mirror of
https://github.com/Doctorado-ML/STree.git
synced 2025-08-18 17:06:01 +00:00
Compare commits
6 Commits
UpdateDocA
...
graphviz
Author | SHA1 | Date | |
---|---|---|---|
c5c94488f6
|
|||
d678901930
|
|||
ab2d96fe94
|
|||
08f8ac018b
|
|||
cf63863e64
|
|||
d6c99e9e56
|
2
.github/workflows/main.yml
vendored
2
.github/workflows/main.yml
vendored
@@ -13,7 +13,7 @@ jobs:
|
|||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
os: [macos-latest, ubuntu-latest, windows-latest]
|
os: [macos-latest, ubuntu-latest, windows-latest]
|
||||||
python: [3.8, "3.10"]
|
python: [3.8]
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v2
|
- uses: actions/checkout@v2
|
||||||
|
@@ -50,8 +50,7 @@ Can be found in [stree.readthedocs.io](https://stree.readthedocs.io/en/stable/)
|
|||||||
| | criterion | {“gini”, “entropy”} | entropy | The function to measure the quality of a split (only used if max_features != num_features). <br>Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain. |
|
| | criterion | {“gini”, “entropy”} | entropy | The function to measure the quality of a split (only used if max_features != num_features). <br>Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain. |
|
||||||
| | min_samples_split | \<int\> | 0 | The minimum number of samples required to split an internal node. 0 (default) for any |
|
| | min_samples_split | \<int\> | 0 | The minimum number of samples required to split an internal node. 0 (default) for any |
|
||||||
| | max_features | \<int\>, \<float\> <br><br>or {“auto”, “sqrt”, “log2”} | None | The number of features to consider when looking for the split:<br>If int, then consider max_features features at each split.<br>If float, then max_features is a fraction and int(max_features \* n_features) features are considered at each split.<br>If “auto”, then max_features=sqrt(n_features).<br>If “sqrt”, then max_features=sqrt(n_features).<br>If “log2”, then max_features=log2(n_features).<br>If None, then max_features=n_features. |
|
| | max_features | \<int\>, \<float\> <br><br>or {“auto”, “sqrt”, “log2”} | None | The number of features to consider when looking for the split:<br>If int, then consider max_features features at each split.<br>If float, then max_features is a fraction and int(max_features \* n_features) features are considered at each split.<br>If “auto”, then max_features=sqrt(n_features).<br>If “sqrt”, then max_features=sqrt(n_features).<br>If “log2”, then max_features=log2(n_features).<br>If None, then max_features=n_features. |
|
||||||
| | splitter | {"best", "random", "trandom", "mutual", "cfs", "fcbf", "iwss"} | "random" | The strategy used to choose the feature set at each node (only used if max_features < num_features).
|
| | splitter | {"best", "random", "trandom", "mutual", "cfs", "fcbf", "iwss"} | "random" | The strategy used to choose the feature set at each node (only used if max_features < num_features). Supported strategies are: **“best”**: sklearn SelectKBest algorithm is used in every node to choose the max_features best features. **“random”**: The algorithm generates 5 candidates and choose the best (max. info. gain) of them. **“trandom”**: The algorithm generates only one random combination. **"mutual"**: Chooses the best features w.r.t. their mutual info with the label. **"cfs"**: Apply Correlation-based Feature Selection. **"fcbf"**: Apply Fast Correlation-Based Filter. **"iwss"**: IWSS based algorithm |
|
||||||
Supported strategies are: **“best”**: sklearn SelectKBest algorithm is used in every node to choose the max_features best features. **“random”**: The algorithm generates 5 candidates and choose the best (max. info. gain) of them. **“trandom”**: The algorithm generates only one random combination. **"mutual"**: Chooses the best features w.r.t. their mutual info with the label. **"cfs"**: Apply Correlation-based Feature Selection. **"fcbf"**: Apply Fast Correlation-Based Filter. **"iwss"**: IWSS based algorithm |
|
|
||||||
| | normalize | \<bool\> | False | If standardization of features should be applied on each node with the samples that reach it |
|
| | normalize | \<bool\> | False | If standardization of features should be applied on each node with the samples that reach it |
|
||||||
| \* | multiclass_strategy | {"ovo", "ovr"} | "ovo" | Strategy to use with multiclass datasets, **"ovo"**: one versus one. **"ovr"**: one versus rest |
|
| \* | multiclass_strategy | {"ovo", "ovr"} | "ovo" | Strategy to use with multiclass datasets, **"ovo"**: one versus one. **"ovr"**: one versus rest |
|
||||||
|
|
||||||
|
@@ -12,18 +12,19 @@
|
|||||||
#
|
#
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
from stree._version import __version__
|
import stree
|
||||||
|
|
||||||
sys.path.insert(0, os.path.abspath("../../stree/"))
|
sys.path.insert(0, os.path.abspath("../../stree/"))
|
||||||
|
|
||||||
|
|
||||||
# -- Project information -----------------------------------------------------
|
# -- Project information -----------------------------------------------------
|
||||||
|
|
||||||
project = "STree"
|
project = "STree"
|
||||||
copyright = "2020 - 2022, Ricardo Montañana Gómez"
|
copyright = "2020 - 2021, Ricardo Montañana Gómez"
|
||||||
author = "Ricardo Montañana Gómez"
|
author = "Ricardo Montañana Gómez"
|
||||||
|
|
||||||
# The full version, including alpha/beta/rc tags
|
# The full version, including alpha/beta/rc tags
|
||||||
version = __version__
|
version = stree.__version__
|
||||||
release = version
|
release = version
|
||||||
|
|
||||||
|
|
||||||
|
@@ -3,20 +3,20 @@
|
|||||||
| | **Hyperparameter** | **Type/Values** | **Default** | **Meaning** |
|
| | **Hyperparameter** | **Type/Values** | **Default** | **Meaning** |
|
||||||
| --- | ------------------- | -------------------------------------------------------------- | ----------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
| --- | ------------------- | -------------------------------------------------------------- | ----------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||||
| \* | C | \<float\> | 1.0 | Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. |
|
| \* | C | \<float\> | 1.0 | Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. |
|
||||||
| \* | kernel | {"liblinear", "linear", "poly", "rbf", "sigmoid"} | linear | Specifies the kernel type to be used in the algorithm. It must be one of ‘liblinear’, ‘linear’, ‘poly’ or ‘rbf’.<br>liblinear uses [liblinear](https://www.csie.ntu.edu.tw/~cjlin/liblinear/) library and the rest uses [libsvm](https://www.csie.ntu.edu.tw/~cjlin/libsvm/) library through scikit-learn library |
|
| \* | kernel | {"liblinear", "linear", "poly", "rbf", "sigmoid"} | linear | Specifies the kernel type to be used in the algorithm. It must be one of ‘liblinear’, ‘linear’, ‘poly’ or ‘rbf’. liblinear uses [liblinear](https://www.csie.ntu.edu.tw/~cjlin/liblinear/) library and the rest uses [libsvm](https://www.csie.ntu.edu.tw/~cjlin/libsvm/) library through scikit-learn library |
|
||||||
| \* | max_iter | \<int\> | 1e5 | Hard limit on iterations within solver, or -1 for no limit. |
|
| \* | max_iter | \<int\> | 1e5 | Hard limit on iterations within solver, or -1 for no limit. |
|
||||||
| \* | random_state | \<int\> | None | Controls the pseudo random number generation for shuffling the data for probability estimates. Ignored when probability is False.<br>Pass an int for reproducible output across multiple function calls |
|
| \* | random_state | \<int\> | None | Controls the pseudo random number generation for shuffling the data for probability estimates. Ignored when probability is False.<br>Pass an int for reproducible output across multiple function calls |
|
||||||
| | max_depth | \<int\> | None | Specifies the maximum depth of the tree |
|
| | max_depth | \<int\> | None | Specifies the maximum depth of the tree |
|
||||||
| \* | tol | \<float\> | 1e-4 | Tolerance for stopping criterion. |
|
| \* | tol | \<float\> | 1e-4 | Tolerance for stopping criterion. |
|
||||||
| \* | degree | \<int\> | 3 | Degree of the polynomial kernel function (‘poly’). Ignored by all other kernels. |
|
| \* | degree | \<int\> | 3 | Degree of the polynomial kernel function (‘poly’). Ignored by all other kernels. |
|
||||||
| \* | gamma | {"scale", "auto"} or \<float\> | scale | Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’.<br>if gamma='scale' (default) is passed then it uses 1 / (n_features \* X.var()) as value of gamma,<br>if ‘auto’, uses 1 / n_features. |
|
| \* | gamma | {"scale", "auto"} or \<float\> | scale | Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’.<br>if gamma='scale' (default) is passed then it uses 1 / (n_features \* X.var()) as value of gamma,<br>if ‘auto’, uses 1 / n_features. |
|
||||||
| | split_criteria | {"impurity", "max_samples"} | impurity | Decides (just in case of a multi class classification) which column (class) use to split the dataset in a node\*\*.<br>max_samples is incompatible with 'ovo' multiclass_strategy |
|
| | split_criteria | {"impurity", "max_samples"} | impurity | Decides (just in case of a multi class classification) which column (class) use to split the dataset in a node\*\*. max_samples is incompatible with 'ovo' multiclass_strategy |
|
||||||
| | criterion | {“gini”, “entropy”} | entropy | The function to measure the quality of a split (only used if max_features != num_features).<br>Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain. |
|
| | criterion | {“gini”, “entropy”} | entropy | The function to measure the quality of a split (only used if max_features != num_features). <br>Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain. |
|
||||||
| | min_samples_split | \<int\> | 0 | The minimum number of samples required to split an internal node. 0 (default) for any |
|
| | min_samples_split | \<int\> | 0 | The minimum number of samples required to split an internal node. 0 (default) for any |
|
||||||
| | max_features | \<int\>, \<float\> <br><br>or {“auto”, “sqrt”, “log2”} | None | The number of features to consider when looking for the split:<br>If int, then consider max_features features at each split.<br>If float, then max_features is a fraction and int(max_features \* n_features) features are considered at each split.<br>If “auto”, then max_features=sqrt(n_features).<br>If “sqrt”, then max_features=sqrt(n_features).<br>If “log2”, then max_features=log2(n_features).<br>If None, then max_features=n_features. |
|
| | max_features | \<int\>, \<float\> <br><br>or {“auto”, “sqrt”, “log2”} | None | The number of features to consider when looking for the split:<br>If int, then consider max_features features at each split.<br>If float, then max_features is a fraction and int(max_features \* n_features) features are considered at each split.<br>If “auto”, then max_features=sqrt(n_features).<br>If “sqrt”, then max_features=sqrt(n_features).<br>If “log2”, then max_features=log2(n_features).<br>If None, then max_features=n_features. |
|
||||||
| | splitter | {"best", "random", "trandom", "mutual", "cfs", "fcbf", "iwss"} | "random" | The strategy used to choose the feature set at each node (only used if max_features < num_features).<br>Supported strategies are:<br>**“best”**: sklearn SelectKBest algorithm is used in every node to choose the max_features best features.<br>**“random”**: The algorithm generates 5 candidates and choose the best (max. info. gain) of them.<br>**“trandom”**: The algorithm generates only one random combination.<br>**"mutual"**: Chooses the best features w.r.t. their mutual info with the label.<br>**"cfs"**: Apply Correlation-based Feature Selection.<br>**"fcbf"**: Apply Fast Correlation-Based Filter.<br>**"iwss"**: IWSS based algorithm |
|
| | splitter | {"best", "random", "trandom", "mutual", "cfs", "fcbf", "iwss"} | "random" | The strategy used to choose the feature set at each node (only used if max_features < num_features). Supported strategies are: **“best”**: sklearn SelectKBest algorithm is used in every node to choose the max_features best features. **“random”**: The algorithm generates 5 candidates and choose the best (max. info. gain) of them. **“trandom”**: The algorithm generates only one random combination. **"mutual"**: Chooses the best features w.r.t. their mutual info with the label. **"cfs"**: Apply Correlation-based Feature Selection. **"fcbf"**: Apply Fast Correlation-Based Filter. **"iwss"**: IWSS based algorithm |
|
||||||
| | normalize | \<bool\> | False | If standardization of features should be applied on each node with the samples that reach it |
|
| | normalize | \<bool\> | False | If standardization of features should be applied on each node with the samples that reach it |
|
||||||
| \* | multiclass_strategy | {"ovo", "ovr"} | "ovo" | Strategy to use with multiclass datasets:<br>**"ovo"**: one versus one.<br>**"ovr"**: one versus rest |
|
| \* | multiclass_strategy | {"ovo", "ovr"} | "ovo" | Strategy to use with multiclass datasets, **"ovo"**: one versus one. **"ovr"**: one versus rest |
|
||||||
|
|
||||||
\* Hyperparameter used by the support vector classifier of every node
|
\* Hyperparameter used by the support vector classifier of every node
|
||||||
|
|
||||||
|
12
setup.py
12
setup.py
@@ -7,8 +7,9 @@ def readme():
|
|||||||
return f.read()
|
return f.read()
|
||||||
|
|
||||||
|
|
||||||
def get_data(field, file_name="__init__.py"):
|
def get_data(field):
|
||||||
item = ""
|
item = ""
|
||||||
|
file_name = "_version.py" if field == "version" else "__init__.py"
|
||||||
with open(os.path.join("stree", file_name)) as f:
|
with open(os.path.join("stree", file_name)) as f:
|
||||||
for line in f.readlines():
|
for line in f.readlines():
|
||||||
if line.startswith(f"__{field}__"):
|
if line.startswith(f"__{field}__"):
|
||||||
@@ -20,14 +21,9 @@ def get_data(field, file_name="__init__.py"):
|
|||||||
return item
|
return item
|
||||||
|
|
||||||
|
|
||||||
def get_requirements():
|
|
||||||
with open("requirements.txt") as f:
|
|
||||||
return f.read().splitlines()
|
|
||||||
|
|
||||||
|
|
||||||
setuptools.setup(
|
setuptools.setup(
|
||||||
name="STree",
|
name="STree",
|
||||||
version=get_data("version", "_version.py"),
|
version=get_data("version"),
|
||||||
license=get_data("license"),
|
license=get_data("license"),
|
||||||
description="Oblique decision tree with svm nodes",
|
description="Oblique decision tree with svm nodes",
|
||||||
long_description=readme(),
|
long_description=readme(),
|
||||||
@@ -50,7 +46,7 @@ setuptools.setup(
|
|||||||
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
||||||
"Intended Audience :: Science/Research",
|
"Intended Audience :: Science/Research",
|
||||||
],
|
],
|
||||||
install_requires=get_requirements(),
|
install_requires=["scikit-learn", "mufs"],
|
||||||
test_suite="stree.tests",
|
test_suite="stree.tests",
|
||||||
zip_safe=False,
|
zip_safe=False,
|
||||||
)
|
)
|
||||||
|
@@ -68,7 +68,6 @@ class Snode:
|
|||||||
self._impurity = impurity
|
self._impurity = impurity
|
||||||
self._partition_column: int = -1
|
self._partition_column: int = -1
|
||||||
self._scaler = scaler
|
self._scaler = scaler
|
||||||
self._proba = None
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def copy(cls, node: "Snode") -> "Snode":
|
def copy(cls, node: "Snode") -> "Snode":
|
||||||
@@ -128,22 +127,23 @@ class Snode:
|
|||||||
def get_up(self) -> "Snode":
|
def get_up(self) -> "Snode":
|
||||||
return self._up
|
return self._up
|
||||||
|
|
||||||
def make_predictor(self, num_classes: int) -> None:
|
def make_predictor(self):
|
||||||
"""Compute the class of the predictor and its belief based on the
|
"""Compute the class of the predictor and its belief based on the
|
||||||
subdataset of the node only if it is a leaf
|
subdataset of the node only if it is a leaf
|
||||||
"""
|
"""
|
||||||
if not self.is_leaf():
|
if not self.is_leaf():
|
||||||
return
|
return
|
||||||
classes, card = np.unique(self._y, return_counts=True)
|
classes, card = np.unique(self._y, return_counts=True)
|
||||||
self._proba = np.zeros((num_classes,), dtype=np.int64)
|
if len(classes) > 1:
|
||||||
for c, n in zip(classes, card):
|
|
||||||
self._proba[c] = n
|
|
||||||
try:
|
|
||||||
max_card = max(card)
|
max_card = max(card)
|
||||||
self._class = classes[card == max_card][0]
|
self._class = classes[card == max_card][0]
|
||||||
self._belief = max_card / np.sum(card)
|
self._belief = max_card / np.sum(card)
|
||||||
except ValueError:
|
else:
|
||||||
self._class = None
|
self._belief = 1
|
||||||
|
try:
|
||||||
|
self._class = classes[0]
|
||||||
|
except IndexError:
|
||||||
|
self._class = None
|
||||||
|
|
||||||
def graph(self):
|
def graph(self):
|
||||||
"""
|
"""
|
||||||
@@ -155,7 +155,7 @@ class Snode:
|
|||||||
output += (
|
output += (
|
||||||
f'N{id(self)} [shape=box style=filled label="'
|
f'N{id(self)} [shape=box style=filled label="'
|
||||||
f"class={self._class} impurity={self._impurity:.3f} "
|
f"class={self._class} impurity={self._impurity:.3f} "
|
||||||
f'counts={self._proba}"];\n'
|
f'classes={count_values[0]} samples={count_values[1]}"];\n'
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
output += (
|
output += (
|
||||||
|
140
stree/Strees.py
140
stree/Strees.py
@@ -314,7 +314,7 @@ class Stree(BaseEstimator, ClassifierMixin):
|
|||||||
if np.unique(y).shape[0] == 1:
|
if np.unique(y).shape[0] == 1:
|
||||||
# only 1 class => pure dataset
|
# only 1 class => pure dataset
|
||||||
node.set_title(title + ", <pure>")
|
node.set_title(title + ", <pure>")
|
||||||
node.make_predictor(self.n_classes_)
|
node.make_predictor()
|
||||||
return node
|
return node
|
||||||
# Train the model
|
# Train the model
|
||||||
clf = self._build_clf()
|
clf = self._build_clf()
|
||||||
@@ -333,7 +333,7 @@ class Stree(BaseEstimator, ClassifierMixin):
|
|||||||
if X_U is None or X_D is None:
|
if X_U is None or X_D is None:
|
||||||
# didn't part anything
|
# didn't part anything
|
||||||
node.set_title(title + ", <cgaf>")
|
node.set_title(title + ", <cgaf>")
|
||||||
node.make_predictor(self.n_classes_)
|
node.make_predictor()
|
||||||
return node
|
return node
|
||||||
node.set_up(
|
node.set_up(
|
||||||
self._train(X_U, y_u, sw_u, depth + 1, title + f" - Up({depth+1})")
|
self._train(X_U, y_u, sw_u, depth + 1, title + f" - Up({depth+1})")
|
||||||
@@ -367,100 +367,28 @@ class Stree(BaseEstimator, ClassifierMixin):
|
|||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
def __predict_class(self, X: np.array) -> np.array:
|
@staticmethod
|
||||||
"""Compute the predicted class for the samples in X. Returns the number
|
def _reorder_results(y: np.array, indices: np.array) -> np.array:
|
||||||
of samples of each class in the corresponding leaf node.
|
"""Reorder an array based on the array of indices passed
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
X : np.array
|
y : np.array
|
||||||
Array of samples
|
data untidy
|
||||||
|
indices : np.array
|
||||||
|
indices used to set order
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
np.array
|
np.array
|
||||||
Array of shape (n_samples, n_classes) with the number of samples
|
array y ordered
|
||||||
of each class in the corresponding leaf node
|
|
||||||
"""
|
"""
|
||||||
|
# return array of same type given in y
|
||||||
def compute_prediction(xp, indices, node):
|
y_ordered = y.copy()
|
||||||
if xp is None:
|
indices = indices.astype(int)
|
||||||
return
|
for i, index in enumerate(indices):
|
||||||
if node.is_leaf():
|
y_ordered[index] = y[i]
|
||||||
# set a class for indices
|
return y_ordered
|
||||||
result[indices] = node._proba
|
|
||||||
return
|
|
||||||
self.splitter_.partition(xp, node, train=False)
|
|
||||||
x_u, x_d = self.splitter_.part(xp)
|
|
||||||
i_u, i_d = self.splitter_.part(indices)
|
|
||||||
compute_prediction(x_u, i_u, node.get_up())
|
|
||||||
compute_prediction(x_d, i_d, node.get_down())
|
|
||||||
|
|
||||||
# setup prediction & make it happen
|
|
||||||
result = np.zeros((X.shape[0], self.n_classes_))
|
|
||||||
indices = np.arange(X.shape[0])
|
|
||||||
compute_prediction(X, indices, self.tree_)
|
|
||||||
return result
|
|
||||||
|
|
||||||
def check_predict(self, X) -> np.array:
|
|
||||||
"""Checks predict and predict_proba preconditions. If input X is not an
|
|
||||||
np.array convert it to one.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
X : np.ndarray
|
|
||||||
Array of samples
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
np.array
|
|
||||||
Array of samples
|
|
||||||
|
|
||||||
Raises
|
|
||||||
------
|
|
||||||
ValueError
|
|
||||||
If number of features of X is different of the number of features
|
|
||||||
in training data
|
|
||||||
"""
|
|
||||||
check_is_fitted(self, ["tree_"])
|
|
||||||
# Input validation
|
|
||||||
X = check_array(X)
|
|
||||||
if X.shape[1] != self.n_features_:
|
|
||||||
raise ValueError(
|
|
||||||
f"Expected {self.n_features_} features but got "
|
|
||||||
f"({X.shape[1]})"
|
|
||||||
)
|
|
||||||
return X
|
|
||||||
|
|
||||||
def predict_proba(self, X: np.array) -> np.array:
|
|
||||||
"""Predict class probabilities of the input samples X.
|
|
||||||
|
|
||||||
The predicted class probability is the fraction of samples of the same
|
|
||||||
class in a leaf.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
X : dataset of samples.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
proba : array of shape (n_samples, n_classes)
|
|
||||||
The class probabilities of the input samples.
|
|
||||||
|
|
||||||
Raises
|
|
||||||
------
|
|
||||||
ValueError
|
|
||||||
if dataset with inconsistent number of features
|
|
||||||
NotFittedError
|
|
||||||
if model is not fitted
|
|
||||||
"""
|
|
||||||
|
|
||||||
X = self.check_predict(X)
|
|
||||||
# return # of samples of each class in leaf node
|
|
||||||
values = self.__predict_class(X)
|
|
||||||
normalizer = values.sum(axis=1)[:, np.newaxis]
|
|
||||||
normalizer[normalizer == 0.0] = 1.0
|
|
||||||
return values / normalizer
|
|
||||||
|
|
||||||
def predict(self, X: np.array) -> np.array:
|
def predict(self, X: np.array) -> np.array:
|
||||||
"""Predict labels for each sample in dataset passed
|
"""Predict labels for each sample in dataset passed
|
||||||
@@ -482,8 +410,40 @@ class Stree(BaseEstimator, ClassifierMixin):
|
|||||||
NotFittedError
|
NotFittedError
|
||||||
if model is not fitted
|
if model is not fitted
|
||||||
"""
|
"""
|
||||||
X = self.check_predict(X)
|
|
||||||
return self.classes_[np.argmax(self.__predict_class(X), axis=1)]
|
def predict_class(
|
||||||
|
xp: np.array, indices: np.array, node: Snode
|
||||||
|
) -> np.array:
|
||||||
|
if xp is None:
|
||||||
|
return [], []
|
||||||
|
if node.is_leaf():
|
||||||
|
# set a class for every sample in dataset
|
||||||
|
prediction = np.full((xp.shape[0], 1), node._class)
|
||||||
|
return prediction, indices
|
||||||
|
self.splitter_.partition(xp, node, train=False)
|
||||||
|
x_u, x_d = self.splitter_.part(xp)
|
||||||
|
i_u, i_d = self.splitter_.part(indices)
|
||||||
|
prx_u, prin_u = predict_class(x_u, i_u, node.get_up())
|
||||||
|
prx_d, prin_d = predict_class(x_d, i_d, node.get_down())
|
||||||
|
return np.append(prx_u, prx_d), np.append(prin_u, prin_d)
|
||||||
|
|
||||||
|
# sklearn check
|
||||||
|
check_is_fitted(self, ["tree_"])
|
||||||
|
# Input validation
|
||||||
|
X = check_array(X)
|
||||||
|
if X.shape[1] != self.n_features_:
|
||||||
|
raise ValueError(
|
||||||
|
f"Expected {self.n_features_} features but got "
|
||||||
|
f"({X.shape[1]})"
|
||||||
|
)
|
||||||
|
# setup prediction & make it happen
|
||||||
|
indices = np.arange(X.shape[0])
|
||||||
|
result = (
|
||||||
|
self._reorder_results(*predict_class(X, indices, self.tree_))
|
||||||
|
.astype(int)
|
||||||
|
.ravel()
|
||||||
|
)
|
||||||
|
return self.classes_[result]
|
||||||
|
|
||||||
def nodes_leaves(self) -> tuple:
|
def nodes_leaves(self) -> tuple:
|
||||||
"""Compute the number of nodes and leaves in the built tree
|
"""Compute the number of nodes and leaves in the built tree
|
||||||
|
@@ -1 +1 @@
|
|||||||
__version__ = "1.3.0"
|
__version__ = "1.2.4"
|
||||||
|
@@ -67,28 +67,10 @@ class Snode_test(unittest.TestCase):
|
|||||||
|
|
||||||
def test_make_predictor_on_leaf(self):
|
def test_make_predictor_on_leaf(self):
|
||||||
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test")
|
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test")
|
||||||
test.make_predictor(2)
|
test.make_predictor()
|
||||||
self.assertEqual(1, test._class)
|
self.assertEqual(1, test._class)
|
||||||
self.assertEqual(0.75, test._belief)
|
self.assertEqual(0.75, test._belief)
|
||||||
self.assertEqual(-1, test._partition_column)
|
self.assertEqual(-1, test._partition_column)
|
||||||
self.assertListEqual([1, 3], test._proba.tolist())
|
|
||||||
|
|
||||||
def test_make_predictor_on_not_leaf(self):
|
|
||||||
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test")
|
|
||||||
test.set_up(Snode(None, [1], [1], [], 0.0, "another_test"))
|
|
||||||
test.make_predictor(2)
|
|
||||||
self.assertIsNone(test._class)
|
|
||||||
self.assertEqual(0, test._belief)
|
|
||||||
self.assertEqual(-1, test._partition_column)
|
|
||||||
self.assertEqual(-1, test.get_up()._partition_column)
|
|
||||||
self.assertIsNone(test._proba)
|
|
||||||
|
|
||||||
def test_make_predictor_on_leaf_bogus_data(self):
|
|
||||||
test = Snode(None, [1, 2, 3, 4], [], [], 0.0, "test")
|
|
||||||
test.make_predictor(2)
|
|
||||||
self.assertIsNone(test._class)
|
|
||||||
self.assertEqual(-1, test._partition_column)
|
|
||||||
self.assertListEqual([0, 0], test._proba.tolist())
|
|
||||||
|
|
||||||
def test_set_title(self):
|
def test_set_title(self):
|
||||||
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test")
|
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test")
|
||||||
@@ -115,6 +97,21 @@ class Snode_test(unittest.TestCase):
|
|||||||
test.set_features([1, 2])
|
test.set_features([1, 2])
|
||||||
self.assertListEqual([1, 2], test.get_features())
|
self.assertListEqual([1, 2], test.get_features())
|
||||||
|
|
||||||
|
def test_make_predictor_on_not_leaf(self):
|
||||||
|
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test")
|
||||||
|
test.set_up(Snode(None, [1], [1], [], 0.0, "another_test"))
|
||||||
|
test.make_predictor()
|
||||||
|
self.assertIsNone(test._class)
|
||||||
|
self.assertEqual(0, test._belief)
|
||||||
|
self.assertEqual(-1, test._partition_column)
|
||||||
|
self.assertEqual(-1, test.get_up()._partition_column)
|
||||||
|
|
||||||
|
def test_make_predictor_on_leaf_bogus_data(self):
|
||||||
|
test = Snode(None, [1, 2, 3, 4], [], [], 0.0, "test")
|
||||||
|
test.make_predictor()
|
||||||
|
self.assertIsNone(test._class)
|
||||||
|
self.assertEqual(-1, test._partition_column)
|
||||||
|
|
||||||
def test_copy_node(self):
|
def test_copy_node(self):
|
||||||
px = [1, 2, 3, 4]
|
px = [1, 2, 3, 4]
|
||||||
py = [1]
|
py = [1]
|
||||||
|
@@ -115,38 +115,6 @@ class Stree_test(unittest.TestCase):
|
|||||||
yp = clf.fit(X, y).predict(X[:num, :])
|
yp = clf.fit(X, y).predict(X[:num, :])
|
||||||
self.assertListEqual(y[:num].tolist(), yp.tolist())
|
self.assertListEqual(y[:num].tolist(), yp.tolist())
|
||||||
|
|
||||||
def test_multiple_predict_proba(self):
|
|
||||||
expected = {
|
|
||||||
"liblinear": {
|
|
||||||
0: [0.02401129943502825, 0.9759887005649718],
|
|
||||||
17: [0.9282970550576184, 0.07170294494238157],
|
|
||||||
},
|
|
||||||
"linear": {
|
|
||||||
0: [0.029329608938547486, 0.9706703910614525],
|
|
||||||
17: [0.9298469387755102, 0.07015306122448979],
|
|
||||||
},
|
|
||||||
"rbf": {
|
|
||||||
0: [0.023448275862068966, 0.976551724137931],
|
|
||||||
17: [0.9458064516129032, 0.05419354838709677],
|
|
||||||
},
|
|
||||||
"poly": {
|
|
||||||
0: [0.01601164483260553, 0.9839883551673945],
|
|
||||||
17: [0.9089790897908979, 0.0910209102091021],
|
|
||||||
},
|
|
||||||
}
|
|
||||||
indices = [0, 17]
|
|
||||||
X, y = load_dataset(self._random_state)
|
|
||||||
for kernel in ["liblinear", "linear", "rbf", "poly"]:
|
|
||||||
clf = Stree(
|
|
||||||
kernel=kernel,
|
|
||||||
multiclass_strategy="ovr" if kernel == "liblinear" else "ovo",
|
|
||||||
random_state=self._random_state,
|
|
||||||
)
|
|
||||||
yp = clf.fit(X, y).predict_proba(X)
|
|
||||||
for index in indices:
|
|
||||||
for exp, comp in zip(expected[kernel][index], yp[index]):
|
|
||||||
self.assertAlmostEqual(exp, comp)
|
|
||||||
|
|
||||||
def test_single_vs_multiple_prediction(self):
|
def test_single_vs_multiple_prediction(self):
|
||||||
"""Check if predicting sample by sample gives the same result as
|
"""Check if predicting sample by sample gives the same result as
|
||||||
predicting all samples at once
|
predicting all samples at once
|
||||||
@@ -727,7 +695,7 @@ class Stree_test(unittest.TestCase):
|
|||||||
)
|
)
|
||||||
expected_tail = (
|
expected_tail = (
|
||||||
' [shape=box style=filled label="class=1 impurity=0.000 '
|
' [shape=box style=filled label="class=1 impurity=0.000 '
|
||||||
'counts=[0 1 0]"];\n}\n'
|
'classes=[1] samples=[1]"];\n}\n'
|
||||||
)
|
)
|
||||||
self.assertEqual(clf.graph(), expected_head + "}\n")
|
self.assertEqual(clf.graph(), expected_head + "}\n")
|
||||||
clf.fit(X, y)
|
clf.fit(X, y)
|
||||||
@@ -747,7 +715,7 @@ class Stree_test(unittest.TestCase):
|
|||||||
)
|
)
|
||||||
expected_tail = (
|
expected_tail = (
|
||||||
' [shape=box style=filled label="class=1 impurity=0.000 '
|
' [shape=box style=filled label="class=1 impurity=0.000 '
|
||||||
'counts=[0 1 0]"];\n}\n'
|
'classes=[1] samples=[1]"];\n}\n'
|
||||||
)
|
)
|
||||||
self.assertEqual(clf.graph("Sample title"), expected_head + "}\n")
|
self.assertEqual(clf.graph("Sample title"), expected_head + "}\n")
|
||||||
clf.fit(X, y)
|
clf.fit(X, y)
|
||||||
|
Reference in New Issue
Block a user