compute predictor and store model in node

This commit is contained in:
2020-05-13 00:12:05 +02:00
parent 371257c121
commit c4de782a3f
8 changed files with 263 additions and 68 deletions

45
tests/Snode_test.py Normal file
View File

@@ -0,0 +1,45 @@
import unittest
from sklearn.datasets import make_classification
import numpy as np
import csv
from trees.Stree import Stree, Snode
class Snode_test(unittest.TestCase):
def __init__(self, *args, **kwargs):
self._random_state = 1
self._model = Stree(random_state=self._random_state,
use_predictions=True)
self._model.fit(*self._get_Xy())
super(Snode_test, self).__init__(*args, **kwargs)
def _get_Xy(self):
X, y = make_classification(n_samples=1500, n_features=3, n_informative=3,
n_redundant=0, n_repeated=0, n_classes=2, n_clusters_per_class=2,
class_sep=1.5, flip_y=0, weights=[0.5, 0.5], random_state=self._random_state)
return X, y
def test_attributes_in_leaves(self):
"""Check if the attributes in leaves have correct values so they form a predictor
"""
def check_leave(node: Snode):
if node.is_leaf():
# Check Belief
classes, card = np.unique(node._y, return_counts=True)
max_card = max(card)
min_card = min(card)
try:
accuracy = max_card / min_card
except:
accuracy = 0
self.assertEqual(accuracy, node._belief)
# Check Class
class_computed = classes[card == max_card]
self.assertEqual(class_computed, node._class)
return
check_leave(node.get_down())
check_leave(node.get_up())
check_leave(self._model._tree)

View File

@@ -1,35 +1,31 @@
import unittest
from sklearn.svm import LinearSVC
from sklearn.datasets import make_classification
import numpy as np
import csv
from trees.Stree import Stree, Snode
class Stree_test(unittest.TestCase):
def __init__(self, *args, **kwargs):
self._random_state = 1
self._model_tree = Stree(random_state=self._random_state, use_predictions=True)
self._model_tree.fit(*self._get_Xy())
self._model_svm = LinearSVC(random_state=self._random_state, max_iter=self._model_tree._max_iter)
self._model = Stree(random_state=self._random_state,
use_predictions=True)
self._model.fit(*self._get_Xy())
super(Stree_test, self).__init__(*args, **kwargs)
def _get_Xy(self):
X, y = make_classification(n_samples=1500, n_features=3, n_informative=3,
n_redundant=0, n_repeated=0, n_classes=2, n_clusters_per_class=2,
class_sep=1.5, flip_y=0,weights=[0.5,0.5], random_state=self._random_state)
X, y = make_classification(n_samples=1500, n_features=3, n_informative=3,
n_redundant=0, n_repeated=0, n_classes=2, n_clusters_per_class=2,
class_sep=1.5, flip_y=0, weights=[0.5, 0.5], random_state=self._random_state)
return X, y
def test_split_data(self):
self.assertTrue(True)
def _check_tree(self, node: Snode):
if node.is_leaf():
return
self._model_svm.fit(node._X, node._y)
y_prediction = self._model_svm.predict(node._X)
y_prediction = node._model.predict(node._X)
y_down = node.get_down()._y
y_up = node.get_up()._y
# Is a correct partition in terms of cadinality?
@@ -59,7 +55,7 @@ class Stree_test(unittest.TestCase):
def test_build_tree(self):
"""Check if the tree is built the same way as predictions of models
"""
self._check_tree(self._model_tree._tree)
self._check_tree(self._model._tree)
def _get_file_data(self, file_name: str) -> tuple:
"""Return X, y from data, y is the last column in array
@@ -69,7 +65,7 @@ class Stree_test(unittest.TestCase):
Returns:
tuple -- tuple with samples, categories
"""
"""
data = np.genfromtxt(file_name, delimiter=',')
data = np.array(data)
column_y = data.shape[1] - 1
@@ -87,22 +83,22 @@ class Stree_test(unittest.TestCase):
Returns:
np.array -- classes of the given samples
"""
"""
res = []
for needle in px:
for row in range(x_original.shape[0]):
if all(x_original[row, :] == needle):
res.append(y_original[row])
return res
def test_subdatasets(self):
"""Check if the subdatasets files have the same predictions as the tree itself
"""
model = LinearSVC(random_state=self._random_state, max_iter=self._model_tree._max_iter)
model = self._model._tree._model
X, y = self._get_Xy()
model.fit(X, y)
self._model_tree.save_sub_datasets()
with open(self._model_tree.get_catalog_name()) as cat_file:
self._model.save_sub_datasets()
with open(self._model.get_catalog_name()) as cat_file:
catalog = csv.reader(cat_file, delimiter=',')
for row in catalog:
X, y = self._get_Xy()