, ie. class 0 goes to one splitted node and the
rest of classes go to the other
:param data: distances to hyper plane of every class
:type data: np.array (m, n_classes)
:param _: enable call compat with other measures
:type _: None
:return: vector with the class assigned to each sample values
(can be 0, 1, ...)
:rtype: np.array shape (m,)
"""
return np.argmax(data, axis=1)
@staticmethod
def _max_samples(data: np.array, y: np.array) -> np.array:
"""return distances of the class with more samples
:param data: distances to hyper plane of every class
:type data: np.array (m, n_classes)
:param y: vector of labels (classes)
:type y: np.array (m,)
:return: vector with distances to hyperplane (can be positive or neg.)
:rtype: np.array shape (m,)
"""
# select the class with max number of samples
_, samples = np.unique(y, return_counts=True)
selected = np.argmax(samples)
return data[:, selected]
def partition(self, samples: np.array, node: Snode):
"""Set the criteria to split arrays
"""Set the criteria to split arrays. Compute the indices of the samples
that should go to one side of the tree (down)
"""
data = self._distances(node, samples)
@@ -379,7 +445,9 @@ class Stree(BaseEstimator, ClassifierMixin):
check_classification_targets(y)
X, y = check_X_y(X, y)
sample_weight = _check_sample_weight(sample_weight, X)
sample_weight = _check_sample_weight(
sample_weight, X, dtype=np.float64
)
check_classification_targets(y)
# Initialize computed parameters
self.splitter_ = Splitter(
@@ -439,13 +507,22 @@ class Stree(BaseEstimator, ClassifierMixin):
features=X.shape[1],
impurity=0.0,
title=title + ", <pure>",
weight=sample_weight,
)
# Train the model
clf = self._build_clf()
Xs, features = self.splitter_.get_subspace(X, y, self.max_features_)
# solve WARNING: class label 0 specified in weight is not found
# in bagging
if any(sample_weight == 0):
indices = sample_weight == 0
y_next = y[~indices]
# touch weights if removing any class
if np.unique(y_next).shape[0] != self.n_classes_:
sample_weight += 1e-5
clf.fit(Xs, y, sample_weight=sample_weight)
impurity = self.splitter_.impurity(y)
node = Snode(clf, X, y, features, impurity, title)
node = Snode(clf, X, y, features, impurity, title, sample_weight)
self.depth_ = max(depth, self.depth_)
self.splitter_.partition(X, node)
X_U, X_D = self.splitter_.part(X)
@@ -460,6 +537,7 @@ class Stree(BaseEstimator, ClassifierMixin):
features=X.shape[1],
impurity=impurity,
title=title + ", <cgaf>",
weight=sample_weight,
)
node.set_up(self.train(X_U, y_u, sw_u, depth + 1, title + " - Up"))
node.set_down(self.train(X_D, y_d, sw_d, depth + 1, title + " - Down"))

View File

@@ -33,10 +33,7 @@ class Snode_test(unittest.TestCase):
max_card = max(card)
min_card = min(card)
if len(classes) > 1:
try:
belief = max_card / (max_card + min_card)
except ZeroDivisionError:
belief = 0.0
belief = max_card / (max_card + min_card)
else:
belief = 1
self.assertEqual(belief, node._belief)

View File

@@ -1,11 +1,11 @@
import os
import unittest
import random
import numpy as np
from sklearn.svm import LinearSVC
from sklearn.svm import SVC
from sklearn.datasets import load_wine, load_iris
from stree import Splitter
from .utils import load_dataset
class Splitter_test(unittest.TestCase):
@@ -15,7 +15,7 @@ class Splitter_test(unittest.TestCase):
@staticmethod
def build(
clf=LinearSVC(),
clf=SVC,
min_samples_split=0,
splitter_type="random",
criterion="gini",
@@ -23,7 +23,7 @@ class Splitter_test(unittest.TestCase):
random_state=None,
):
return Splitter(
clf=clf,
clf=clf(random_state=random_state, kernel="rbf"),
min_samples_split=min_samples_split,
splitter_type=splitter_type,
criterion=criterion,
@@ -43,10 +43,14 @@ class Splitter_test(unittest.TestCase):
with self.assertRaises(ValueError):
self.build(criteria="duck")
with self.assertRaises(ValueError):
self.build(clf=None)
_ = Splitter(clf=None)
for splitter_type in ["best", "random"]:
for criterion in ["gini", "entropy"]:
for criteria in ["min_distance", "max_samples"]:
for criteria in [
"min_distance",
"max_samples",
"max_distance",
]:
tcl = self.build(
splitter_type=splitter_type,
criterion=criterion,
@@ -57,30 +61,74 @@ class Splitter_test(unittest.TestCase):
self.assertEqual(criteria, tcl._criteria)
def test_gini(self):
y = [0, 1, 1, 1, 1, 1, 0, 0, 0, 1]
expected = 0.48
self.assertEqual(expected, Splitter._gini(y))
tcl = self.build(criterion="gini")
self.assertEqual(expected, tcl.criterion_function(y))
expected_values = [
([0, 1, 1, 1, 1, 1, 0, 0, 0, 1], 0.48),
([0, 1, 1, 2, 2, 3, 4, 5, 3, 2, 1, 1], 0.7777777777777778),
([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 2], 0.520408163265306),
([0, 0, 1, 1, 1, 1, 0, 0], 0.5),
([0, 0, 1, 1, 2, 2, 3, 3], 0.75),
([0, 0, 1, 1, 1, 1, 1, 1], 0.375),
([0], 0),
([1, 1, 1, 1], 0),
]
for labels, expected in expected_values:
self.assertAlmostEqual(expected, Splitter._gini(labels))
tcl = self.build(criterion="gini")
self.assertAlmostEqual(expected, tcl.criterion_function(labels))
def test_entropy(self):
y = [0, 1, 1, 1, 1, 1, 0, 0, 0, 1]
expected = 0.9709505944546686
self.assertAlmostEqual(expected, Splitter._entropy(y))
tcl = self.build(criterion="entropy")
self.assertEqual(expected, tcl.criterion_function(y))
expected_values = [
([0, 1, 1, 1, 1, 1, 0, 0, 0, 1], 0.9709505944546686),
([0, 1, 1, 2, 2, 3, 4, 5, 3, 2, 1, 1], 0.9111886696810589),
([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 2], 0.8120406807940999),
([0, 0, 1, 1, 1, 1, 0, 0], 1),
([0, 0, 1, 1, 2, 2, 3, 3], 1),
([0, 0, 1, 1, 1, 1, 1, 1], 0.8112781244591328),
([1], 0),
([0, 0, 0, 0], 0),
]
for labels, expected in expected_values:
self.assertAlmostEqual(expected, Splitter._entropy(labels))
tcl = self.build(criterion="entropy")
self.assertAlmostEqual(expected, tcl.criterion_function(labels))
def test_information_gain(self):
yu = np.array([0, 1, 1, 1, 1, 1])
yd = np.array([0, 0, 0, 1])
values_expected = [
("gini", 0.31666666666666665),
("entropy", 0.7145247027726656),
expected_values = [
(
[0, 1, 1, 1, 1, 1],
[0, 0, 0, 1],
0.16333333333333333,
0.25642589168200297,
),
(
[0, 1, 1, 2, 2, 3, 4, 5, 3, 2, 1, 1],
[5, 3, 2, 1, 1],
0.007381776239907684,
-0.03328610916207225,
),
([], [], 0.0, 0.0),
([1], [], 0.0, 0.0),
([], [1], 0.0, 0.0),
([0, 0, 0, 0], [0, 0], 0.0, 0.0),
([], [1, 1, 1, 2], 0.0, 0.0),
(None, [1, 2, 3], 0.0, 0.0),
([1, 2, 3], None, 0.0, 0.0),
]
for criterion, expected in values_expected:
tcl = self.build(criterion=criterion)
computed = tcl.information_gain(yu, yd)
self.assertAlmostEqual(expected, computed)
for yu, yd, expected_gini, expected_entropy in expected_values:
yu = np.array(yu, dtype=np.int32) if yu is not None else None
yd = np.array(yd, dtype=np.int32) if yd is not None else None
if yu is not None and yd is not None:
complete = np.append(yu, yd)
elif yd is not None:
complete = yd
else:
complete = yu
tcl = self.build(criterion="gini")
computed = tcl.information_gain(complete, yu, yd)
self.assertAlmostEqual(expected_gini, computed)
tcl = self.build(criterion="entropy")
computed = tcl.information_gain(complete, yu, yd)
self.assertAlmostEqual(expected_entropy, computed)
def test_max_samples(self):
tcl = self.build(criteria="max_samples")
@@ -108,34 +156,73 @@ class Splitter_test(unittest.TestCase):
[0.1, 0.2, 0.3],
]
)
expected = np.array([-0.1, 0.01, 0.5, 0.1])
expected = np.array([2, 2, 1, 0])
computed = tcl._min_distance(data, None)
self.assertEqual((4,), computed.shape)
self.assertListEqual(expected.tolist(), computed.tolist())
def test_max_distance(self):
tcl = self.build(criteria="max_distance")
data = np.array(
[
[-0.1, 0.2, -0.3],
[0.7, 0.01, -0.1],
[0.7, -0.9, 0.5],
[0.1, 0.2, 0.3],
]
)
expected = np.array([1, 0, 0, 2])
computed = tcl._max_distance(data, None)
self.assertEqual((4,), computed.shape)
self.assertListEqual(expected.tolist(), computed.tolist())
def test_best_splitter_few_sets(self):
X, y = load_iris(return_X_y=True)
X = np.delete(X, 3, 1)
tcl = self.build(splitter_type="best", random_state=self._random_state)
dataset, computed = tcl.get_subspace(X, y, max_features=2)
self.assertListEqual([0, 2], list(computed))
self.assertListEqual(X[:, computed].tolist(), dataset.tolist())
def test_splitter_parameter(self):
expected_values = [
[1, 7, 9],
[1, 7, 9],
[1, 7, 9],
[1, 7, 9],
[0, 5, 6],
[0, 5, 6],
[0, 5, 6],
[0, 5, 6],
[2, 3, 5, 7], # best entropy min_distance
[0, 2, 4, 5], # best entropy max_samples
[0, 2, 8, 12], # best entropy max_distance
[1, 2, 5, 12], # best gini min_distance
[0, 3, 4, 10], # best gini max_samples
[1, 2, 9, 12], # best gini max_distance
[3, 9, 11, 12], # random entropy min_distance
[1, 5, 6, 9], # random entropy max_samples
[1, 2, 4, 8], # random entropy max_distance
[2, 6, 7, 12], # random gini min_distance
[3, 9, 10, 11], # random gini max_samples
[2, 5, 8, 12], # random gini max_distance
]
X, y = load_dataset(self._random_state, n_features=12)
X, y = load_wine(return_X_y=True)
rn = 0
for splitter_type in ["best", "random"]:
for criterion in ["gini", "entropy"]:
for criteria in ["min_distance", "max_samples"]:
for criterion in ["entropy", "gini"]:
for criteria in [
"min_distance",
"max_samples",
"max_distance",
]:
tcl = self.build(
splitter_type=splitter_type,
criterion=criterion,
criteria=criteria,
random_state=self._random_state,
)
expected = expected_values.pop(0)
dataset, computed = tcl.get_subspace(X, y, max_features=3)
random.seed(rn)
rn += 1
dataset, computed = tcl.get_subspace(X, y, max_features=4)
# print(
# "{}, # {:7s}{:8s}{:15s}".format(
# list(computed), splitter_type, criterion,
# criteria,
# )
# )
self.assertListEqual(expected, list(computed))
self.assertListEqual(
X[:, computed].tolist(), dataset.tolist()

View File

@@ -1,8 +1,10 @@
import os
import unittest
import warnings
import numpy as np
from sklearn.datasets import load_iris
from sklearn.datasets import load_iris, load_wine
from sklearn.exceptions import ConvergenceWarning
from stree import Stree, Snode
from .utils import load_dataset
@@ -39,10 +41,7 @@ class Stree_test(unittest.TestCase):
_, count_u = np.unique(y_up, return_counts=True)
#
for i in unique_y:
try:
number_down = count_d[i]
except IndexError:
number_down = 0
number_down = count_d[i]
try:
number_up = count_u[i]
except IndexError:
@@ -59,33 +58,12 @@ class Stree_test(unittest.TestCase):
def test_build_tree(self):
"""Check if the tree is built the same way as predictions of models
"""
import warnings
warnings.filterwarnings("ignore")
for kernel in self._kernels:
clf = Stree(kernel=kernel, random_state=self._random_state)
clf.fit(*load_dataset(self._random_state))
self._check_tree(clf.tree_)
@staticmethod
def _find_out(px: np.array, x_original: np.array, y_original) -> list:
"""Find the original values of y for a given array of samples
Arguments:
px {np.array} -- array of samples to search for
x_original {np.array} -- original dataset
y_original {[type]} -- original classes
Returns:
np.array -- classes of the given samples
"""
res = []
for needle in px:
for row in range(x_original.shape[0]):
if all(x_original[row, :] == needle):
res.append(y_original[row])
return res
def test_single_prediction(self):
X, y = load_dataset(self._random_state)
for kernel in self._kernels:
@@ -102,22 +80,6 @@ class Stree_test(unittest.TestCase):
yp = clf.fit(X, y).predict(X[:num, :])
self.assertListEqual(y[:num].tolist(), yp.tolist())
def test_score(self):
X, y = load_dataset(self._random_state)
accuracies = [
0.9506666666666667,
0.9606666666666667,
0.9433333333333334,
]
for kernel, accuracy_expected in zip(self._kernels, accuracies):
clf = Stree(random_state=self._random_state, kernel=kernel,)
clf.fit(X, y)
accuracy_score = clf.score(X, y)
yp = clf.predict(X)
accuracy_computed = np.mean(yp == y)
self.assertEqual(accuracy_score, accuracy_computed)
self.assertAlmostEqual(accuracy_expected, accuracy_score)
def test_single_vs_multiple_prediction(self):
"""Check if predicting sample by sample gives the same result as
predicting all samples at once
@@ -164,9 +126,6 @@ class Stree_test(unittest.TestCase):
@staticmethod
def test_is_a_sklearn_classifier():
import warnings
from sklearn.exceptions import ConvergenceWarning
warnings.filterwarnings("ignore", category=ConvergenceWarning)
warnings.filterwarnings("ignore", category=RuntimeWarning)
from sklearn.utils.estimator_checks import check_estimator
@@ -239,6 +198,9 @@ class Stree_test(unittest.TestCase):
"min_distance linear": 0.9533333333333334,
"min_distance rbf": 0.836,
"min_distance poly": 0.9473333333333334,
"max_distance linear": 0.9533333333333334,
"max_distance rbf": 0.836,
"max_distance poly": 0.9473333333333334,
},
"Iris": {
"max_samples linear": 0.98,
@@ -247,11 +209,14 @@ class Stree_test(unittest.TestCase):
"min_distance linear": 0.98,
"min_distance rbf": 1.0,
"min_distance poly": 1.0,
"max_distance linear": 0.98,
"max_distance rbf": 1.0,
"max_distance poly": 1.0,
},
}
for name, dataset in datasets.items():
px, py = dataset
for criteria in ["max_samples", "min_distance"]:
for criteria in ["max_samples", "min_distance", "max_distance"]:
for kernel in self._kernels:
clf = Stree(
C=1e4,
@@ -322,13 +287,130 @@ class Stree_test(unittest.TestCase):
with self.assertRaises(ValueError):
clf.predict(X[:, :3])
# Tests of score
def test_score_binary(self):
X, y = load_dataset(self._random_state)
accuracies = [
0.9506666666666667,
0.9606666666666667,
0.9433333333333334,
]
for kernel, accuracy_expected in zip(self._kernels, accuracies):
clf = Stree(random_state=self._random_state, kernel=kernel,)
clf.fit(X, y)
accuracy_score = clf.score(X, y)
yp = clf.predict(X)
accuracy_computed = np.mean(yp == y)
self.assertEqual(accuracy_score, accuracy_computed)
self.assertAlmostEqual(accuracy_expected, accuracy_score)
def test_score_max_features(self):
X, y = load_dataset(self._random_state)
clf = Stree(random_state=self._random_state, max_features=2)
clf.fit(X, y)
self.assertAlmostEqual(0.9426666666666667, clf.score(X, y))
def test_score_multi_class(self):
warnings.filterwarnings("ignore")
accuracies = [
0.8258427, # Wine linear min_distance
0.6741573, # Wine linear max_distance
0.8314607, # Wine linear max_samples
0.6629213, # Wine rbf min_distance
1.0000000, # Wine rbf max_distance
0.4044944, # Wine rbf max_samples
0.9157303, # Wine poly min_distance
1.0000000, # Wine poly max_distance
0.7640449, # Wine poly max_samples
0.9933333, # Iris linear min_distance
0.9666667, # Iris linear max_distance
0.9666667, # Iris linear max_samples
0.9800000, # Iris rbf min_distance
0.9800000, # Iris rbf max_distance
0.9800000, # Iris rbf max_samples
1.0000000, # Iris poly min_distance
1.0000000, # Iris poly max_distance
1.0000000, # Iris poly max_samples
0.8993333, # Synthetic linear min_distance
0.6533333, # Synthetic linear max_distance
0.9313333, # Synthetic linear max_samples
0.8320000, # Synthetic rbf min_distance
0.6660000, # Synthetic rbf max_distance
0.8320000, # Synthetic rbf max_samples
0.6066667, # Synthetic poly min_distance
0.6840000, # Synthetic poly max_distance
0.6340000, # Synthetic poly max_samples
]
datasets = [
("Wine", load_wine(return_X_y=True)),
("Iris", load_iris(return_X_y=True)),
(
"Synthetic",
load_dataset(self._random_state, n_classes=3, n_features=5),
),
]
for dataset_name, dataset in datasets:
X, y = dataset
for kernel in self._kernels:
for criteria in [
"min_distance",
"max_distance",
"max_samples",
]:
clf = Stree(
C=17,
random_state=self._random_state,
kernel=kernel,
split_criteria=criteria,
degree=5,
gamma="auto",
)
clf.fit(X, y)
accuracy_score = clf.score(X, y)
yp = clf.predict(X)
accuracy_computed = np.mean(yp == y)
# print(
# "{:.7f}, # {:7} {:5} {}".format(
# accuracy_score, dataset_name, kernel, criteria
# )
# )
accuracy_expected = accuracies.pop(0)
self.assertEqual(accuracy_score, accuracy_computed)
self.assertAlmostEqual(accuracy_expected, accuracy_score)
def test_bogus_splitter_parameter(self):
clf = Stree(splitter="duck")
with self.assertRaises(ValueError):
clf.fit(*load_dataset())
def test_weights_removing_class(self):
# This patch solves an stderr message from sklearn svm lib
# "WARNING: class label x specified in weight is not found"
X = np.array(
[
[0.1, 0.1],
[0.1, 0.2],
[0.2, 0.1],
[5, 6],
[8, 9],
[6, 7],
[0.2, 0.2],
]
)
y = np.array([0, 0, 0, 1, 1, 1, 0])
epsilon = 1e-5
weights = [1, 1, 1, 0, 0, 0, 1]
weights = np.array(weights, dtype="float64")
weights_epsilon = [x + epsilon for x in weights]
weights_no_zero = np.array([1, 1, 1, 0, 0, 2, 1])
original = weights_no_zero.copy()
clf = Stree()
clf.fit(X, y)
node = clf.train(X, y, weights, 1, "test",)
# if a class is lost with zero weights the patch adds epsilon
self.assertListEqual(weights.tolist(), weights_epsilon)
self.assertListEqual(node._sample_weight.tolist(), weights_epsilon)
# zero weights are ok when they don't erase a class
_ = clf.train(X, y, weights_no_zero, 1, "test")
self.assertListEqual(weights_no_zero.tolist(), original.tolist())