mirror of
https://github.com/Doctorado-ML/STree.git
synced 2025-08-16 07:56:06 +00:00
Update weak test
This commit is contained in:
@@ -243,27 +243,27 @@ class Stree_test(unittest.TestCase):
|
||||
outcomes = {
|
||||
"Synt": {
|
||||
"max_samples liblinear": 0.9606666666666667,
|
||||
"max_samples linear": 0.786,
|
||||
"max_samples rbf": 0.7133333333333334,
|
||||
"max_samples poly": 0.618,
|
||||
"max_samples sigmoid": 0.8826666666666667,
|
||||
"max_samples linear": 0.9486666666666667,
|
||||
"max_samples rbf": 0.978,
|
||||
"max_samples poly": 0.96,
|
||||
"max_samples sigmoid": 0.908,
|
||||
"impurity liblinear": 0.9606666666666667,
|
||||
"impurity linear": 0.786,
|
||||
"impurity rbf": 0.7133333333333334,
|
||||
"impurity poly": 0.618,
|
||||
"impurity sigmoid": 0.8826666666666667,
|
||||
"impurity linear": 0.9486666666666667,
|
||||
"impurity rbf": 0.978,
|
||||
"impurity poly": 0.96,
|
||||
"impurity sigmoid": 0.908,
|
||||
},
|
||||
"Iris": {
|
||||
"max_samples liblinear": 1.0,
|
||||
"max_samples linear": 1.0,
|
||||
"max_samples rbf": 0.6910112359550562,
|
||||
"max_samples poly": 0.6966292134831461,
|
||||
"max_samples sigmoid": 0.6573033707865169,
|
||||
"impurity liblinear": 1,
|
||||
"impurity linear": 1,
|
||||
"impurity rbf": 0.6910112359550562,
|
||||
"impurity poly": 0.6966292134831461,
|
||||
"impurity sigmoid": 0.6573033707865169,
|
||||
"max_samples rbf": 0.7808988764044944,
|
||||
"max_samples poly": 0.8202247191011236,
|
||||
"max_samples sigmoid": 0.7528089887640449,
|
||||
"impurity liblinear": 1.0,
|
||||
"impurity linear": 1.0,
|
||||
"impurity rbf": 0.7808988764044944,
|
||||
"impurity poly": 0.8202247191011236,
|
||||
"impurity sigmoid": 0.7528089887640449,
|
||||
},
|
||||
}
|
||||
|
||||
@@ -274,17 +274,20 @@ class Stree_test(unittest.TestCase):
|
||||
clf = Stree(
|
||||
C=55,
|
||||
max_iter=1e5,
|
||||
multiclass_strategy="ovr",
|
||||
multiclass_strategy="ovr"
|
||||
if kernel == "liblinear"
|
||||
else "ovo",
|
||||
kernel=kernel,
|
||||
random_state=self._random_state,
|
||||
)
|
||||
clf.fit(px, py)
|
||||
outcome = outcomes[name][f"{criteria} {kernel}"]
|
||||
# print(
|
||||
# f"{name} {criteria} {kernel} {outcome} "
|
||||
# f"{clf.score(px, py)}"
|
||||
# )
|
||||
self.assertAlmostEqual(outcome, clf.score(px, py))
|
||||
# print(f'"{criteria} {kernel}": {clf.score(px, py)},')
|
||||
self.assertAlmostEqual(
|
||||
outcome,
|
||||
clf.score(px, py),
|
||||
f"{name} - {criteria} - {kernel}",
|
||||
)
|
||||
|
||||
def test_max_features(self):
|
||||
n_features = 16
|
||||
|
Reference in New Issue
Block a user