mirror of
https://github.com/Doctorado-ML/STree.git
synced 2025-08-15 07:26:01 +00:00
New predict proba (#53)
* Add complete classes counts to node and tests * Implement optimized predict and new predict_proba * Add predict_proba test * Add python 3.10 to CI
This commit is contained in:
committed by
GitHub
parent
93be8a89a8
commit
2f6ae648a1
2
.github/workflows/main.yml
vendored
2
.github/workflows/main.yml
vendored
@@ -13,7 +13,7 @@ jobs:
|
||||
strategy:
|
||||
matrix:
|
||||
os: [macos-latest, ubuntu-latest, windows-latest]
|
||||
python: [3.8]
|
||||
python: [3.8, "3.10"]
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
|
@@ -68,6 +68,7 @@ class Snode:
|
||||
self._impurity = impurity
|
||||
self._partition_column: int = -1
|
||||
self._scaler = scaler
|
||||
self._proba = None
|
||||
|
||||
@classmethod
|
||||
def copy(cls, node: "Snode") -> "Snode":
|
||||
@@ -127,23 +128,22 @@ class Snode:
|
||||
def get_up(self) -> "Snode":
|
||||
return self._up
|
||||
|
||||
def make_predictor(self):
|
||||
def make_predictor(self, num_classes: int) -> None:
|
||||
"""Compute the class of the predictor and its belief based on the
|
||||
subdataset of the node only if it is a leaf
|
||||
"""
|
||||
if not self.is_leaf():
|
||||
return
|
||||
classes, card = np.unique(self._y, return_counts=True)
|
||||
if len(classes) > 1:
|
||||
self._proba = np.zeros((num_classes,), dtype=np.int64)
|
||||
for c, n in zip(classes, card):
|
||||
self._proba[c] = n
|
||||
try:
|
||||
max_card = max(card)
|
||||
self._class = classes[card == max_card][0]
|
||||
self._belief = max_card / np.sum(card)
|
||||
else:
|
||||
self._belief = 1
|
||||
try:
|
||||
self._class = classes[0]
|
||||
except IndexError:
|
||||
self._class = None
|
||||
except ValueError:
|
||||
self._class = None
|
||||
|
||||
def graph(self):
|
||||
"""
|
||||
@@ -155,7 +155,7 @@ class Snode:
|
||||
output += (
|
||||
f'N{id(self)} [shape=box style=filled label="'
|
||||
f"class={self._class} impurity={self._impurity:.3f} "
|
||||
f'classes={count_values[0]} samples={count_values[1]}"];\n'
|
||||
f'counts={self._proba}"];\n'
|
||||
)
|
||||
else:
|
||||
output += (
|
||||
|
108
stree/Strees.py
108
stree/Strees.py
@@ -314,7 +314,7 @@ class Stree(BaseEstimator, ClassifierMixin):
|
||||
if np.unique(y).shape[0] == 1:
|
||||
# only 1 class => pure dataset
|
||||
node.set_title(title + ", <pure>")
|
||||
node.make_predictor()
|
||||
node.make_predictor(self.n_classes_)
|
||||
return node
|
||||
# Train the model
|
||||
clf = self._build_clf()
|
||||
@@ -333,7 +333,7 @@ class Stree(BaseEstimator, ClassifierMixin):
|
||||
if X_U is None or X_D is None:
|
||||
# didn't part anything
|
||||
node.set_title(title + ", <cgaf>")
|
||||
node.make_predictor()
|
||||
node.make_predictor(self.n_classes_)
|
||||
return node
|
||||
node.set_up(
|
||||
self._train(X_U, y_u, sw_u, depth + 1, title + f" - Up({depth+1})")
|
||||
@@ -367,28 +367,66 @@ class Stree(BaseEstimator, ClassifierMixin):
|
||||
)
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _reorder_results(y: np.array, indices: np.array) -> np.array:
|
||||
"""Reorder an array based on the array of indices passed
|
||||
def __predict_class(self, X: np.array) -> np.array:
|
||||
def compute_prediction(xp, indices, node):
|
||||
if xp is None:
|
||||
return
|
||||
if node.is_leaf():
|
||||
# set a class for indices
|
||||
result[indices] = node._proba
|
||||
return
|
||||
self.splitter_.partition(xp, node, train=False)
|
||||
x_u, x_d = self.splitter_.part(xp)
|
||||
i_u, i_d = self.splitter_.part(indices)
|
||||
compute_prediction(x_u, i_u, node.get_up())
|
||||
compute_prediction(x_d, i_d, node.get_down())
|
||||
|
||||
# setup prediction & make it happen
|
||||
result = np.zeros((X.shape[0], self.n_classes_))
|
||||
indices = np.arange(X.shape[0])
|
||||
compute_prediction(X, indices, self.tree_)
|
||||
return result
|
||||
|
||||
def check_predict(self, X) -> np.array:
|
||||
check_is_fitted(self, ["tree_"])
|
||||
# Input validation
|
||||
X = check_array(X)
|
||||
if X.shape[1] != self.n_features_:
|
||||
raise ValueError(
|
||||
f"Expected {self.n_features_} features but got "
|
||||
f"({X.shape[1]})"
|
||||
)
|
||||
return X
|
||||
|
||||
def predict_proba(self, X: np.array) -> np.array:
|
||||
"""Predict class probabilities of the input samples X.
|
||||
|
||||
The predicted class probability is the fraction of samples of the same
|
||||
class in a leaf.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
y : np.array
|
||||
data untidy
|
||||
indices : np.array
|
||||
indices used to set order
|
||||
X : dataset of samples.
|
||||
|
||||
Returns
|
||||
-------
|
||||
np.array
|
||||
array y ordered
|
||||
proba : array of shape (n_samples, n_classes)
|
||||
The class probabilities of the input samples.
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
if dataset with inconsistent number of features
|
||||
NotFittedError
|
||||
if model is not fitted
|
||||
"""
|
||||
# return array of same type given in y
|
||||
y_ordered = y.copy()
|
||||
indices = indices.astype(int)
|
||||
for i, index in enumerate(indices):
|
||||
y_ordered[index] = y[i]
|
||||
return y_ordered
|
||||
|
||||
X = self.check_predict(X)
|
||||
# return # of samples of each class in leaf node
|
||||
values = self.__predict_class(X)
|
||||
normalizer = values.sum(axis=1)[:, np.newaxis]
|
||||
normalizer[normalizer == 0.0] = 1.0
|
||||
return values / normalizer
|
||||
|
||||
def predict(self, X: np.array) -> np.array:
|
||||
"""Predict labels for each sample in dataset passed
|
||||
@@ -410,40 +448,8 @@ class Stree(BaseEstimator, ClassifierMixin):
|
||||
NotFittedError
|
||||
if model is not fitted
|
||||
"""
|
||||
|
||||
def predict_class(
|
||||
xp: np.array, indices: np.array, node: Snode
|
||||
) -> np.array:
|
||||
if xp is None:
|
||||
return [], []
|
||||
if node.is_leaf():
|
||||
# set a class for every sample in dataset
|
||||
prediction = np.full((xp.shape[0], 1), node._class)
|
||||
return prediction, indices
|
||||
self.splitter_.partition(xp, node, train=False)
|
||||
x_u, x_d = self.splitter_.part(xp)
|
||||
i_u, i_d = self.splitter_.part(indices)
|
||||
prx_u, prin_u = predict_class(x_u, i_u, node.get_up())
|
||||
prx_d, prin_d = predict_class(x_d, i_d, node.get_down())
|
||||
return np.append(prx_u, prx_d), np.append(prin_u, prin_d)
|
||||
|
||||
# sklearn check
|
||||
check_is_fitted(self, ["tree_"])
|
||||
# Input validation
|
||||
X = check_array(X)
|
||||
if X.shape[1] != self.n_features_:
|
||||
raise ValueError(
|
||||
f"Expected {self.n_features_} features but got "
|
||||
f"({X.shape[1]})"
|
||||
)
|
||||
# setup prediction & make it happen
|
||||
indices = np.arange(X.shape[0])
|
||||
result = (
|
||||
self._reorder_results(*predict_class(X, indices, self.tree_))
|
||||
.astype(int)
|
||||
.ravel()
|
||||
)
|
||||
return self.classes_[result]
|
||||
X = self.check_predict(X)
|
||||
return self.classes_[np.argmax(self.__predict_class(X), axis=1)]
|
||||
|
||||
def nodes_leaves(self) -> tuple:
|
||||
"""Compute the number of nodes and leaves in the built tree
|
||||
|
@@ -67,10 +67,28 @@ class Snode_test(unittest.TestCase):
|
||||
|
||||
def test_make_predictor_on_leaf(self):
|
||||
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test")
|
||||
test.make_predictor()
|
||||
test.make_predictor(2)
|
||||
self.assertEqual(1, test._class)
|
||||
self.assertEqual(0.75, test._belief)
|
||||
self.assertEqual(-1, test._partition_column)
|
||||
self.assertListEqual([1, 3], test._proba.tolist())
|
||||
|
||||
def test_make_predictor_on_not_leaf(self):
|
||||
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test")
|
||||
test.set_up(Snode(None, [1], [1], [], 0.0, "another_test"))
|
||||
test.make_predictor(2)
|
||||
self.assertIsNone(test._class)
|
||||
self.assertEqual(0, test._belief)
|
||||
self.assertEqual(-1, test._partition_column)
|
||||
self.assertEqual(-1, test.get_up()._partition_column)
|
||||
self.assertIsNone(test._proba)
|
||||
|
||||
def test_make_predictor_on_leaf_bogus_data(self):
|
||||
test = Snode(None, [1, 2, 3, 4], [], [], 0.0, "test")
|
||||
test.make_predictor(2)
|
||||
self.assertIsNone(test._class)
|
||||
self.assertEqual(-1, test._partition_column)
|
||||
self.assertListEqual([0, 0], test._proba.tolist())
|
||||
|
||||
def test_set_title(self):
|
||||
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test")
|
||||
@@ -97,21 +115,6 @@ class Snode_test(unittest.TestCase):
|
||||
test.set_features([1, 2])
|
||||
self.assertListEqual([1, 2], test.get_features())
|
||||
|
||||
def test_make_predictor_on_not_leaf(self):
|
||||
test = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test")
|
||||
test.set_up(Snode(None, [1], [1], [], 0.0, "another_test"))
|
||||
test.make_predictor()
|
||||
self.assertIsNone(test._class)
|
||||
self.assertEqual(0, test._belief)
|
||||
self.assertEqual(-1, test._partition_column)
|
||||
self.assertEqual(-1, test.get_up()._partition_column)
|
||||
|
||||
def test_make_predictor_on_leaf_bogus_data(self):
|
||||
test = Snode(None, [1, 2, 3, 4], [], [], 0.0, "test")
|
||||
test.make_predictor()
|
||||
self.assertIsNone(test._class)
|
||||
self.assertEqual(-1, test._partition_column)
|
||||
|
||||
def test_copy_node(self):
|
||||
px = [1, 2, 3, 4]
|
||||
py = [1]
|
||||
|
@@ -115,6 +115,38 @@ class Stree_test(unittest.TestCase):
|
||||
yp = clf.fit(X, y).predict(X[:num, :])
|
||||
self.assertListEqual(y[:num].tolist(), yp.tolist())
|
||||
|
||||
def test_multiple_predict_proba(self):
|
||||
expected = {
|
||||
"liblinear": {
|
||||
0: [0.02401129943502825, 0.9759887005649718],
|
||||
17: [0.9282970550576184, 0.07170294494238157],
|
||||
},
|
||||
"linear": {
|
||||
0: [0.029329608938547486, 0.9706703910614525],
|
||||
17: [0.9298469387755102, 0.07015306122448979],
|
||||
},
|
||||
"rbf": {
|
||||
0: [0.023448275862068966, 0.976551724137931],
|
||||
17: [0.9458064516129032, 0.05419354838709677],
|
||||
},
|
||||
"poly": {
|
||||
0: [0.01601164483260553, 0.9839883551673945],
|
||||
17: [0.9089790897908979, 0.0910209102091021],
|
||||
},
|
||||
}
|
||||
indices = [0, 17]
|
||||
X, y = load_dataset(self._random_state)
|
||||
for kernel in ["liblinear", "linear", "rbf", "poly"]:
|
||||
clf = Stree(
|
||||
kernel=kernel,
|
||||
multiclass_strategy="ovr" if kernel == "liblinear" else "ovo",
|
||||
random_state=self._random_state,
|
||||
)
|
||||
yp = clf.fit(X, y).predict_proba(X)
|
||||
for index in indices:
|
||||
for exp, comp in zip(expected[kernel][index], yp[index]):
|
||||
self.assertAlmostEqual(exp, comp)
|
||||
|
||||
def test_single_vs_multiple_prediction(self):
|
||||
"""Check if predicting sample by sample gives the same result as
|
||||
predicting all samples at once
|
||||
@@ -695,7 +727,7 @@ class Stree_test(unittest.TestCase):
|
||||
)
|
||||
expected_tail = (
|
||||
' [shape=box style=filled label="class=1 impurity=0.000 '
|
||||
'classes=[1] samples=[1]"];\n}\n'
|
||||
'counts=[0 1 0]"];\n}\n'
|
||||
)
|
||||
self.assertEqual(clf.graph(), expected_head + "}\n")
|
||||
clf.fit(X, y)
|
||||
@@ -715,7 +747,7 @@ class Stree_test(unittest.TestCase):
|
||||
)
|
||||
expected_tail = (
|
||||
' [shape=box style=filled label="class=1 impurity=0.000 '
|
||||
'classes=[1] samples=[1]"];\n}\n'
|
||||
'counts=[0 1 0]"];\n}\n'
|
||||
)
|
||||
self.assertEqual(clf.graph("Sample title"), expected_head + "}\n")
|
||||
clf.fit(X, y)
|
||||
|
Reference in New Issue
Block a user