Fix mistake in computing multiclass node belief

Set default criterion for split to entropy instead of gini
Set default max_iter to 1e5 instead of 1e3
change up-down criterion to match SVC multiclass
Fix impurity method of splitting nodes
Update jupyter Notebooks
This commit is contained in:
2020-11-01 17:37:17 +01:00
parent c593b55bec
commit ddc0fe15b8
9 changed files with 780 additions and 184 deletions

File diff suppressed because one or more lines are too long

View File

@@ -61,7 +61,13 @@
{
"output_type": "stream",
"name": "stdout",
"text": "Fraud: 0.173% 492\nValid: 99.827% 284315\nX.shape (100492, 28) y.shape (100492,)\nFraud: 0.644% 647\nValid: 99.356% 99845\n"
"text": [
"Fraud: 0.173% 492\n",
"Valid: 99.827% 284315\n",
"X.shape (100492, 28) y.shape (100492,)\n",
"Fraud: 0.652% 655\n",
"Valid: 99.348% 99837\n"
]
}
],
"source": [
@@ -129,12 +135,14 @@
{
"output_type": "stream",
"name": "stdout",
"text": "Score Train: 0.9985784146480154\nScore Test: 0.9981093273185617\nTook 73.27 seconds\n"
"text": [
"Score Train: 0.9985073353804162\nScore Test: 0.9983746848878864\nTook 35.80 seconds\n"
]
}
],
"source": [
"now = time.time()\n",
"clf = Stree(max_depth=3, random_state=random_state)\n",
"clf = Stree(max_depth=3, random_state=random_state, max_iter=1e3)\n",
"clf.fit(Xtrain, ytrain)\n",
"print(\"Score Train: \", clf.score(Xtrain, ytrain))\n",
"print(\"Score Test: \", clf.score(Xtest, ytest))\n",
@@ -169,13 +177,17 @@
{
"output_type": "stream",
"name": "stdout",
"text": "Kernel: linear\tTime: 93.78 seconds\tScore Train: 0.9983083\tScore Test: 0.9983083\nKernel: rbf\tTime: 18.32 seconds\tScore Train: 0.9935602\tScore Test: 0.9935651\nKernel: poly\tTime: 69.68 seconds\tScore Train: 0.9973132\tScore Test: 0.9972801\n"
"text": [
"Kernel: linear\tTime: 49.66 seconds\tScore Train: 0.9983225\tScore Test: 0.9983083\n",
"Kernel: rbf\tTime: 12.73 seconds\tScore Train: 0.9934891\tScore Test: 0.9934656\n",
"Kernel: poly\tTime: 76.24 seconds\tScore Train: 0.9972706\tScore Test: 0.9969152\n"
]
}
],
"source": [
"for kernel in ['linear', 'rbf', 'poly']:\n",
" now = time.time()\n",
" clf = AdaBoostClassifier(base_estimator=Stree(C=C, kernel=kernel, max_depth=max_depth, random_state=random_state), algorithm=\"SAMME\", n_estimators=n_estimators, random_state=random_state)\n",
" clf = AdaBoostClassifier(base_estimator=Stree(C=C, kernel=kernel, max_depth=max_depth, random_state=random_state, max_iter=1e3), algorithm=\"SAMME\", n_estimators=n_estimators, random_state=random_state)\n",
" clf.fit(Xtrain, ytrain)\n",
" score_train = clf.score(Xtrain, ytrain)\n",
" score_test = clf.score(Xtest, ytest)\n",
@@ -210,13 +222,17 @@
{
"output_type": "stream",
"name": "stdout",
"text": "Kernel: linear\tTime: 387.06 seconds\tScore Train: 0.9985784\tScore Test: 0.9981093\nKernel: rbf\tTime: 144.00 seconds\tScore Train: 0.9992750\tScore Test: 0.9983415\nKernel: poly\tTime: 101.78 seconds\tScore Train: 0.9992466\tScore Test: 0.9981757\n"
"text": [
"Kernel: linear\tTime: 231.51 seconds\tScore Train: 0.9984931\tScore Test: 0.9983083\n",
"Kernel: rbf\tTime: 114.77 seconds\tScore Train: 0.9992323\tScore Test: 0.9983083\n",
"Kernel: poly\tTime: 67.87 seconds\tScore Train: 0.9993319\tScore Test: 0.9985074\n"
]
}
],
"source": [
"for kernel in ['linear', 'rbf', 'poly']:\n",
" now = time.time()\n",
" clf = BaggingClassifier(base_estimator=Stree(C=C, kernel=kernel, max_depth=max_depth, random_state=random_state), n_estimators=n_estimators, random_state=random_state)\n",
" clf = BaggingClassifier(base_estimator=Stree(C=C, kernel=kernel, max_depth=max_depth, random_state=random_state, max_iter=1e3), n_estimators=n_estimators, random_state=random_state)\n",
" clf.fit(Xtrain, ytrain)\n",
" score_train = clf.score(Xtrain, ytrain)\n",
" score_test = clf.score(Xtest, ytest)\n",
@@ -235,12 +251,12 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6-final"
"version": "3.8.4-final"
},
"orig_nbformat": 2,
"kernelspec": {
"name": "python37664bitgeneralvenve3128601eb614c5da59c5055670b6040",
"display_name": "Python 3.7.6 64-bit ('general': venv)"
"name": "python38464bitgeneralf6de308d3831407c8bd68d4a5e328a38",
"display_name": "Python 3.8.4 64-bit ('general')"
}
},
"nbformat": 4,

File diff suppressed because one or more lines are too long

View File

@@ -113,7 +113,9 @@
{
"output_type": "stream",
"name": "stdout",
"text": "Fraud: 0.173% 492\nValid: 99.827% 284315\nX.shape (1492, 28) y.shape (1492,)\nFraud: 32.976% 492\nValid: 67.024% 1000\n"
"text": [
"Fraud: 0.173% 492\nValid: 99.827% 284315\nX.shape (1492, 28) y.shape (1492,)\nFraud: 33.177% 495\nValid: 66.823% 997\n"
]
}
]
},
@@ -132,15 +134,38 @@
"colab": {}
},
"source": [
"parameters = {\n",
"parameters = [{\n",
" 'base_estimator': [Stree()],\n",
" 'n_estimators': [10, 25],\n",
" 'learning_rate': [.5, 1],\n",
" 'base_estimator__split_criteria': ['max_samples', 'impurity'],\n",
" 'base_estimator__tol': [.1, 1e-02],\n",
" 'base_estimator__max_depth': [3, 5],\n",
" 'base_estimator__C': [7, 55],\n",
" 'base_estimator__kernel': ['linear', 'poly', 'rbf']\n",
"}"
" 'base_estimator__max_depth': [3, 5, 7],\n",
" 'base_estimator__C': [1, 7, 55],\n",
" 'base_estimator__kernel': ['linear']\n",
"},\n",
"{\n",
" 'base_estimator': [Stree()],\n",
" 'n_estimators': [10, 25],\n",
" 'learning_rate': [.5, 1],\n",
" 'base_estimator__split_criteria': ['max_samples', 'impurity'],\n",
" 'base_estimator__tol': [.1, 1e-02],\n",
" 'base_estimator__max_depth': [3, 5, 7],\n",
" 'base_estimator__C': [1, 7, 55],\n",
" 'base_estimator__degree': [3, 5, 7],\n",
" 'base_estimator__kernel': ['poly']\n",
"},\n",
"{\n",
" 'base_estimator': [Stree()],\n",
" 'n_estimators': [10, 25],\n",
" 'learning_rate': [.5, 1],\n",
" 'base_estimator__split_criteria': ['max_samples', 'impurity'],\n",
" 'base_estimator__tol': [.1, 1e-02],\n",
" 'base_estimator__max_depth': [3, 5, 7],\n",
" 'base_estimator__C': [1, 7, 55],\n",
" 'base_estimator__gamma': [.1, 1, 10],\n",
" 'base_estimator__kernel': ['rbf']\n",
"}]"
],
"execution_count": 5,
"outputs": []
@@ -153,7 +178,21 @@
{
"output_type": "execute_result",
"data": {
"text/plain": "{'C': 1.0,\n 'criterion': 'gini',\n 'degree': 3,\n 'gamma': 'scale',\n 'kernel': 'linear',\n 'max_depth': None,\n 'max_features': None,\n 'max_iter': 1000,\n 'min_samples_split': 0,\n 'random_state': None,\n 'split_criteria': 'max_samples',\n 'splitter': 'random',\n 'tol': 0.0001}"
"text/plain": [
"{'C': 1.0,\n",
" 'criterion': 'entropy',\n",
" 'degree': 3,\n",
" 'gamma': 'scale',\n",
" 'kernel': 'linear',\n",
" 'max_depth': None,\n",
" 'max_features': None,\n",
" 'max_iter': 100000.0,\n",
" 'min_samples_split': 0,\n",
" 'random_state': None,\n",
" 'split_criteria': 'impurity',\n",
" 'splitter': 'random',\n",
" 'tol': 0.0001}"
]
},
"metadata": {},
"execution_count": 6
@@ -183,18 +222,156 @@
{
"output_type": "stream",
"name": "stdout",
"text": "Fitting 5 folds for each of 96 candidates, totalling 480 fits\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 2 tasks | elapsed: 2.0s\n[Parallel(n_jobs=-1)]: Done 9 tasks | elapsed: 2.4s\n[Parallel(n_jobs=-1)]: Done 16 tasks | elapsed: 2.7s\n[Parallel(n_jobs=-1)]: Done 25 tasks | elapsed: 3.3s\n[Parallel(n_jobs=-1)]: Done 34 tasks | elapsed: 4.3s\n[Parallel(n_jobs=-1)]: Done 45 tasks | elapsed: 5.3s\n[Parallel(n_jobs=-1)]: Done 56 tasks | elapsed: 6.6s\n[Parallel(n_jobs=-1)]: Done 69 tasks | elapsed: 8.1s\n[Parallel(n_jobs=-1)]: Done 82 tasks | elapsed: 9.4s\n[Parallel(n_jobs=-1)]: Done 97 tasks | elapsed: 10.1s\n[Parallel(n_jobs=-1)]: Done 112 tasks | elapsed: 11.1s\n[Parallel(n_jobs=-1)]: Done 129 tasks | elapsed: 12.3s\n[Parallel(n_jobs=-1)]: Done 146 tasks | elapsed: 13.6s\n[Parallel(n_jobs=-1)]: Done 165 tasks | elapsed: 14.9s\n[Parallel(n_jobs=-1)]: Done 184 tasks | elapsed: 16.2s\n[Parallel(n_jobs=-1)]: Done 205 tasks | elapsed: 17.6s\n[Parallel(n_jobs=-1)]: Done 226 tasks | elapsed: 19.1s\n[Parallel(n_jobs=-1)]: Done 249 tasks | elapsed: 21.6s\n[Parallel(n_jobs=-1)]: Done 272 tasks | elapsed: 25.9s\n[Parallel(n_jobs=-1)]: Done 297 tasks | elapsed: 30.4s\n[Parallel(n_jobs=-1)]: Done 322 tasks | elapsed: 36.7s\n[Parallel(n_jobs=-1)]: Done 349 tasks | elapsed: 38.1s\n[Parallel(n_jobs=-1)]: Done 376 tasks | elapsed: 39.6s\n[Parallel(n_jobs=-1)]: Done 405 tasks | elapsed: 41.9s\n[Parallel(n_jobs=-1)]: Done 434 tasks | elapsed: 44.9s\n[Parallel(n_jobs=-1)]: Done 465 tasks | elapsed: 48.2s\n[Parallel(n_jobs=-1)]: Done 480 out of 480 | elapsed: 49.2s finished\n"
"text": [
"Fitting 5 folds for each of 1008 candidates, totalling 5040 fits\n",
"[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
"[Parallel(n_jobs=-1)]: Done 2 tasks | elapsed: 2.6s\n",
"[Parallel(n_jobs=-1)]: Done 9 tasks | elapsed: 3.2s\n",
"[Parallel(n_jobs=-1)]: Done 16 tasks | elapsed: 3.5s\n",
"[Parallel(n_jobs=-1)]: Done 25 tasks | elapsed: 4.0s\n",
"[Parallel(n_jobs=-1)]: Done 34 tasks | elapsed: 4.5s\n",
"[Parallel(n_jobs=-1)]: Done 45 tasks | elapsed: 5.0s\n",
"[Parallel(n_jobs=-1)]: Done 56 tasks | elapsed: 5.5s\n",
"[Parallel(n_jobs=-1)]: Done 69 tasks | elapsed: 6.2s\n",
"[Parallel(n_jobs=-1)]: Done 82 tasks | elapsed: 7.1s\n",
"[Parallel(n_jobs=-1)]: Done 97 tasks | elapsed: 8.2s\n",
"[Parallel(n_jobs=-1)]: Done 112 tasks | elapsed: 9.6s\n",
"[Parallel(n_jobs=-1)]: Done 129 tasks | elapsed: 11.0s\n",
"[Parallel(n_jobs=-1)]: Done 146 tasks | elapsed: 12.5s\n",
"[Parallel(n_jobs=-1)]: Done 165 tasks | elapsed: 14.3s\n",
"[Parallel(n_jobs=-1)]: Done 184 tasks | elapsed: 16.0s\n",
"[Parallel(n_jobs=-1)]: Done 205 tasks | elapsed: 18.1s\n",
"[Parallel(n_jobs=-1)]: Done 226 tasks | elapsed: 20.1s\n",
"[Parallel(n_jobs=-1)]: Done 249 tasks | elapsed: 21.9s\n",
"[Parallel(n_jobs=-1)]: Done 272 tasks | elapsed: 23.4s\n",
"[Parallel(n_jobs=-1)]: Done 297 tasks | elapsed: 24.9s\n",
"[Parallel(n_jobs=-1)]: Done 322 tasks | elapsed: 26.6s\n",
"[Parallel(n_jobs=-1)]: Done 349 tasks | elapsed: 29.3s\n",
"[Parallel(n_jobs=-1)]: Done 376 tasks | elapsed: 31.9s\n",
"[Parallel(n_jobs=-1)]: Done 405 tasks | elapsed: 35.5s\n",
"[Parallel(n_jobs=-1)]: Done 434 tasks | elapsed: 38.7s\n",
"[Parallel(n_jobs=-1)]: Done 465 tasks | elapsed: 42.1s\n",
"[Parallel(n_jobs=-1)]: Done 496 tasks | elapsed: 46.1s\n",
"[Parallel(n_jobs=-1)]: Done 529 tasks | elapsed: 52.7s\n",
"[Parallel(n_jobs=-1)]: Done 562 tasks | elapsed: 58.1s\n",
"[Parallel(n_jobs=-1)]: Done 597 tasks | elapsed: 1.1min\n",
"[Parallel(n_jobs=-1)]: Done 632 tasks | elapsed: 1.3min\n",
"[Parallel(n_jobs=-1)]: Done 669 tasks | elapsed: 1.5min\n",
"[Parallel(n_jobs=-1)]: Done 706 tasks | elapsed: 1.6min\n",
"[Parallel(n_jobs=-1)]: Done 745 tasks | elapsed: 1.7min\n",
"[Parallel(n_jobs=-1)]: Done 784 tasks | elapsed: 1.8min\n",
"[Parallel(n_jobs=-1)]: Done 825 tasks | elapsed: 1.8min\n",
"[Parallel(n_jobs=-1)]: Done 866 tasks | elapsed: 1.8min\n",
"[Parallel(n_jobs=-1)]: Done 909 tasks | elapsed: 1.9min\n",
"[Parallel(n_jobs=-1)]: Done 952 tasks | elapsed: 1.9min\n",
"[Parallel(n_jobs=-1)]: Done 997 tasks | elapsed: 2.0min\n",
"[Parallel(n_jobs=-1)]: Done 1042 tasks | elapsed: 2.0min\n",
"[Parallel(n_jobs=-1)]: Done 1089 tasks | elapsed: 2.1min\n",
"[Parallel(n_jobs=-1)]: Done 1136 tasks | elapsed: 2.2min\n",
"[Parallel(n_jobs=-1)]: Done 1185 tasks | elapsed: 2.2min\n",
"[Parallel(n_jobs=-1)]: Done 1234 tasks | elapsed: 2.3min\n",
"[Parallel(n_jobs=-1)]: Done 1285 tasks | elapsed: 2.4min\n",
"[Parallel(n_jobs=-1)]: Done 1336 tasks | elapsed: 2.4min\n",
"[Parallel(n_jobs=-1)]: Done 1389 tasks | elapsed: 2.5min\n",
"[Parallel(n_jobs=-1)]: Done 1442 tasks | elapsed: 2.6min\n",
"[Parallel(n_jobs=-1)]: Done 1497 tasks | elapsed: 2.6min\n",
"[Parallel(n_jobs=-1)]: Done 1552 tasks | elapsed: 2.7min\n",
"[Parallel(n_jobs=-1)]: Done 1609 tasks | elapsed: 2.8min\n",
"[Parallel(n_jobs=-1)]: Done 1666 tasks | elapsed: 2.8min\n",
"[Parallel(n_jobs=-1)]: Done 1725 tasks | elapsed: 2.9min\n",
"[Parallel(n_jobs=-1)]: Done 1784 tasks | elapsed: 3.0min\n",
"[Parallel(n_jobs=-1)]: Done 1845 tasks | elapsed: 3.0min\n",
"[Parallel(n_jobs=-1)]: Done 1906 tasks | elapsed: 3.1min\n",
"[Parallel(n_jobs=-1)]: Done 1969 tasks | elapsed: 3.2min\n",
"[Parallel(n_jobs=-1)]: Done 2032 tasks | elapsed: 3.3min\n",
"[Parallel(n_jobs=-1)]: Done 2097 tasks | elapsed: 3.3min\n",
"[Parallel(n_jobs=-1)]: Done 2162 tasks | elapsed: 3.4min\n",
"[Parallel(n_jobs=-1)]: Done 2229 tasks | elapsed: 3.5min\n",
"[Parallel(n_jobs=-1)]: Done 2296 tasks | elapsed: 3.6min\n",
"[Parallel(n_jobs=-1)]: Done 2365 tasks | elapsed: 3.6min\n",
"[Parallel(n_jobs=-1)]: Done 2434 tasks | elapsed: 3.7min\n",
"[Parallel(n_jobs=-1)]: Done 2505 tasks | elapsed: 3.8min\n",
"[Parallel(n_jobs=-1)]: Done 2576 tasks | elapsed: 3.8min\n",
"[Parallel(n_jobs=-1)]: Done 2649 tasks | elapsed: 3.9min\n",
"[Parallel(n_jobs=-1)]: Done 2722 tasks | elapsed: 4.0min\n",
"[Parallel(n_jobs=-1)]: Done 2797 tasks | elapsed: 4.1min\n",
"[Parallel(n_jobs=-1)]: Done 2872 tasks | elapsed: 4.2min\n",
"[Parallel(n_jobs=-1)]: Done 2949 tasks | elapsed: 4.3min\n",
"[Parallel(n_jobs=-1)]: Done 3026 tasks | elapsed: 4.5min\n",
"[Parallel(n_jobs=-1)]: Done 3105 tasks | elapsed: 4.7min\n",
"[Parallel(n_jobs=-1)]: Done 3184 tasks | elapsed: 4.9min\n",
"[Parallel(n_jobs=-1)]: Done 3265 tasks | elapsed: 5.0min\n",
"[Parallel(n_jobs=-1)]: Done 3346 tasks | elapsed: 5.2min\n",
"[Parallel(n_jobs=-1)]: Done 3429 tasks | elapsed: 5.4min\n",
"[Parallel(n_jobs=-1)]: Done 3512 tasks | elapsed: 5.6min\n",
"[Parallel(n_jobs=-1)]: Done 3597 tasks | elapsed: 5.9min\n",
"[Parallel(n_jobs=-1)]: Done 3682 tasks | elapsed: 6.1min\n",
"[Parallel(n_jobs=-1)]: Done 3769 tasks | elapsed: 6.3min\n",
"[Parallel(n_jobs=-1)]: Done 3856 tasks | elapsed: 6.6min\n",
"[Parallel(n_jobs=-1)]: Done 3945 tasks | elapsed: 6.9min\n",
"[Parallel(n_jobs=-1)]: Done 4034 tasks | elapsed: 7.1min\n",
"[Parallel(n_jobs=-1)]: Done 4125 tasks | elapsed: 7.4min\n",
"[Parallel(n_jobs=-1)]: Done 4216 tasks | elapsed: 7.6min\n",
"[Parallel(n_jobs=-1)]: Done 4309 tasks | elapsed: 7.8min\n",
"[Parallel(n_jobs=-1)]: Done 4402 tasks | elapsed: 8.1min\n",
"[Parallel(n_jobs=-1)]: Done 4497 tasks | elapsed: 8.5min\n",
"[Parallel(n_jobs=-1)]: Done 4592 tasks | elapsed: 8.8min\n",
"[Parallel(n_jobs=-1)]: Done 4689 tasks | elapsed: 9.0min\n",
"[Parallel(n_jobs=-1)]: Done 4786 tasks | elapsed: 9.3min\n",
"[Parallel(n_jobs=-1)]: Done 4885 tasks | elapsed: 9.6min\n",
"[Parallel(n_jobs=-1)]: Done 4984 tasks | elapsed: 9.8min\n",
"[Parallel(n_jobs=-1)]: Done 5040 out of 5040 | elapsed: 10.0min finished\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": "GridSearchCV(estimator=AdaBoostClassifier(algorithm='SAMME', random_state=2020),\n n_jobs=-1,\n param_grid={'base_estimator': [Stree(C=55, max_depth=3, tol=0.01)],\n 'base_estimator__C': [7, 55],\n 'base_estimator__kernel': ['linear', 'poly', 'rbf'],\n 'base_estimator__max_depth': [3, 5],\n 'base_estimator__tol': [0.1, 0.01],\n 'learning_rate': [0.5, 1], 'n_estimators': [10, 25]},\n return_train_score=True, verbose=10)"
"text/plain": [
"GridSearchCV(estimator=AdaBoostClassifier(algorithm='SAMME', random_state=2020),\n",
" n_jobs=-1,\n",
" param_grid=[{'base_estimator': [Stree(C=7, max_depth=5,\n",
" split_criteria='max_samples',\n",
" tol=0.01)],\n",
" 'base_estimator__C': [1, 7, 55],\n",
" 'base_estimator__kernel': ['linear'],\n",
" 'base_estimator__max_depth': [3, 5, 7],\n",
" 'base_estimator__split_criteria': ['max_samples',\n",
" 'impurity'],\n",
" 'base_e...\n",
" 'learning_rate': [0.5, 1], 'n_estimators': [10, 25]},\n",
" {'base_estimator': [Stree()],\n",
" 'base_estimator__C': [1, 7, 55],\n",
" 'base_estimator__gamma': [0.1, 1, 10],\n",
" 'base_estimator__kernel': ['rbf'],\n",
" 'base_estimator__max_depth': [3, 5, 7],\n",
" 'base_estimator__split_criteria': ['max_samples',\n",
" 'impurity'],\n",
" 'base_estimator__tol': [0.1, 0.01],\n",
" 'learning_rate': [0.5, 1],\n",
" 'n_estimators': [10, 25]}],\n",
" return_train_score=True, verbose=10)"
]
},
"metadata": {},
"execution_count": 7
}
]
},
{
"source": [
"GridSearchCV(estimator=AdaBoostClassifier(algorithm='SAMME', random_state=2020),\n",
" n_jobs=-1,\n",
" param_grid={'base_estimator': [Stree(C=55, max_depth=3, tol=0.01)],\n",
" 'base_estimator__C': [7, 55],\n",
" 'base_estimator__kernel': ['linear', 'poly', 'rbf'],\n",
" 'base_estimator__max_depth': [3, 5],\n",
" 'base_estimator__tol': [0.1, 0.01],\n",
" 'learning_rate': [0.5, 1], 'n_estimators': [10, 25]},\n",
" return_train_score=True, verbose=10)"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"metadata": {
@@ -214,9 +391,31 @@
{
"output_type": "stream",
"name": "stdout",
"text": "Best estimator: AdaBoostClassifier(algorithm='SAMME',\n base_estimator=Stree(C=55, max_depth=3, tol=0.01),\n learning_rate=0.5, n_estimators=25, random_state=2020)\nBest hyperparameters: {'base_estimator': Stree(C=55, max_depth=3, tol=0.01), 'base_estimator__C': 55, 'base_estimator__kernel': 'linear', 'base_estimator__max_depth': 3, 'base_estimator__tol': 0.01, 'learning_rate': 0.5, 'n_estimators': 25}\nBest accuracy: 0.9559440559440558\n"
"text": [
"Best estimator: AdaBoostClassifier(algorithm='SAMME',\n base_estimator=Stree(C=7, max_depth=5,\n split_criteria='max_samples',\n tol=0.01),\n learning_rate=0.5, n_estimators=25, random_state=2020)\nBest hyperparameters: {'base_estimator': Stree(C=7, max_depth=5, split_criteria='max_samples', tol=0.01), 'base_estimator__C': 7, 'base_estimator__kernel': 'linear', 'base_estimator__max_depth': 5, 'base_estimator__split_criteria': 'max_samples', 'base_estimator__tol': 0.01, 'learning_rate': 0.5, 'n_estimators': 25}\nBest accuracy: 0.9549825174825175\n"
]
}
]
},
{
"source": [
"Best estimator: AdaBoostClassifier(algorithm='SAMME',\n",
" base_estimator=Stree(C=55, max_depth=3, tol=0.01),\n",
" learning_rate=0.5, n_estimators=25, random_state=2020)\n",
"\n",
"Best hyperparameters: {'base_estimator': Stree(C=55, max_depth=3, tol=0.01), 'base_estimator__C': 55, 'base_estimator__kernel': 'linear', 'base_estimator__max_depth': 3, 'base_estimator__tol': 0.01, 'learning_rate': 0.5, 'n_estimators': 25}\n",
"\n",
"Best accuracy: 0.9559440559440558"
],
"cell_type": "markdown",
"metadata": {}
},
{
"source": [
"0.9511547662863451"
],
"cell_type": "markdown",
"metadata": {}
}
],
"metadata": {
@@ -230,12 +429,12 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6-final"
"version": "3.8.4-final"
},
"orig_nbformat": 2,
"kernelspec": {
"name": "python37664bitgeneralvenvfbd0a23e74cf4e778460f5ffc6761f39",
"display_name": "Python 3.7.6 64-bit ('general': venv)"
"name": "python38464bitgeneralvenv77203c0a6afd4428bd66253ef62753dc",
"display_name": "Python 3.8.4 64-bit ('general': venv)"
},
"colab": {
"name": "gridsearch.ipynb",

View File

@@ -1,6 +1,6 @@
import setuptools
__version__ = "0.9rc5"
__version__ = "0.9rc6"
__author__ = "Ricardo Montañana Gómez"

View File

@@ -100,9 +100,8 @@ class Snode:
classes, card = np.unique(self._y, return_counts=True)
if len(classes) > 1:
max_card = max(card)
min_card = min(card)
self._class = classes[card == max_card][0]
self._belief = max_card / (max_card + min_card)
self._belief = max_card / np.sum(card)
else:
self._belief = 1
try:
@@ -111,18 +110,18 @@ class Snode:
self._class = None
def __str__(self) -> str:
count_values = np.unique(self._y, return_counts=True)
if self.is_leaf():
count_values = np.unique(self._y, return_counts=True)
result = (
return (
f"{self._title} - Leaf class={self._class} belief="
f"{self._belief: .6f} impurity={self._impurity:.4f} "
f"counts={count_values}"
)
return result
else:
return (
f"{self._title} feaures={self._features} impurity="
f"{self._impurity:.4f}"
f"{self._impurity:.4f} "
f"counts={count_values}"
)
@@ -273,33 +272,31 @@ class Splitter:
def get_subspace(
self, dataset: np.array, labels: np.array, max_features: int
) -> list:
) -> tuple:
"""Return the best/random subspace to make a split"""
indices = self._get_subspaces_set(dataset, labels, max_features)
return dataset[:, indices], indices
def _impurity(self, data: np.array, _) -> np.array:
def _impurity(self, data: np.array, y: np.array) -> np.array:
"""return column of dataset to be taken into account to split dataset
:param data: distances to hyper plane of every class
:type data: np.array (m, n_classes)
:param _: enable call compat with other measures
:type _: None
:param y: vector of labels (classes)
:type y: np.array (m,)
:return: vector with the class assigned to each sample values
(can be 0, 1, ...)
(can be 0, 1, ...) -1 if none produces information gain
:rtype: np.array shape (m,)
"""
min_impurity = float("inf")
selected = 0
y = data.copy()
y[data <= 0] = 0
y[data > 0] = 1
y = y.astype(int)
max_gain = 0
selected = -1
for col in range(data.shape[1]):
impurity_of_class = self.partition_impurity(y[:, col])
if impurity_of_class < min_impurity:
tup = y[data[:, col] > 0]
tdn = y[data[:, col] <= 0]
info_gain = self.information_gain(y, tup, tdn)
if info_gain > max_gain:
selected = col
min_impurity = impurity_of_class
max_gain = info_gain
return selected
@staticmethod
@@ -326,7 +323,8 @@ class Splitter:
# array of (m, nc) nc = # classes
data = self._distances(node, samples)
if data.shape[0] < self._min_samples_split:
self._down = np.ones((data.shape[0]), dtype=bool)
# there aren't enough samples to split
self._up = np.ones((data.shape[0]), dtype=bool)
return
if data.ndim > 1:
# split criteria for multiclass
@@ -340,8 +338,28 @@ class Splitter:
# in predcit time just use the column computed in train time
# is taking the classifier of class <col>
col = node.get_partition_column()
if col == -1:
# No partition is producing information gain
data = np.ones(data.shape)
data = data[:, col]
self._down = data > 0
self._up = data > 0
def part(self, origin: np.array) -> list:
"""Split an array in two based on indices (down) and its complement
partition has to be called first to establish down indices
:param origin: dataset to split
:type origin: np.array
:param down: indices to use to split array
:type down: np.array
:return: list with two splits of the array
:rtype: list
"""
down = ~self._up
return [
origin[self._up] if any(self._up) else None,
origin[down] if any(down) else None,
]
@staticmethod
def _distances(node: Snode, data: np.ndarray) -> np.array:
@@ -357,23 +375,6 @@ class Splitter:
"""
return node._clf.decision_function(data[:, node._features])
def part(self, origin: np.array) -> list:
"""Split an array in two based on indices (down) and its complement
partition has to be called first to establish down indices
:param origin: dataset to split
:type origin: np.array
:param down: indices to use to split array
:type down: np.array
:return: list with two splits of the array
:rtype: list
"""
up = ~self._down
return [
origin[up] if any(up) else None,
origin[self._down] if any(self._down) else None,
]
class Stree(BaseEstimator, ClassifierMixin):
"""Estimator that is based on binary trees of svm nodes
@@ -387,14 +388,14 @@ class Stree(BaseEstimator, ClassifierMixin):
self,
C: float = 1.0,
kernel: str = "linear",
max_iter: int = 1000,
max_iter: int = 1e5,
random_state: int = None,
max_depth: int = None,
tol: float = 1e-4,
degree: int = 3,
gamma="scale",
split_criteria: str = "impurity",
criterion: str = "gini",
criterion: str = "entropy",
min_samples_split: int = 0,
max_features=None,
splitter: str = "random",

View File

@@ -138,7 +138,7 @@ class Splitter_test(unittest.TestCase):
[-0.1, 0.2, 0.3],
]
)
expected = np.array([-0.1, 0.7, 0.7, 0.1, -0.1, -0.1])
expected = data[:, 0]
y = [1, 2, 1, 0, 0, 0]
computed = tcl._max_samples(data, y)
self.assertEqual(0, computed)
@@ -158,9 +158,10 @@ class Splitter_test(unittest.TestCase):
[-0.1, 0.2, 0.3],
]
)
expected = np.array([0.2, 0.01, -0.9, 0.2, 0.2, 0.2])
computed = tcl._impurity(data, None)
self.assertEqual(1, computed)
expected = data[:, 2]
y = np.array([1, 2, 1, 0, 0, 0])
computed = tcl._impurity(data, y)
self.assertEqual(2, computed)
computed_data = data[:, computed]
self.assertEqual((6,), computed_data.shape)
self.assertListEqual(expected.tolist(), computed_data.tolist())
@@ -176,9 +177,9 @@ class Splitter_test(unittest.TestCase):
def test_splitter_parameter(self):
expected_values = [
[0, 1, 7, 9], # best entropy max_samples
[0, 2, 4, 5], # best entropy impurity
[3, 8, 10, 11], # best entropy impurity
[0, 2, 8, 12], # best gini max_samples
[4, 5, 9, 12], # best gini impurity
[1, 2, 5, 12], # best gini impurity
[1, 2, 5, 10], # random entropy max_samples
[4, 8, 9, 12], # random entropy impurity
[3, 9, 11, 12], # random gini max_samples

View File

@@ -5,6 +5,7 @@ import warnings
import numpy as np
from sklearn.datasets import load_iris, load_wine
from sklearn.exceptions import ConvergenceWarning
from sklearn.svm import LinearSVC
from stree import Stree, Snode
from .utils import load_dataset
@@ -41,17 +42,17 @@ class Stree_test(unittest.TestCase):
_, count_u = np.unique(y_up, return_counts=True)
#
for i in unique_y:
number_down = count_d[i]
number_up = count_u[i]
try:
number_up = count_u[i]
number_down = count_d[i]
except IndexError:
number_up = 0
number_down = 0
self.assertEqual(count_y[i], number_down + number_up)
# Is the partition made the same as the prediction?
# as the node is not a leaf...
_, count_yp = np.unique(y_prediction, return_counts=True)
self.assertEqual(count_yp[0], y_up.shape[0])
self.assertEqual(count_yp[1], y_down.shape[0])
self.assertEqual(count_yp[1], y_up.shape[0])
self.assertEqual(count_yp[0], y_down.shape[0])
self._check_tree(node.get_down())
self._check_tree(node.get_up())
@@ -100,17 +101,20 @@ class Stree_test(unittest.TestCase):
def test_iterator_and_str(self):
"""Check preorder iterator"""
expected = [
"root feaures=(0, 1, 2) impurity=0.5000",
"root - Down feaures=(0, 1, 2) impurity=0.0671",
"root - Down - Down, <cgaf> - Leaf class=1 belief= 0.975989 "
"impurity=0.0469 counts=(array([0, 1]), array([ 17, 691]))",
"root - Down - Up feaures=(0, 1, 2) impurity=0.3967",
"root - Down - Up - Down, <cgaf> - Leaf class=1 belief= 0.750000 "
"impurity=0.3750 counts=(array([0, 1]), array([1, 3]))",
"root - Down - Up - Up, <pure> - Leaf class=0 belief= 1.000000 "
"impurity=0.0000 counts=(array([0]), array([7]))",
"root - Up, <cgaf> - Leaf class=0 belief= 0.928297 impurity=0.1331"
" counts=(array([0, 1]), array([725, 56]))",
"root feaures=(0, 1, 2) impurity=1.0000 counts=(array([0, 1]), arr"
"ay([750, 750]))",
"root - Down, <cgaf> - Leaf class=0 belief= 0.928297 impurity=0.37"
"22 counts=(array([0, 1]), array([725, 56]))",
"root - Up feaures=(0, 1, 2) impurity=0.2178 counts=(array([0, 1])"
", array([ 25, 694]))",
"root - Up - Down feaures=(0, 1, 2) impurity=0.8454 counts=(array("
"[0, 1]), array([8, 3]))",
"root - Up - Down - Down, <pure> - Leaf class=0 belief= 1.000000 i"
"mpurity=0.0000 counts=(array([0]), array([7]))",
"root - Up - Down - Up, <cgaf> - Leaf class=1 belief= 0.750000 imp"
"urity=0.8113 counts=(array([0, 1]), array([1, 3]))",
"root - Up - Up, <cgaf> - Leaf class=1 belief= 0.975989 impurity=0"
".1634 counts=(array([0, 1]), array([ 17, 691]))",
]
computed = []
expected_string = ""
@@ -186,39 +190,43 @@ class Stree_test(unittest.TestCase):
def test_muticlass_dataset(self):
datasets = {
"Synt": load_dataset(random_state=self._random_state, n_classes=3),
"Iris": load_iris(return_X_y=True),
"Iris": load_wine(return_X_y=True),
}
outcomes = {
"Synt": {
"max_samples linear": 0.9533333333333334,
"max_samples rbf": 0.836,
"max_samples poly": 0.9473333333333334,
"impurity linear": 0.9533333333333334,
"impurity rbf": 0.836,
"impurity poly": 0.9473333333333334,
"max_samples linear": 0.9606666666666667,
"max_samples rbf": 0.7133333333333334,
"max_samples poly": 0.49066666666666664,
"impurity linear": 0.9606666666666667,
"impurity rbf": 0.7133333333333334,
"impurity poly": 0.49066666666666664,
},
"Iris": {
"max_samples linear": 0.98,
"max_samples rbf": 1.0,
"max_samples poly": 1.0,
"impurity linear": 0.98,
"impurity rbf": 1,
"impurity poly": 1,
"max_samples linear": 1.0,
"max_samples rbf": 0.6910112359550562,
"max_samples poly": 0.6966292134831461,
"impurity linear": 1,
"impurity rbf": 0.6910112359550562,
"impurity poly": 0.6966292134831461,
},
}
for name, dataset in datasets.items():
px, py = dataset
for criteria in ["max_samples", "impurity"]:
for kernel in self._kernels:
clf = Stree(
C=1e4,
max_iter=1e4,
C=55,
max_iter=1e5,
kernel=kernel,
random_state=self._random_state,
)
clf.fit(px, py)
# print(f"{name} {criteria} {kernel}")
outcome = outcomes[name][f"{criteria} {kernel}"]
# print(
# f"{name} {criteria} {kernel} {outcome} {clf.score(px"
# ", py)}"
# )
self.assertAlmostEqual(outcome, clf.score(px, py))
def test_max_features(self):
@@ -305,65 +313,7 @@ class Stree_test(unittest.TestCase):
X, y = load_dataset(self._random_state)
clf = Stree(random_state=self._random_state, max_features=2)
clf.fit(X, y)
self.assertAlmostEqual(0.9426666666666667, clf.score(X, y))
def test_score_multi_class(self):
warnings.filterwarnings("ignore")
accuracies = [
0.7022472, # Wine linear impurity
0.8314607, # Wine linear max_samples
0.4044944, # Wine rbf impurity
0.4044944, # Wine rbf max_samples
0.3988764, # Wine poly impurity
0.7640449, # Wine poly max_samples
0.6600000, # Iris linear impurity
0.9666667, # Iris linear max_samples
0.3333333, # Iris rbf impurity
0.9800000, # Iris rbf max_samples
0.3333333, # Iris poly impurity
1.0000000, # Iris poly max_samples
0.7153333, # Synthetic linear impurity
0.9313333, # Synthetic linear max_samples
0.4806667, # Synthetic rbf impurity
0.8320000, # Synthetic rbf max_samples
0.4786667, # Synthetic poly impurity
0.6340000, # Synthetic poly max_samples
]
datasets = [
("Wine", load_wine(return_X_y=True)),
("Iris", load_iris(return_X_y=True)),
(
"Synthetic",
load_dataset(self._random_state, n_classes=3, n_features=5),
),
]
for dataset_name, dataset in datasets:
X, y = dataset
for kernel in self._kernels:
for criteria in [
"impurity",
"max_samples",
]:
clf = Stree(
C=17,
random_state=self._random_state,
kernel=kernel,
split_criteria=criteria,
degree=5,
gamma="auto",
)
clf.fit(X, y)
accuracy_score = clf.score(X, y)
yp = clf.predict(X)
accuracy_computed = np.mean(yp == y)
# print(
# "{:.7f}, # {:7} {:5} {}".format(
# accuracy_score, dataset_name, kernel, criteria
# )
# )
accuracy_expected = accuracies.pop(0)
self.assertEqual(accuracy_score, accuracy_computed)
self.assertAlmostEqual(accuracy_expected, accuracy_score)
self.assertAlmostEqual(0.944, clf.score(X, y))
def test_bogus_splitter_parameter(self):
clf = Stree(splitter="duck")
@@ -406,3 +356,89 @@ class Stree_test(unittest.TestCase):
# zero weights are ok when they don't erase a class
_ = clf.train(X, y, weights_no_zero, 1, "test")
self.assertListEqual(weights_no_zero.tolist(), original.tolist())
def test_multiclass_classifier_integrity(self):
"""Checks if the multiclass operation is done right"""
X, y = load_iris(return_X_y=True)
clf = Stree(random_state=0)
clf.fit(X, y)
score = clf.score(X, y)
# Check accuracy of the whole model
self.assertAlmostEquals(0.98, score, 5)
svm = LinearSVC(random_state=0)
svm.fit(X, y)
self.assertAlmostEquals(0.9666666666666667, svm.score(X, y), 5)
data = svm.decision_function(X)
expected = [
0.4444444444444444,
0.35777777777777775,
0.4569777777777778,
]
ty = data.copy()
ty[data <= 0] = 0
ty[data > 0] = 1
ty = ty.astype(int)
for i in range(3):
self.assertAlmostEquals(
expected[i],
clf.splitter_._gini(ty[:, i]),
)
# 1st Branch
# up has to have 50 samples of class 0
# down should have 100 [50, 50]
up = data[:, 2] > 0
resup = np.unique(y[up], return_counts=True)
resdn = np.unique(y[~up], return_counts=True)
self.assertListEqual([1, 2], resup[0].tolist())
self.assertListEqual([3, 50], resup[1].tolist())
self.assertListEqual([0, 1], resdn[0].tolist())
self.assertListEqual([50, 47], resdn[1].tolist())
# 2nd Branch
# up should have 53 samples of classes [1, 2] [3, 50]
# down shoud have 47 samples of class 1
node_up = clf.tree_.get_down().get_up()
node_dn = clf.tree_.get_down().get_down()
resup = np.unique(node_up._y, return_counts=True)
resdn = np.unique(node_dn._y, return_counts=True)
self.assertListEqual([1, 2], resup[0].tolist())
self.assertListEqual([3, 50], resup[1].tolist())
self.assertListEqual([1], resdn[0].tolist())
self.assertListEqual([47], resdn[1].tolist())
def test_score_multiclass_rbf(self):
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
n_features=5,
n_samples=500,
)
clf = Stree(kernel="rbf", random_state=self._random_state)
self.assertEqual(0.824, clf.fit(X, y).score(X, y))
X, y = load_wine(return_X_y=True)
self.assertEqual(0.6741573033707865, clf.fit(X, y).score(X, y))
def test_score_multiclass_poly(self):
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
n_features=5,
n_samples=500,
)
clf = Stree(
kernel="poly", random_state=self._random_state, C=10, degree=5
)
self.assertEqual(0.786, clf.fit(X, y).score(X, y))
X, y = load_wine(return_X_y=True)
self.assertEqual(0.702247191011236, clf.fit(X, y).score(X, y))
def test_score_multiclass_linear(self):
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
n_features=5,
n_samples=1500,
)
clf = Stree(kernel="linear", random_state=self._random_state)
self.assertEqual(0.9533333333333334, clf.fit(X, y).score(X, y))
X, y = load_wine(return_X_y=True)
self.assertEqual(0.9550561797752809, clf.fit(X, y).score(X, y))

View File

@@ -1,9 +1,9 @@
from sklearn.datasets import make_classification
def load_dataset(random_state=0, n_classes=2, n_features=3):
def load_dataset(random_state=0, n_classes=2, n_features=3, n_samples=1500):
X, y = make_classification(
n_samples=1500,
n_samples=n_samples,
n_features=n_features,
n_informative=3,
n_redundant=0,