mirror of
https://github.com/Doctorado-ML/STree.git
synced 2025-08-15 23:46:02 +00:00
46 lines
1.6 KiB
Python
46 lines
1.6 KiB
Python
import unittest
|
|
|
|
from sklearn.datasets import make_classification
|
|
import numpy as np
|
|
import csv
|
|
|
|
from trees.Stree import Stree, Snode
|
|
|
|
|
|
class Snode_test(unittest.TestCase):
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
self._random_state = 1
|
|
self._model = Stree(random_state=self._random_state,
|
|
use_predictions=True)
|
|
self._model.fit(*self._get_Xy())
|
|
super(Snode_test, self).__init__(*args, **kwargs)
|
|
|
|
def _get_Xy(self):
|
|
X, y = make_classification(n_samples=1500, n_features=3, n_informative=3,
|
|
n_redundant=0, n_repeated=0, n_classes=2, n_clusters_per_class=2,
|
|
class_sep=1.5, flip_y=0, weights=[0.5, 0.5], random_state=self._random_state)
|
|
return X, y
|
|
|
|
def test_attributes_in_leaves(self):
|
|
"""Check if the attributes in leaves have correct values so they form a predictor
|
|
"""
|
|
def check_leave(node: Snode):
|
|
if node.is_leaf():
|
|
# Check Belief
|
|
classes, card = np.unique(node._y, return_counts=True)
|
|
max_card = max(card)
|
|
min_card = min(card)
|
|
try:
|
|
accuracy = max_card / min_card
|
|
except:
|
|
accuracy = 0
|
|
self.assertEqual(accuracy, node._belief)
|
|
# Check Class
|
|
class_computed = classes[card == max_card]
|
|
self.assertEqual(class_computed, node._class)
|
|
return
|
|
check_leave(node.get_down())
|
|
check_leave(node.get_up())
|
|
check_leave(self._model._tree)
|