Complete graphviz test

Add comments to some tests
This commit is contained in:
2022-04-03 18:02:02 +02:00
parent d6c99e9e56
commit cf63863e64

View File

@@ -358,6 +358,7 @@ class Stree_test(unittest.TestCase):
# Tests of score
def test_score_binary(self):
"""Check score for binary classification."""
X, y = load_dataset(self._random_state)
accuracies = [
0.9506666666666667,
@@ -380,6 +381,7 @@ class Stree_test(unittest.TestCase):
self.assertAlmostEqual(accuracy_expected, accuracy_score)
def test_score_max_features(self):
"""Check score using max_features."""
X, y = load_dataset(self._random_state)
clf = Stree(
kernel="liblinear",
@@ -391,6 +393,7 @@ class Stree_test(unittest.TestCase):
self.assertAlmostEqual(0.9453333333333334, clf.score(X, y))
def test_bogus_splitter_parameter(self):
"""Check that bogus splitter parameter raises exception."""
clf = Stree(splitter="duck")
with self.assertRaises(ValueError):
clf.fit(*load_dataset())
@@ -446,6 +449,7 @@ class Stree_test(unittest.TestCase):
self.assertListEqual([47], resdn[1].tolist())
def test_score_multiclass_rbf(self):
"""Test score for multiclass classification with rbf kernel."""
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
@@ -463,6 +467,7 @@ class Stree_test(unittest.TestCase):
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
def test_score_multiclass_poly(self):
"""Test score for multiclass classification with poly kernel."""
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
@@ -484,6 +489,7 @@ class Stree_test(unittest.TestCase):
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
def test_score_multiclass_liblinear(self):
"""Test score for multiclass classification with liblinear kernel."""
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
@@ -509,6 +515,7 @@ class Stree_test(unittest.TestCase):
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
def test_score_multiclass_sigmoid(self):
"""Test score for multiclass classification with sigmoid kernel."""
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
@@ -529,6 +536,7 @@ class Stree_test(unittest.TestCase):
self.assertEqual(0.9662921348314607, clf2.fit(X, y).score(X, y))
def test_score_multiclass_linear(self):
"""Test score for multiclass classification with linear kernel."""
warnings.filterwarnings("ignore", category=ConvergenceWarning)
warnings.filterwarnings("ignore", category=RuntimeWarning)
X, y = load_dataset(
@@ -556,11 +564,13 @@ class Stree_test(unittest.TestCase):
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))
def test_zero_all_sample_weights(self):
"""Test exception raises when all sample weights are zero."""
X, y = load_dataset(self._random_state)
with self.assertRaises(ValueError):
Stree().fit(X, y, np.zeros(len(y)))
def test_mask_samples_weighted_zero(self):
"""Check that the weighted zero samples are masked."""
X = np.array(
[
[1, 1],
@@ -588,6 +598,7 @@ class Stree_test(unittest.TestCase):
self.assertEqual(model2.score(X, y, w), 1)
def test_depth(self):
"""Check depth of the tree."""
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
@@ -603,6 +614,7 @@ class Stree_test(unittest.TestCase):
self.assertEqual(4, clf.depth_)
def test_nodes_leaves(self):
"""Check number of nodes and leaves."""
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
@@ -622,6 +634,7 @@ class Stree_test(unittest.TestCase):
self.assertEqual(6, leaves)
def test_nodes_leaves_artificial(self):
"""Check leaves of artificial dataset."""
n1 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test1")
n2 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test2")
n3 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test3")
@@ -640,12 +653,14 @@ class Stree_test(unittest.TestCase):
self.assertEqual(2, leaves)
def test_bogus_multiclass_strategy(self):
"""Check invalid multiclass strategy."""
clf = Stree(multiclass_strategy="other")
X, y = load_wine(return_X_y=True)
with self.assertRaises(ValueError):
clf.fit(X, y)
def test_multiclass_strategy(self):
"""Check multiclass strategy."""
X, y = load_wine(return_X_y=True)
clf_o = Stree(multiclass_strategy="ovo")
clf_r = Stree(multiclass_strategy="ovr")
@@ -655,6 +670,7 @@ class Stree_test(unittest.TestCase):
self.assertEqual(0.9269662921348315, score_r)
def test_incompatible_hyperparameters(self):
"""Check incompatible hyperparameters."""
X, y = load_wine(return_X_y=True)
clf = Stree(kernel="liblinear", multiclass_strategy="ovo")
with self.assertRaises(ValueError):
@@ -664,12 +680,15 @@ class Stree_test(unittest.TestCase):
clf.fit(X, y)
def test_version(self):
"""Check STree version."""
clf = Stree()
self.assertEqual(__version__, clf.version())
def test_graph(self):
"""Check graphviz representation of the tree."""
X, y = load_wine(return_X_y=True)
clf = Stree(random_state=self._random_state)
self.assertEqual(clf.graph(), "digraph STree {\n}\n")
clf.fit(X, y)
expected_head = "digraph STree {\n"
expected_tail = (