mirror of
https://github.com/Doctorado-ML/Odte.git
synced 2025-07-11 00:02:30 +00:00
14 lines
2.7 KiB
Markdown
14 lines
2.7 KiB
Markdown
# Hyperparameters
|
|
|
|
| | **Hyperparameter** | **Type/Values** | **Default** | |
|
|
| --- | ------------------- | -------------------------------------------------------------- | ----------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| | estimator | \<sklearn.BaseEstimator\> | Stree() | Base estimator used to build each element of the ensemble. |
|
|
| | n_jobs | \<int\> | -1 | Specifies the number of threads used to build the ensemble (-1 equals to all cores available) |
|
|
| | random_state | \<int\> | None | Controls the pseudo random number generation for shuffling the data for probability estimates. Ignored when probability is False.<br>Pass an int for reproducible output across multiple function calls |
|
|
| | max_features | \<int\>, \<float\> <br><br>or {“auto”, “sqrt”, “log2”} | None | The number of features to consider in each tree:<br>\<int\> _max_features_ features for each tree.<br>\<float\> _max_features_ is a fraction and int(_max_features_ \* _n_features_) features are considered for each tree.<br>“auto” _max_features_=sqrt(_n_features_)<br>“sqrt” _max_features_=sqrt(_n_features_)<br>“log2” _max_features_=log2(_n_features_)<br>_None_ _max_features_=_n_features_ |
|
|
| | max_samples | \<int\>, \<float\> | None |The number of samples to consider for bootstrap:<br>\<int\> _max_samples_ samples for each tree.<br>\<float\> _max_samples_ is a fraction and int(_max_samples_ \* _n_samples_) samples for each tree. |
|
|
| | n_estimators | \<int\> | 100 | The number of trees the ensemble is going to build |
|
|
| | be_hyperparams | \<str\> | "{}" | Hyperparameteres passed to the base estimator, i.e. "{\\"C\\": 17, \\"kernel\\": \\"rbf\\"}"|
|
|
|
|
|