mirror of
https://github.com/Doctorado-ML/STree.git
synced 2025-08-16 07:56:06 +00:00
Fix mistake in computing multiclass node belief
Set default criterion for split to entropy instead of gini Set default max_iter to 1e5 instead of 1e3 change up-down criterion to match SVC multiclass Fix impurity method of splitting nodes Update jupyter Notebooks
This commit is contained in:
File diff suppressed because one or more lines are too long
@@ -61,7 +61,13 @@
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": "Fraud: 0.173% 492\nValid: 99.827% 284315\nX.shape (100492, 28) y.shape (100492,)\nFraud: 0.644% 647\nValid: 99.356% 99845\n"
|
||||
"text": [
|
||||
"Fraud: 0.173% 492\n",
|
||||
"Valid: 99.827% 284315\n",
|
||||
"X.shape (100492, 28) y.shape (100492,)\n",
|
||||
"Fraud: 0.652% 655\n",
|
||||
"Valid: 99.348% 99837\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
@@ -129,12 +135,14 @@
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": "Score Train: 0.9985784146480154\nScore Test: 0.9981093273185617\nTook 73.27 seconds\n"
|
||||
"text": [
|
||||
"Score Train: 0.9985073353804162\nScore Test: 0.9983746848878864\nTook 35.80 seconds\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"now = time.time()\n",
|
||||
"clf = Stree(max_depth=3, random_state=random_state)\n",
|
||||
"clf = Stree(max_depth=3, random_state=random_state, max_iter=1e3)\n",
|
||||
"clf.fit(Xtrain, ytrain)\n",
|
||||
"print(\"Score Train: \", clf.score(Xtrain, ytrain))\n",
|
||||
"print(\"Score Test: \", clf.score(Xtest, ytest))\n",
|
||||
@@ -169,13 +177,17 @@
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": "Kernel: linear\tTime: 93.78 seconds\tScore Train: 0.9983083\tScore Test: 0.9983083\nKernel: rbf\tTime: 18.32 seconds\tScore Train: 0.9935602\tScore Test: 0.9935651\nKernel: poly\tTime: 69.68 seconds\tScore Train: 0.9973132\tScore Test: 0.9972801\n"
|
||||
"text": [
|
||||
"Kernel: linear\tTime: 49.66 seconds\tScore Train: 0.9983225\tScore Test: 0.9983083\n",
|
||||
"Kernel: rbf\tTime: 12.73 seconds\tScore Train: 0.9934891\tScore Test: 0.9934656\n",
|
||||
"Kernel: poly\tTime: 76.24 seconds\tScore Train: 0.9972706\tScore Test: 0.9969152\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for kernel in ['linear', 'rbf', 'poly']:\n",
|
||||
" now = time.time()\n",
|
||||
" clf = AdaBoostClassifier(base_estimator=Stree(C=C, kernel=kernel, max_depth=max_depth, random_state=random_state), algorithm=\"SAMME\", n_estimators=n_estimators, random_state=random_state)\n",
|
||||
" clf = AdaBoostClassifier(base_estimator=Stree(C=C, kernel=kernel, max_depth=max_depth, random_state=random_state, max_iter=1e3), algorithm=\"SAMME\", n_estimators=n_estimators, random_state=random_state)\n",
|
||||
" clf.fit(Xtrain, ytrain)\n",
|
||||
" score_train = clf.score(Xtrain, ytrain)\n",
|
||||
" score_test = clf.score(Xtest, ytest)\n",
|
||||
@@ -210,13 +222,17 @@
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": "Kernel: linear\tTime: 387.06 seconds\tScore Train: 0.9985784\tScore Test: 0.9981093\nKernel: rbf\tTime: 144.00 seconds\tScore Train: 0.9992750\tScore Test: 0.9983415\nKernel: poly\tTime: 101.78 seconds\tScore Train: 0.9992466\tScore Test: 0.9981757\n"
|
||||
"text": [
|
||||
"Kernel: linear\tTime: 231.51 seconds\tScore Train: 0.9984931\tScore Test: 0.9983083\n",
|
||||
"Kernel: rbf\tTime: 114.77 seconds\tScore Train: 0.9992323\tScore Test: 0.9983083\n",
|
||||
"Kernel: poly\tTime: 67.87 seconds\tScore Train: 0.9993319\tScore Test: 0.9985074\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for kernel in ['linear', 'rbf', 'poly']:\n",
|
||||
" now = time.time()\n",
|
||||
" clf = BaggingClassifier(base_estimator=Stree(C=C, kernel=kernel, max_depth=max_depth, random_state=random_state), n_estimators=n_estimators, random_state=random_state)\n",
|
||||
" clf = BaggingClassifier(base_estimator=Stree(C=C, kernel=kernel, max_depth=max_depth, random_state=random_state, max_iter=1e3), n_estimators=n_estimators, random_state=random_state)\n",
|
||||
" clf.fit(Xtrain, ytrain)\n",
|
||||
" score_train = clf.score(Xtrain, ytrain)\n",
|
||||
" score_test = clf.score(Xtest, ytest)\n",
|
||||
@@ -235,12 +251,12 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.6-final"
|
||||
"version": "3.8.4-final"
|
||||
},
|
||||
"orig_nbformat": 2,
|
||||
"kernelspec": {
|
||||
"name": "python37664bitgeneralvenve3128601eb614c5da59c5055670b6040",
|
||||
"display_name": "Python 3.7.6 64-bit ('general': venv)"
|
||||
"name": "python38464bitgeneralf6de308d3831407c8bd68d4a5e328a38",
|
||||
"display_name": "Python 3.8.4 64-bit ('general')"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
File diff suppressed because one or more lines are too long
@@ -113,7 +113,9 @@
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": "Fraud: 0.173% 492\nValid: 99.827% 284315\nX.shape (1492, 28) y.shape (1492,)\nFraud: 32.976% 492\nValid: 67.024% 1000\n"
|
||||
"text": [
|
||||
"Fraud: 0.173% 492\nValid: 99.827% 284315\nX.shape (1492, 28) y.shape (1492,)\nFraud: 33.177% 495\nValid: 66.823% 997\n"
|
||||
]
|
||||
}
|
||||
]
|
||||
},
|
||||
@@ -132,15 +134,38 @@
|
||||
"colab": {}
|
||||
},
|
||||
"source": [
|
||||
"parameters = {\n",
|
||||
"parameters = [{\n",
|
||||
" 'base_estimator': [Stree()],\n",
|
||||
" 'n_estimators': [10, 25],\n",
|
||||
" 'learning_rate': [.5, 1],\n",
|
||||
" 'base_estimator__split_criteria': ['max_samples', 'impurity'],\n",
|
||||
" 'base_estimator__tol': [.1, 1e-02],\n",
|
||||
" 'base_estimator__max_depth': [3, 5],\n",
|
||||
" 'base_estimator__C': [7, 55],\n",
|
||||
" 'base_estimator__kernel': ['linear', 'poly', 'rbf']\n",
|
||||
"}"
|
||||
" 'base_estimator__max_depth': [3, 5, 7],\n",
|
||||
" 'base_estimator__C': [1, 7, 55],\n",
|
||||
" 'base_estimator__kernel': ['linear']\n",
|
||||
"},\n",
|
||||
"{\n",
|
||||
" 'base_estimator': [Stree()],\n",
|
||||
" 'n_estimators': [10, 25],\n",
|
||||
" 'learning_rate': [.5, 1],\n",
|
||||
" 'base_estimator__split_criteria': ['max_samples', 'impurity'],\n",
|
||||
" 'base_estimator__tol': [.1, 1e-02],\n",
|
||||
" 'base_estimator__max_depth': [3, 5, 7],\n",
|
||||
" 'base_estimator__C': [1, 7, 55],\n",
|
||||
" 'base_estimator__degree': [3, 5, 7],\n",
|
||||
" 'base_estimator__kernel': ['poly']\n",
|
||||
"},\n",
|
||||
"{\n",
|
||||
" 'base_estimator': [Stree()],\n",
|
||||
" 'n_estimators': [10, 25],\n",
|
||||
" 'learning_rate': [.5, 1],\n",
|
||||
" 'base_estimator__split_criteria': ['max_samples', 'impurity'],\n",
|
||||
" 'base_estimator__tol': [.1, 1e-02],\n",
|
||||
" 'base_estimator__max_depth': [3, 5, 7],\n",
|
||||
" 'base_estimator__C': [1, 7, 55],\n",
|
||||
" 'base_estimator__gamma': [.1, 1, 10],\n",
|
||||
" 'base_estimator__kernel': ['rbf']\n",
|
||||
"}]"
|
||||
],
|
||||
"execution_count": 5,
|
||||
"outputs": []
|
||||
@@ -153,7 +178,21 @@
|
||||
{
|
||||
"output_type": "execute_result",
|
||||
"data": {
|
||||
"text/plain": "{'C': 1.0,\n 'criterion': 'gini',\n 'degree': 3,\n 'gamma': 'scale',\n 'kernel': 'linear',\n 'max_depth': None,\n 'max_features': None,\n 'max_iter': 1000,\n 'min_samples_split': 0,\n 'random_state': None,\n 'split_criteria': 'max_samples',\n 'splitter': 'random',\n 'tol': 0.0001}"
|
||||
"text/plain": [
|
||||
"{'C': 1.0,\n",
|
||||
" 'criterion': 'entropy',\n",
|
||||
" 'degree': 3,\n",
|
||||
" 'gamma': 'scale',\n",
|
||||
" 'kernel': 'linear',\n",
|
||||
" 'max_depth': None,\n",
|
||||
" 'max_features': None,\n",
|
||||
" 'max_iter': 100000.0,\n",
|
||||
" 'min_samples_split': 0,\n",
|
||||
" 'random_state': None,\n",
|
||||
" 'split_criteria': 'impurity',\n",
|
||||
" 'splitter': 'random',\n",
|
||||
" 'tol': 0.0001}"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"execution_count": 6
|
||||
@@ -183,18 +222,156 @@
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": "Fitting 5 folds for each of 96 candidates, totalling 480 fits\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 2 tasks | elapsed: 2.0s\n[Parallel(n_jobs=-1)]: Done 9 tasks | elapsed: 2.4s\n[Parallel(n_jobs=-1)]: Done 16 tasks | elapsed: 2.7s\n[Parallel(n_jobs=-1)]: Done 25 tasks | elapsed: 3.3s\n[Parallel(n_jobs=-1)]: Done 34 tasks | elapsed: 4.3s\n[Parallel(n_jobs=-1)]: Done 45 tasks | elapsed: 5.3s\n[Parallel(n_jobs=-1)]: Done 56 tasks | elapsed: 6.6s\n[Parallel(n_jobs=-1)]: Done 69 tasks | elapsed: 8.1s\n[Parallel(n_jobs=-1)]: Done 82 tasks | elapsed: 9.4s\n[Parallel(n_jobs=-1)]: Done 97 tasks | elapsed: 10.1s\n[Parallel(n_jobs=-1)]: Done 112 tasks | elapsed: 11.1s\n[Parallel(n_jobs=-1)]: Done 129 tasks | elapsed: 12.3s\n[Parallel(n_jobs=-1)]: Done 146 tasks | elapsed: 13.6s\n[Parallel(n_jobs=-1)]: Done 165 tasks | elapsed: 14.9s\n[Parallel(n_jobs=-1)]: Done 184 tasks | elapsed: 16.2s\n[Parallel(n_jobs=-1)]: Done 205 tasks | elapsed: 17.6s\n[Parallel(n_jobs=-1)]: Done 226 tasks | elapsed: 19.1s\n[Parallel(n_jobs=-1)]: Done 249 tasks | elapsed: 21.6s\n[Parallel(n_jobs=-1)]: Done 272 tasks | elapsed: 25.9s\n[Parallel(n_jobs=-1)]: Done 297 tasks | elapsed: 30.4s\n[Parallel(n_jobs=-1)]: Done 322 tasks | elapsed: 36.7s\n[Parallel(n_jobs=-1)]: Done 349 tasks | elapsed: 38.1s\n[Parallel(n_jobs=-1)]: Done 376 tasks | elapsed: 39.6s\n[Parallel(n_jobs=-1)]: Done 405 tasks | elapsed: 41.9s\n[Parallel(n_jobs=-1)]: Done 434 tasks | elapsed: 44.9s\n[Parallel(n_jobs=-1)]: Done 465 tasks | elapsed: 48.2s\n[Parallel(n_jobs=-1)]: Done 480 out of 480 | elapsed: 49.2s finished\n"
|
||||
"text": [
|
||||
"Fitting 5 folds for each of 1008 candidates, totalling 5040 fits\n",
|
||||
"[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 2 tasks | elapsed: 2.6s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 9 tasks | elapsed: 3.2s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 16 tasks | elapsed: 3.5s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 25 tasks | elapsed: 4.0s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 34 tasks | elapsed: 4.5s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 45 tasks | elapsed: 5.0s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 56 tasks | elapsed: 5.5s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 69 tasks | elapsed: 6.2s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 82 tasks | elapsed: 7.1s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 97 tasks | elapsed: 8.2s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 112 tasks | elapsed: 9.6s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 129 tasks | elapsed: 11.0s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 146 tasks | elapsed: 12.5s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 165 tasks | elapsed: 14.3s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 184 tasks | elapsed: 16.0s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 205 tasks | elapsed: 18.1s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 226 tasks | elapsed: 20.1s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 249 tasks | elapsed: 21.9s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 272 tasks | elapsed: 23.4s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 297 tasks | elapsed: 24.9s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 322 tasks | elapsed: 26.6s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 349 tasks | elapsed: 29.3s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 376 tasks | elapsed: 31.9s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 405 tasks | elapsed: 35.5s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 434 tasks | elapsed: 38.7s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 465 tasks | elapsed: 42.1s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 496 tasks | elapsed: 46.1s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 529 tasks | elapsed: 52.7s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 562 tasks | elapsed: 58.1s\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 597 tasks | elapsed: 1.1min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 632 tasks | elapsed: 1.3min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 669 tasks | elapsed: 1.5min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 706 tasks | elapsed: 1.6min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 745 tasks | elapsed: 1.7min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 784 tasks | elapsed: 1.8min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 825 tasks | elapsed: 1.8min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 866 tasks | elapsed: 1.8min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 909 tasks | elapsed: 1.9min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 952 tasks | elapsed: 1.9min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 997 tasks | elapsed: 2.0min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 1042 tasks | elapsed: 2.0min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 1089 tasks | elapsed: 2.1min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 1136 tasks | elapsed: 2.2min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 1185 tasks | elapsed: 2.2min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 1234 tasks | elapsed: 2.3min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 1285 tasks | elapsed: 2.4min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 1336 tasks | elapsed: 2.4min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 1389 tasks | elapsed: 2.5min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 1442 tasks | elapsed: 2.6min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 1497 tasks | elapsed: 2.6min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 1552 tasks | elapsed: 2.7min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 1609 tasks | elapsed: 2.8min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 1666 tasks | elapsed: 2.8min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 1725 tasks | elapsed: 2.9min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 1784 tasks | elapsed: 3.0min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 1845 tasks | elapsed: 3.0min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 1906 tasks | elapsed: 3.1min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 1969 tasks | elapsed: 3.2min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 2032 tasks | elapsed: 3.3min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 2097 tasks | elapsed: 3.3min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 2162 tasks | elapsed: 3.4min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 2229 tasks | elapsed: 3.5min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 2296 tasks | elapsed: 3.6min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 2365 tasks | elapsed: 3.6min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 2434 tasks | elapsed: 3.7min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 2505 tasks | elapsed: 3.8min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 2576 tasks | elapsed: 3.8min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 2649 tasks | elapsed: 3.9min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 2722 tasks | elapsed: 4.0min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 2797 tasks | elapsed: 4.1min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 2872 tasks | elapsed: 4.2min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 2949 tasks | elapsed: 4.3min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 3026 tasks | elapsed: 4.5min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 3105 tasks | elapsed: 4.7min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 3184 tasks | elapsed: 4.9min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 3265 tasks | elapsed: 5.0min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 3346 tasks | elapsed: 5.2min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 3429 tasks | elapsed: 5.4min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 3512 tasks | elapsed: 5.6min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 3597 tasks | elapsed: 5.9min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 3682 tasks | elapsed: 6.1min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 3769 tasks | elapsed: 6.3min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 3856 tasks | elapsed: 6.6min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 3945 tasks | elapsed: 6.9min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 4034 tasks | elapsed: 7.1min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 4125 tasks | elapsed: 7.4min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 4216 tasks | elapsed: 7.6min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 4309 tasks | elapsed: 7.8min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 4402 tasks | elapsed: 8.1min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 4497 tasks | elapsed: 8.5min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 4592 tasks | elapsed: 8.8min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 4689 tasks | elapsed: 9.0min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 4786 tasks | elapsed: 9.3min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 4885 tasks | elapsed: 9.6min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 4984 tasks | elapsed: 9.8min\n",
|
||||
"[Parallel(n_jobs=-1)]: Done 5040 out of 5040 | elapsed: 10.0min finished\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"output_type": "execute_result",
|
||||
"data": {
|
||||
"text/plain": "GridSearchCV(estimator=AdaBoostClassifier(algorithm='SAMME', random_state=2020),\n n_jobs=-1,\n param_grid={'base_estimator': [Stree(C=55, max_depth=3, tol=0.01)],\n 'base_estimator__C': [7, 55],\n 'base_estimator__kernel': ['linear', 'poly', 'rbf'],\n 'base_estimator__max_depth': [3, 5],\n 'base_estimator__tol': [0.1, 0.01],\n 'learning_rate': [0.5, 1], 'n_estimators': [10, 25]},\n return_train_score=True, verbose=10)"
|
||||
"text/plain": [
|
||||
"GridSearchCV(estimator=AdaBoostClassifier(algorithm='SAMME', random_state=2020),\n",
|
||||
" n_jobs=-1,\n",
|
||||
" param_grid=[{'base_estimator': [Stree(C=7, max_depth=5,\n",
|
||||
" split_criteria='max_samples',\n",
|
||||
" tol=0.01)],\n",
|
||||
" 'base_estimator__C': [1, 7, 55],\n",
|
||||
" 'base_estimator__kernel': ['linear'],\n",
|
||||
" 'base_estimator__max_depth': [3, 5, 7],\n",
|
||||
" 'base_estimator__split_criteria': ['max_samples',\n",
|
||||
" 'impurity'],\n",
|
||||
" 'base_e...\n",
|
||||
" 'learning_rate': [0.5, 1], 'n_estimators': [10, 25]},\n",
|
||||
" {'base_estimator': [Stree()],\n",
|
||||
" 'base_estimator__C': [1, 7, 55],\n",
|
||||
" 'base_estimator__gamma': [0.1, 1, 10],\n",
|
||||
" 'base_estimator__kernel': ['rbf'],\n",
|
||||
" 'base_estimator__max_depth': [3, 5, 7],\n",
|
||||
" 'base_estimator__split_criteria': ['max_samples',\n",
|
||||
" 'impurity'],\n",
|
||||
" 'base_estimator__tol': [0.1, 0.01],\n",
|
||||
" 'learning_rate': [0.5, 1],\n",
|
||||
" 'n_estimators': [10, 25]}],\n",
|
||||
" return_train_score=True, verbose=10)"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"execution_count": 7
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"source": [
|
||||
"GridSearchCV(estimator=AdaBoostClassifier(algorithm='SAMME', random_state=2020),\n",
|
||||
" n_jobs=-1,\n",
|
||||
" param_grid={'base_estimator': [Stree(C=55, max_depth=3, tol=0.01)],\n",
|
||||
" 'base_estimator__C': [7, 55],\n",
|
||||
" 'base_estimator__kernel': ['linear', 'poly', 'rbf'],\n",
|
||||
" 'base_estimator__max_depth': [3, 5],\n",
|
||||
" 'base_estimator__tol': [0.1, 0.01],\n",
|
||||
" 'learning_rate': [0.5, 1], 'n_estimators': [10, 25]},\n",
|
||||
" return_train_score=True, verbose=10)"
|
||||
],
|
||||
"cell_type": "markdown",
|
||||
"metadata": {}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
@@ -214,9 +391,31 @@
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": "Best estimator: AdaBoostClassifier(algorithm='SAMME',\n base_estimator=Stree(C=55, max_depth=3, tol=0.01),\n learning_rate=0.5, n_estimators=25, random_state=2020)\nBest hyperparameters: {'base_estimator': Stree(C=55, max_depth=3, tol=0.01), 'base_estimator__C': 55, 'base_estimator__kernel': 'linear', 'base_estimator__max_depth': 3, 'base_estimator__tol': 0.01, 'learning_rate': 0.5, 'n_estimators': 25}\nBest accuracy: 0.9559440559440558\n"
|
||||
"text": [
|
||||
"Best estimator: AdaBoostClassifier(algorithm='SAMME',\n base_estimator=Stree(C=7, max_depth=5,\n split_criteria='max_samples',\n tol=0.01),\n learning_rate=0.5, n_estimators=25, random_state=2020)\nBest hyperparameters: {'base_estimator': Stree(C=7, max_depth=5, split_criteria='max_samples', tol=0.01), 'base_estimator__C': 7, 'base_estimator__kernel': 'linear', 'base_estimator__max_depth': 5, 'base_estimator__split_criteria': 'max_samples', 'base_estimator__tol': 0.01, 'learning_rate': 0.5, 'n_estimators': 25}\nBest accuracy: 0.9549825174825175\n"
|
||||
]
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"source": [
|
||||
"Best estimator: AdaBoostClassifier(algorithm='SAMME',\n",
|
||||
" base_estimator=Stree(C=55, max_depth=3, tol=0.01),\n",
|
||||
" learning_rate=0.5, n_estimators=25, random_state=2020)\n",
|
||||
"\n",
|
||||
"Best hyperparameters: {'base_estimator': Stree(C=55, max_depth=3, tol=0.01), 'base_estimator__C': 55, 'base_estimator__kernel': 'linear', 'base_estimator__max_depth': 3, 'base_estimator__tol': 0.01, 'learning_rate': 0.5, 'n_estimators': 25}\n",
|
||||
"\n",
|
||||
"Best accuracy: 0.9559440559440558"
|
||||
],
|
||||
"cell_type": "markdown",
|
||||
"metadata": {}
|
||||
},
|
||||
{
|
||||
"source": [
|
||||
"0.9511547662863451"
|
||||
],
|
||||
"cell_type": "markdown",
|
||||
"metadata": {}
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
@@ -230,12 +429,12 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.6-final"
|
||||
"version": "3.8.4-final"
|
||||
},
|
||||
"orig_nbformat": 2,
|
||||
"kernelspec": {
|
||||
"name": "python37664bitgeneralvenvfbd0a23e74cf4e778460f5ffc6761f39",
|
||||
"display_name": "Python 3.7.6 64-bit ('general': venv)"
|
||||
"name": "python38464bitgeneralvenv77203c0a6afd4428bd66253ef62753dc",
|
||||
"display_name": "Python 3.8.4 64-bit ('general': venv)"
|
||||
},
|
||||
"colab": {
|
||||
"name": "gridsearch.ipynb",
|
||||
|
2
setup.py
2
setup.py
@@ -1,6 +1,6 @@
|
||||
import setuptools
|
||||
|
||||
__version__ = "0.9rc5"
|
||||
__version__ = "0.9rc6"
|
||||
__author__ = "Ricardo Montañana Gómez"
|
||||
|
||||
|
||||
|
@@ -100,9 +100,8 @@ class Snode:
|
||||
classes, card = np.unique(self._y, return_counts=True)
|
||||
if len(classes) > 1:
|
||||
max_card = max(card)
|
||||
min_card = min(card)
|
||||
self._class = classes[card == max_card][0]
|
||||
self._belief = max_card / (max_card + min_card)
|
||||
self._belief = max_card / np.sum(card)
|
||||
else:
|
||||
self._belief = 1
|
||||
try:
|
||||
@@ -111,18 +110,18 @@ class Snode:
|
||||
self._class = None
|
||||
|
||||
def __str__(self) -> str:
|
||||
if self.is_leaf():
|
||||
count_values = np.unique(self._y, return_counts=True)
|
||||
result = (
|
||||
if self.is_leaf():
|
||||
return (
|
||||
f"{self._title} - Leaf class={self._class} belief="
|
||||
f"{self._belief: .6f} impurity={self._impurity:.4f} "
|
||||
f"counts={count_values}"
|
||||
)
|
||||
return result
|
||||
else:
|
||||
return (
|
||||
f"{self._title} feaures={self._features} impurity="
|
||||
f"{self._impurity:.4f} "
|
||||
f"counts={count_values}"
|
||||
)
|
||||
|
||||
|
||||
@@ -273,33 +272,31 @@ class Splitter:
|
||||
|
||||
def get_subspace(
|
||||
self, dataset: np.array, labels: np.array, max_features: int
|
||||
) -> list:
|
||||
) -> tuple:
|
||||
"""Return the best/random subspace to make a split"""
|
||||
indices = self._get_subspaces_set(dataset, labels, max_features)
|
||||
return dataset[:, indices], indices
|
||||
|
||||
def _impurity(self, data: np.array, _) -> np.array:
|
||||
def _impurity(self, data: np.array, y: np.array) -> np.array:
|
||||
"""return column of dataset to be taken into account to split dataset
|
||||
|
||||
:param data: distances to hyper plane of every class
|
||||
:type data: np.array (m, n_classes)
|
||||
:param _: enable call compat with other measures
|
||||
:type _: None
|
||||
:param y: vector of labels (classes)
|
||||
:type y: np.array (m,)
|
||||
:return: vector with the class assigned to each sample values
|
||||
(can be 0, 1, ...)
|
||||
(can be 0, 1, ...) -1 if none produces information gain
|
||||
:rtype: np.array shape (m,)
|
||||
"""
|
||||
min_impurity = float("inf")
|
||||
selected = 0
|
||||
y = data.copy()
|
||||
y[data <= 0] = 0
|
||||
y[data > 0] = 1
|
||||
y = y.astype(int)
|
||||
max_gain = 0
|
||||
selected = -1
|
||||
for col in range(data.shape[1]):
|
||||
impurity_of_class = self.partition_impurity(y[:, col])
|
||||
if impurity_of_class < min_impurity:
|
||||
tup = y[data[:, col] > 0]
|
||||
tdn = y[data[:, col] <= 0]
|
||||
info_gain = self.information_gain(y, tup, tdn)
|
||||
if info_gain > max_gain:
|
||||
selected = col
|
||||
min_impurity = impurity_of_class
|
||||
max_gain = info_gain
|
||||
return selected
|
||||
|
||||
@staticmethod
|
||||
@@ -326,7 +323,8 @@ class Splitter:
|
||||
# array of (m, nc) nc = # classes
|
||||
data = self._distances(node, samples)
|
||||
if data.shape[0] < self._min_samples_split:
|
||||
self._down = np.ones((data.shape[0]), dtype=bool)
|
||||
# there aren't enough samples to split
|
||||
self._up = np.ones((data.shape[0]), dtype=bool)
|
||||
return
|
||||
if data.ndim > 1:
|
||||
# split criteria for multiclass
|
||||
@@ -340,8 +338,28 @@ class Splitter:
|
||||
# in predcit time just use the column computed in train time
|
||||
# is taking the classifier of class <col>
|
||||
col = node.get_partition_column()
|
||||
if col == -1:
|
||||
# No partition is producing information gain
|
||||
data = np.ones(data.shape)
|
||||
data = data[:, col]
|
||||
self._down = data > 0
|
||||
self._up = data > 0
|
||||
|
||||
def part(self, origin: np.array) -> list:
|
||||
"""Split an array in two based on indices (down) and its complement
|
||||
partition has to be called first to establish down indices
|
||||
|
||||
:param origin: dataset to split
|
||||
:type origin: np.array
|
||||
:param down: indices to use to split array
|
||||
:type down: np.array
|
||||
:return: list with two splits of the array
|
||||
:rtype: list
|
||||
"""
|
||||
down = ~self._up
|
||||
return [
|
||||
origin[self._up] if any(self._up) else None,
|
||||
origin[down] if any(down) else None,
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def _distances(node: Snode, data: np.ndarray) -> np.array:
|
||||
@@ -357,23 +375,6 @@ class Splitter:
|
||||
"""
|
||||
return node._clf.decision_function(data[:, node._features])
|
||||
|
||||
def part(self, origin: np.array) -> list:
|
||||
"""Split an array in two based on indices (down) and its complement
|
||||
partition has to be called first to establish down indices
|
||||
|
||||
:param origin: dataset to split
|
||||
:type origin: np.array
|
||||
:param down: indices to use to split array
|
||||
:type down: np.array
|
||||
:return: list with two splits of the array
|
||||
:rtype: list
|
||||
"""
|
||||
up = ~self._down
|
||||
return [
|
||||
origin[up] if any(up) else None,
|
||||
origin[self._down] if any(self._down) else None,
|
||||
]
|
||||
|
||||
|
||||
class Stree(BaseEstimator, ClassifierMixin):
|
||||
"""Estimator that is based on binary trees of svm nodes
|
||||
@@ -387,14 +388,14 @@ class Stree(BaseEstimator, ClassifierMixin):
|
||||
self,
|
||||
C: float = 1.0,
|
||||
kernel: str = "linear",
|
||||
max_iter: int = 1000,
|
||||
max_iter: int = 1e5,
|
||||
random_state: int = None,
|
||||
max_depth: int = None,
|
||||
tol: float = 1e-4,
|
||||
degree: int = 3,
|
||||
gamma="scale",
|
||||
split_criteria: str = "impurity",
|
||||
criterion: str = "gini",
|
||||
criterion: str = "entropy",
|
||||
min_samples_split: int = 0,
|
||||
max_features=None,
|
||||
splitter: str = "random",
|
||||
|
@@ -138,7 +138,7 @@ class Splitter_test(unittest.TestCase):
|
||||
[-0.1, 0.2, 0.3],
|
||||
]
|
||||
)
|
||||
expected = np.array([-0.1, 0.7, 0.7, 0.1, -0.1, -0.1])
|
||||
expected = data[:, 0]
|
||||
y = [1, 2, 1, 0, 0, 0]
|
||||
computed = tcl._max_samples(data, y)
|
||||
self.assertEqual(0, computed)
|
||||
@@ -158,9 +158,10 @@ class Splitter_test(unittest.TestCase):
|
||||
[-0.1, 0.2, 0.3],
|
||||
]
|
||||
)
|
||||
expected = np.array([0.2, 0.01, -0.9, 0.2, 0.2, 0.2])
|
||||
computed = tcl._impurity(data, None)
|
||||
self.assertEqual(1, computed)
|
||||
expected = data[:, 2]
|
||||
y = np.array([1, 2, 1, 0, 0, 0])
|
||||
computed = tcl._impurity(data, y)
|
||||
self.assertEqual(2, computed)
|
||||
computed_data = data[:, computed]
|
||||
self.assertEqual((6,), computed_data.shape)
|
||||
self.assertListEqual(expected.tolist(), computed_data.tolist())
|
||||
@@ -176,9 +177,9 @@ class Splitter_test(unittest.TestCase):
|
||||
def test_splitter_parameter(self):
|
||||
expected_values = [
|
||||
[0, 1, 7, 9], # best entropy max_samples
|
||||
[0, 2, 4, 5], # best entropy impurity
|
||||
[3, 8, 10, 11], # best entropy impurity
|
||||
[0, 2, 8, 12], # best gini max_samples
|
||||
[4, 5, 9, 12], # best gini impurity
|
||||
[1, 2, 5, 12], # best gini impurity
|
||||
[1, 2, 5, 10], # random entropy max_samples
|
||||
[4, 8, 9, 12], # random entropy impurity
|
||||
[3, 9, 11, 12], # random gini max_samples
|
||||
|
@@ -5,6 +5,7 @@ import warnings
|
||||
import numpy as np
|
||||
from sklearn.datasets import load_iris, load_wine
|
||||
from sklearn.exceptions import ConvergenceWarning
|
||||
from sklearn.svm import LinearSVC
|
||||
|
||||
from stree import Stree, Snode
|
||||
from .utils import load_dataset
|
||||
@@ -41,17 +42,17 @@ class Stree_test(unittest.TestCase):
|
||||
_, count_u = np.unique(y_up, return_counts=True)
|
||||
#
|
||||
for i in unique_y:
|
||||
number_down = count_d[i]
|
||||
try:
|
||||
number_up = count_u[i]
|
||||
try:
|
||||
number_down = count_d[i]
|
||||
except IndexError:
|
||||
number_up = 0
|
||||
number_down = 0
|
||||
self.assertEqual(count_y[i], number_down + number_up)
|
||||
# Is the partition made the same as the prediction?
|
||||
# as the node is not a leaf...
|
||||
_, count_yp = np.unique(y_prediction, return_counts=True)
|
||||
self.assertEqual(count_yp[0], y_up.shape[0])
|
||||
self.assertEqual(count_yp[1], y_down.shape[0])
|
||||
self.assertEqual(count_yp[1], y_up.shape[0])
|
||||
self.assertEqual(count_yp[0], y_down.shape[0])
|
||||
self._check_tree(node.get_down())
|
||||
self._check_tree(node.get_up())
|
||||
|
||||
@@ -100,17 +101,20 @@ class Stree_test(unittest.TestCase):
|
||||
def test_iterator_and_str(self):
|
||||
"""Check preorder iterator"""
|
||||
expected = [
|
||||
"root feaures=(0, 1, 2) impurity=0.5000",
|
||||
"root - Down feaures=(0, 1, 2) impurity=0.0671",
|
||||
"root - Down - Down, <cgaf> - Leaf class=1 belief= 0.975989 "
|
||||
"impurity=0.0469 counts=(array([0, 1]), array([ 17, 691]))",
|
||||
"root - Down - Up feaures=(0, 1, 2) impurity=0.3967",
|
||||
"root - Down - Up - Down, <cgaf> - Leaf class=1 belief= 0.750000 "
|
||||
"impurity=0.3750 counts=(array([0, 1]), array([1, 3]))",
|
||||
"root - Down - Up - Up, <pure> - Leaf class=0 belief= 1.000000 "
|
||||
"impurity=0.0000 counts=(array([0]), array([7]))",
|
||||
"root - Up, <cgaf> - Leaf class=0 belief= 0.928297 impurity=0.1331"
|
||||
" counts=(array([0, 1]), array([725, 56]))",
|
||||
"root feaures=(0, 1, 2) impurity=1.0000 counts=(array([0, 1]), arr"
|
||||
"ay([750, 750]))",
|
||||
"root - Down, <cgaf> - Leaf class=0 belief= 0.928297 impurity=0.37"
|
||||
"22 counts=(array([0, 1]), array([725, 56]))",
|
||||
"root - Up feaures=(0, 1, 2) impurity=0.2178 counts=(array([0, 1])"
|
||||
", array([ 25, 694]))",
|
||||
"root - Up - Down feaures=(0, 1, 2) impurity=0.8454 counts=(array("
|
||||
"[0, 1]), array([8, 3]))",
|
||||
"root - Up - Down - Down, <pure> - Leaf class=0 belief= 1.000000 i"
|
||||
"mpurity=0.0000 counts=(array([0]), array([7]))",
|
||||
"root - Up - Down - Up, <cgaf> - Leaf class=1 belief= 0.750000 imp"
|
||||
"urity=0.8113 counts=(array([0, 1]), array([1, 3]))",
|
||||
"root - Up - Up, <cgaf> - Leaf class=1 belief= 0.975989 impurity=0"
|
||||
".1634 counts=(array([0, 1]), array([ 17, 691]))",
|
||||
]
|
||||
computed = []
|
||||
expected_string = ""
|
||||
@@ -186,39 +190,43 @@ class Stree_test(unittest.TestCase):
|
||||
def test_muticlass_dataset(self):
|
||||
datasets = {
|
||||
"Synt": load_dataset(random_state=self._random_state, n_classes=3),
|
||||
"Iris": load_iris(return_X_y=True),
|
||||
"Iris": load_wine(return_X_y=True),
|
||||
}
|
||||
outcomes = {
|
||||
"Synt": {
|
||||
"max_samples linear": 0.9533333333333334,
|
||||
"max_samples rbf": 0.836,
|
||||
"max_samples poly": 0.9473333333333334,
|
||||
"impurity linear": 0.9533333333333334,
|
||||
"impurity rbf": 0.836,
|
||||
"impurity poly": 0.9473333333333334,
|
||||
"max_samples linear": 0.9606666666666667,
|
||||
"max_samples rbf": 0.7133333333333334,
|
||||
"max_samples poly": 0.49066666666666664,
|
||||
"impurity linear": 0.9606666666666667,
|
||||
"impurity rbf": 0.7133333333333334,
|
||||
"impurity poly": 0.49066666666666664,
|
||||
},
|
||||
"Iris": {
|
||||
"max_samples linear": 0.98,
|
||||
"max_samples rbf": 1.0,
|
||||
"max_samples poly": 1.0,
|
||||
"impurity linear": 0.98,
|
||||
"impurity rbf": 1,
|
||||
"impurity poly": 1,
|
||||
"max_samples linear": 1.0,
|
||||
"max_samples rbf": 0.6910112359550562,
|
||||
"max_samples poly": 0.6966292134831461,
|
||||
"impurity linear": 1,
|
||||
"impurity rbf": 0.6910112359550562,
|
||||
"impurity poly": 0.6966292134831461,
|
||||
},
|
||||
}
|
||||
|
||||
for name, dataset in datasets.items():
|
||||
px, py = dataset
|
||||
for criteria in ["max_samples", "impurity"]:
|
||||
for kernel in self._kernels:
|
||||
clf = Stree(
|
||||
C=1e4,
|
||||
max_iter=1e4,
|
||||
C=55,
|
||||
max_iter=1e5,
|
||||
kernel=kernel,
|
||||
random_state=self._random_state,
|
||||
)
|
||||
clf.fit(px, py)
|
||||
# print(f"{name} {criteria} {kernel}")
|
||||
outcome = outcomes[name][f"{criteria} {kernel}"]
|
||||
# print(
|
||||
# f"{name} {criteria} {kernel} {outcome} {clf.score(px"
|
||||
# ", py)}"
|
||||
# )
|
||||
self.assertAlmostEqual(outcome, clf.score(px, py))
|
||||
|
||||
def test_max_features(self):
|
||||
@@ -305,65 +313,7 @@ class Stree_test(unittest.TestCase):
|
||||
X, y = load_dataset(self._random_state)
|
||||
clf = Stree(random_state=self._random_state, max_features=2)
|
||||
clf.fit(X, y)
|
||||
self.assertAlmostEqual(0.9426666666666667, clf.score(X, y))
|
||||
|
||||
def test_score_multi_class(self):
|
||||
warnings.filterwarnings("ignore")
|
||||
accuracies = [
|
||||
0.7022472, # Wine linear impurity
|
||||
0.8314607, # Wine linear max_samples
|
||||
0.4044944, # Wine rbf impurity
|
||||
0.4044944, # Wine rbf max_samples
|
||||
0.3988764, # Wine poly impurity
|
||||
0.7640449, # Wine poly max_samples
|
||||
0.6600000, # Iris linear impurity
|
||||
0.9666667, # Iris linear max_samples
|
||||
0.3333333, # Iris rbf impurity
|
||||
0.9800000, # Iris rbf max_samples
|
||||
0.3333333, # Iris poly impurity
|
||||
1.0000000, # Iris poly max_samples
|
||||
0.7153333, # Synthetic linear impurity
|
||||
0.9313333, # Synthetic linear max_samples
|
||||
0.4806667, # Synthetic rbf impurity
|
||||
0.8320000, # Synthetic rbf max_samples
|
||||
0.4786667, # Synthetic poly impurity
|
||||
0.6340000, # Synthetic poly max_samples
|
||||
]
|
||||
datasets = [
|
||||
("Wine", load_wine(return_X_y=True)),
|
||||
("Iris", load_iris(return_X_y=True)),
|
||||
(
|
||||
"Synthetic",
|
||||
load_dataset(self._random_state, n_classes=3, n_features=5),
|
||||
),
|
||||
]
|
||||
for dataset_name, dataset in datasets:
|
||||
X, y = dataset
|
||||
for kernel in self._kernels:
|
||||
for criteria in [
|
||||
"impurity",
|
||||
"max_samples",
|
||||
]:
|
||||
clf = Stree(
|
||||
C=17,
|
||||
random_state=self._random_state,
|
||||
kernel=kernel,
|
||||
split_criteria=criteria,
|
||||
degree=5,
|
||||
gamma="auto",
|
||||
)
|
||||
clf.fit(X, y)
|
||||
accuracy_score = clf.score(X, y)
|
||||
yp = clf.predict(X)
|
||||
accuracy_computed = np.mean(yp == y)
|
||||
# print(
|
||||
# "{:.7f}, # {:7} {:5} {}".format(
|
||||
# accuracy_score, dataset_name, kernel, criteria
|
||||
# )
|
||||
# )
|
||||
accuracy_expected = accuracies.pop(0)
|
||||
self.assertEqual(accuracy_score, accuracy_computed)
|
||||
self.assertAlmostEqual(accuracy_expected, accuracy_score)
|
||||
self.assertAlmostEqual(0.944, clf.score(X, y))
|
||||
|
||||
def test_bogus_splitter_parameter(self):
|
||||
clf = Stree(splitter="duck")
|
||||
@@ -406,3 +356,89 @@ class Stree_test(unittest.TestCase):
|
||||
# zero weights are ok when they don't erase a class
|
||||
_ = clf.train(X, y, weights_no_zero, 1, "test")
|
||||
self.assertListEqual(weights_no_zero.tolist(), original.tolist())
|
||||
|
||||
def test_multiclass_classifier_integrity(self):
|
||||
"""Checks if the multiclass operation is done right"""
|
||||
X, y = load_iris(return_X_y=True)
|
||||
clf = Stree(random_state=0)
|
||||
clf.fit(X, y)
|
||||
score = clf.score(X, y)
|
||||
# Check accuracy of the whole model
|
||||
self.assertAlmostEquals(0.98, score, 5)
|
||||
svm = LinearSVC(random_state=0)
|
||||
svm.fit(X, y)
|
||||
self.assertAlmostEquals(0.9666666666666667, svm.score(X, y), 5)
|
||||
data = svm.decision_function(X)
|
||||
expected = [
|
||||
0.4444444444444444,
|
||||
0.35777777777777775,
|
||||
0.4569777777777778,
|
||||
]
|
||||
ty = data.copy()
|
||||
ty[data <= 0] = 0
|
||||
ty[data > 0] = 1
|
||||
ty = ty.astype(int)
|
||||
for i in range(3):
|
||||
self.assertAlmostEquals(
|
||||
expected[i],
|
||||
clf.splitter_._gini(ty[:, i]),
|
||||
)
|
||||
# 1st Branch
|
||||
# up has to have 50 samples of class 0
|
||||
# down should have 100 [50, 50]
|
||||
up = data[:, 2] > 0
|
||||
resup = np.unique(y[up], return_counts=True)
|
||||
resdn = np.unique(y[~up], return_counts=True)
|
||||
self.assertListEqual([1, 2], resup[0].tolist())
|
||||
self.assertListEqual([3, 50], resup[1].tolist())
|
||||
self.assertListEqual([0, 1], resdn[0].tolist())
|
||||
self.assertListEqual([50, 47], resdn[1].tolist())
|
||||
# 2nd Branch
|
||||
# up should have 53 samples of classes [1, 2] [3, 50]
|
||||
# down shoud have 47 samples of class 1
|
||||
node_up = clf.tree_.get_down().get_up()
|
||||
node_dn = clf.tree_.get_down().get_down()
|
||||
resup = np.unique(node_up._y, return_counts=True)
|
||||
resdn = np.unique(node_dn._y, return_counts=True)
|
||||
self.assertListEqual([1, 2], resup[0].tolist())
|
||||
self.assertListEqual([3, 50], resup[1].tolist())
|
||||
self.assertListEqual([1], resdn[0].tolist())
|
||||
self.assertListEqual([47], resdn[1].tolist())
|
||||
|
||||
def test_score_multiclass_rbf(self):
|
||||
X, y = load_dataset(
|
||||
random_state=self._random_state,
|
||||
n_classes=3,
|
||||
n_features=5,
|
||||
n_samples=500,
|
||||
)
|
||||
clf = Stree(kernel="rbf", random_state=self._random_state)
|
||||
self.assertEqual(0.824, clf.fit(X, y).score(X, y))
|
||||
X, y = load_wine(return_X_y=True)
|
||||
self.assertEqual(0.6741573033707865, clf.fit(X, y).score(X, y))
|
||||
|
||||
def test_score_multiclass_poly(self):
|
||||
X, y = load_dataset(
|
||||
random_state=self._random_state,
|
||||
n_classes=3,
|
||||
n_features=5,
|
||||
n_samples=500,
|
||||
)
|
||||
clf = Stree(
|
||||
kernel="poly", random_state=self._random_state, C=10, degree=5
|
||||
)
|
||||
self.assertEqual(0.786, clf.fit(X, y).score(X, y))
|
||||
X, y = load_wine(return_X_y=True)
|
||||
self.assertEqual(0.702247191011236, clf.fit(X, y).score(X, y))
|
||||
|
||||
def test_score_multiclass_linear(self):
|
||||
X, y = load_dataset(
|
||||
random_state=self._random_state,
|
||||
n_classes=3,
|
||||
n_features=5,
|
||||
n_samples=1500,
|
||||
)
|
||||
clf = Stree(kernel="linear", random_state=self._random_state)
|
||||
self.assertEqual(0.9533333333333334, clf.fit(X, y).score(X, y))
|
||||
X, y = load_wine(return_X_y=True)
|
||||
self.assertEqual(0.9550561797752809, clf.fit(X, y).score(X, y))
|
||||
|
@@ -1,9 +1,9 @@
|
||||
from sklearn.datasets import make_classification
|
||||
|
||||
|
||||
def load_dataset(random_state=0, n_classes=2, n_features=3):
|
||||
def load_dataset(random_state=0, n_classes=2, n_features=3, n_samples=1500):
|
||||
X, y = make_classification(
|
||||
n_samples=1500,
|
||||
n_samples=n_samples,
|
||||
n_features=n_features,
|
||||
n_informative=3,
|
||||
n_redundant=0,
|
||||
|
Reference in New Issue
Block a user