mirror of
https://github.com/Doctorado-ML/STree.git
synced 2025-08-15 07:26:01 +00:00
Merge branch 'master' into package_doc_#7
This commit is contained in:
56
.github/workflows/codeql-analysis.yml
vendored
Normal file
56
.github/workflows/codeql-analysis.yml
vendored
Normal file
@@ -0,0 +1,56 @@
|
||||
name: "CodeQL"
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ master ]
|
||||
pull_request:
|
||||
# The branches below must be a subset of the branches above
|
||||
branches: [ master ]
|
||||
schedule:
|
||||
- cron: '16 17 * * 3'
|
||||
|
||||
jobs:
|
||||
analyze:
|
||||
name: Analyze
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
language: [ 'python' ]
|
||||
# CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python' ]
|
||||
# Learn more:
|
||||
# https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#changing-the-languages-that-are-analyzed
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v2
|
||||
|
||||
# Initializes the CodeQL tools for scanning.
|
||||
- name: Initialize CodeQL
|
||||
uses: github/codeql-action/init@v1
|
||||
with:
|
||||
languages: ${{ matrix.language }}
|
||||
# If you wish to specify custom queries, you can do so here or in a config file.
|
||||
# By default, queries listed here will override any specified in a config file.
|
||||
# Prefix the list here with "+" to use these queries and those in the config file.
|
||||
# queries: ./path/to/local/query, your-org/your-repo/queries@main
|
||||
|
||||
# Autobuild attempts to build any compiled languages (C/C++, C#, or Java).
|
||||
# If this step fails, then you should remove it and run the build manually (see below)
|
||||
- name: Autobuild
|
||||
uses: github/codeql-action/autobuild@v1
|
||||
|
||||
# ℹ️ Command-line programs to run using the OS shell.
|
||||
# 📚 https://git.io/JvXDl
|
||||
|
||||
# ✏️ If the Autobuild fails above, remove it and uncomment the following three lines
|
||||
# and modify them (or add more) to build your code if your project
|
||||
# uses a compiled language
|
||||
|
||||
#- run: |
|
||||
# make bootstrap
|
||||
# make release
|
||||
|
||||
- name: Perform CodeQL Analysis
|
||||
uses: github/codeql-action/analyze@v1
|
@@ -11,6 +11,7 @@ from typing import Optional
|
||||
import numpy as np
|
||||
from sklearn.base import BaseEstimator, ClassifierMixin
|
||||
from sklearn.svm import SVC, LinearSVC
|
||||
from sklearn.feature_selection import SelectKBest
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from sklearn.utils.multiclass import check_classification_targets
|
||||
from sklearn.exceptions import ConvergenceWarning
|
||||
@@ -172,7 +173,7 @@ class Splitter:
|
||||
self,
|
||||
clf: SVC = None,
|
||||
criterion: str = None,
|
||||
splitter_type: str = None,
|
||||
feature_select: str = None,
|
||||
criteria: str = None,
|
||||
min_samples_split: int = None,
|
||||
random_state=None,
|
||||
@@ -185,7 +186,7 @@ class Splitter:
|
||||
self._criterion = criterion
|
||||
self._min_samples_split = min_samples_split
|
||||
self._criteria = criteria
|
||||
self._splitter_type = splitter_type
|
||||
self._feature_select = feature_select
|
||||
self._normalize = normalize
|
||||
|
||||
if clf is None:
|
||||
@@ -204,9 +205,10 @@ class Splitter:
|
||||
f"criteria has to be max_samples or impurity; got ({criteria})"
|
||||
)
|
||||
|
||||
if splitter_type not in ["random", "best"]:
|
||||
if feature_select not in ["random", "best"]:
|
||||
raise ValueError(
|
||||
f"splitter must be either random or best, got({splitter_type})"
|
||||
"splitter must be either random or best, got "
|
||||
f"({feature_select})"
|
||||
)
|
||||
self.criterion_function = getattr(self, f"_{self._criterion}")
|
||||
self.decision_criteria = getattr(self, f"_{self._criteria}")
|
||||
@@ -340,13 +342,10 @@ class Splitter:
|
||||
"""
|
||||
comb = set()
|
||||
# Generate at most 5 combinations
|
||||
if max_features == features:
|
||||
set_length = 1
|
||||
else:
|
||||
number = factorial(features) / (
|
||||
factorial(max_features) * factorial(features - max_features)
|
||||
)
|
||||
set_length = min(5, number)
|
||||
number = factorial(features) / (
|
||||
factorial(max_features) * factorial(features - max_features)
|
||||
)
|
||||
set_length = min(5, number)
|
||||
while len(comb) < set_length:
|
||||
comb.add(
|
||||
tuple(sorted(random.sample(range(features), max_features)))
|
||||
@@ -355,9 +354,9 @@ class Splitter:
|
||||
|
||||
def _get_subspaces_set(
|
||||
self, dataset: np.array, labels: np.array, max_features: int
|
||||
) -> np.array:
|
||||
) -> tuple:
|
||||
"""Compute the indices of the features selected by splitter depending
|
||||
on the self._splitter_type hyper parameter
|
||||
on the self._feature_select hyper parameter
|
||||
|
||||
Parameters
|
||||
----------
|
||||
@@ -371,21 +370,28 @@ class Splitter:
|
||||
|
||||
Returns
|
||||
-------
|
||||
np.array
|
||||
tuple
|
||||
indices of the features selected
|
||||
"""
|
||||
features_sets = self._generate_spaces(dataset.shape[1], max_features)
|
||||
if len(features_sets) > 1:
|
||||
if self._splitter_type == "random":
|
||||
index = random.randint(0, len(features_sets) - 1)
|
||||
return features_sets[index]
|
||||
if dataset.shape[1] == max_features:
|
||||
# No feature reduction applies
|
||||
return tuple(range(dataset.shape[1]))
|
||||
if self._feature_select == "random":
|
||||
features_sets = self._generate_spaces(
|
||||
dataset.shape[1], max_features
|
||||
)
|
||||
return self._select_best_set(dataset, labels, features_sets)
|
||||
return features_sets[0]
|
||||
# Take KBest features
|
||||
return (
|
||||
SelectKBest(k=max_features)
|
||||
.fit(dataset, labels)
|
||||
.get_support(indices=True)
|
||||
)
|
||||
|
||||
def get_subspace(
|
||||
self, dataset: np.array, labels: np.array, max_features: int
|
||||
) -> tuple:
|
||||
"""Return a subspace of the selected dataset of max_features length.
|
||||
"""Re3turn a subspace of the selected dataset of max_features length.
|
||||
Depending on hyperparmeter
|
||||
|
||||
Parameters
|
||||
@@ -632,7 +638,7 @@ class Stree(BaseEstimator, ClassifierMixin):
|
||||
self.splitter_ = Splitter(
|
||||
clf=self._build_clf(),
|
||||
criterion=self.criterion,
|
||||
splitter_type=self.splitter,
|
||||
feature_select=self.splitter,
|
||||
criteria=self.split_criteria,
|
||||
random_state=self.random_state,
|
||||
min_samples_split=self.min_samples_split,
|
||||
|
@@ -6,6 +6,7 @@ import numpy as np
|
||||
from sklearn.svm import SVC
|
||||
from sklearn.datasets import load_wine, load_iris
|
||||
from stree import Splitter
|
||||
from .utils import load_dataset
|
||||
|
||||
|
||||
class Splitter_test(unittest.TestCase):
|
||||
@@ -17,7 +18,7 @@ class Splitter_test(unittest.TestCase):
|
||||
def build(
|
||||
clf=SVC,
|
||||
min_samples_split=0,
|
||||
splitter_type="random",
|
||||
feature_select="random",
|
||||
criterion="gini",
|
||||
criteria="max_samples",
|
||||
random_state=None,
|
||||
@@ -25,7 +26,7 @@ class Splitter_test(unittest.TestCase):
|
||||
return Splitter(
|
||||
clf=clf(random_state=random_state, kernel="rbf"),
|
||||
min_samples_split=min_samples_split,
|
||||
splitter_type=splitter_type,
|
||||
feature_select=feature_select,
|
||||
criterion=criterion,
|
||||
criteria=criteria,
|
||||
random_state=random_state,
|
||||
@@ -39,20 +40,20 @@ class Splitter_test(unittest.TestCase):
|
||||
with self.assertRaises(ValueError):
|
||||
self.build(criterion="duck")
|
||||
with self.assertRaises(ValueError):
|
||||
self.build(splitter_type="duck")
|
||||
self.build(feature_select="duck")
|
||||
with self.assertRaises(ValueError):
|
||||
self.build(criteria="duck")
|
||||
with self.assertRaises(ValueError):
|
||||
_ = Splitter(clf=None)
|
||||
for splitter_type in ["best", "random"]:
|
||||
for feature_select in ["best", "random"]:
|
||||
for criterion in ["gini", "entropy"]:
|
||||
for criteria in ["max_samples", "impurity"]:
|
||||
tcl = self.build(
|
||||
splitter_type=splitter_type,
|
||||
feature_select=feature_select,
|
||||
criterion=criterion,
|
||||
criteria=criteria,
|
||||
)
|
||||
self.assertEqual(splitter_type, tcl._splitter_type)
|
||||
self.assertEqual(feature_select, tcl._feature_select)
|
||||
self.assertEqual(criterion, tcl._criterion)
|
||||
self.assertEqual(criteria, tcl._criteria)
|
||||
|
||||
@@ -177,32 +178,34 @@ class Splitter_test(unittest.TestCase):
|
||||
def test_best_splitter_few_sets(self):
|
||||
X, y = load_iris(return_X_y=True)
|
||||
X = np.delete(X, 3, 1)
|
||||
tcl = self.build(splitter_type="best", random_state=self._random_state)
|
||||
tcl = self.build(
|
||||
feature_select="best", random_state=self._random_state
|
||||
)
|
||||
dataset, computed = tcl.get_subspace(X, y, max_features=2)
|
||||
self.assertListEqual([0, 2], list(computed))
|
||||
self.assertListEqual(X[:, computed].tolist(), dataset.tolist())
|
||||
|
||||
def test_splitter_parameter(self):
|
||||
expected_values = [
|
||||
[1, 4, 9, 12], # best entropy max_samples
|
||||
[1, 3, 6, 10], # best entropy impurity
|
||||
[6, 8, 10, 12], # best gini max_samples
|
||||
[7, 8, 10, 11], # best gini impurity
|
||||
[0, 6, 11, 12], # best entropy max_samples
|
||||
[0, 6, 11, 12], # best entropy impurity
|
||||
[0, 6, 11, 12], # best gini max_samples
|
||||
[0, 6, 11, 12], # best gini impurity
|
||||
[0, 3, 8, 12], # random entropy max_samples
|
||||
[0, 3, 9, 11], # random entropy impurity
|
||||
[0, 4, 7, 12], # random gini max_samples
|
||||
[0, 2, 5, 6], # random gini impurity
|
||||
[0, 3, 7, 12], # random entropy impurity
|
||||
[1, 7, 9, 12], # random gini max_samples
|
||||
[1, 5, 8, 12], # random gini impurity
|
||||
]
|
||||
X, y = load_wine(return_X_y=True)
|
||||
rn = 0
|
||||
for splitter_type in ["best", "random"]:
|
||||
for feature_select in ["best", "random"]:
|
||||
for criterion in ["entropy", "gini"]:
|
||||
for criteria in [
|
||||
"max_samples",
|
||||
"impurity",
|
||||
]:
|
||||
tcl = self.build(
|
||||
splitter_type=splitter_type,
|
||||
feature_select=feature_select,
|
||||
criterion=criterion,
|
||||
criteria=criteria,
|
||||
)
|
||||
@@ -213,7 +216,7 @@ class Splitter_test(unittest.TestCase):
|
||||
# print(
|
||||
# "{}, # {:7s}{:8s}{:15s}".format(
|
||||
# list(computed),
|
||||
# splitter_type,
|
||||
# feature_select,
|
||||
# criterion,
|
||||
# criteria,
|
||||
# )
|
||||
@@ -222,3 +225,18 @@ class Splitter_test(unittest.TestCase):
|
||||
self.assertListEqual(
|
||||
X[:, computed].tolist(), dataset.tolist()
|
||||
)
|
||||
|
||||
def test_get_best_subspaces(self):
|
||||
results = [
|
||||
(4, [3, 4, 11, 13]),
|
||||
(7, [1, 3, 4, 5, 11, 13, 16]),
|
||||
(9, [1, 3, 4, 5, 7, 10, 11, 13, 16]),
|
||||
]
|
||||
X, y = load_dataset(n_features=20)
|
||||
for k, expected in results:
|
||||
tcl = self.build(
|
||||
feature_select="best",
|
||||
)
|
||||
Xs, computed = tcl.get_subspace(X, y, k)
|
||||
self.assertListEqual(expected, list(computed))
|
||||
self.assertListEqual(X[:, expected].tolist(), Xs.tolist())
|
||||
|
@@ -330,7 +330,7 @@ class Stree_test(unittest.TestCase):
|
||||
X, y = load_dataset(self._random_state)
|
||||
clf = Stree(random_state=self._random_state, max_features=2)
|
||||
clf.fit(X, y)
|
||||
self.assertAlmostEqual(0.9246666666666666, clf.score(X, y))
|
||||
self.assertAlmostEqual(0.9453333333333334, clf.score(X, y))
|
||||
|
||||
def test_bogus_splitter_parameter(self):
|
||||
clf = Stree(splitter="duck")
|
||||
|
Reference in New Issue
Block a user