mirror of
https://github.com/Doctorado-ML/mufs.git
synced 2025-08-16 08:05:56 +00:00
103 lines
3.4 KiB
Python
Executable File
103 lines
3.4 KiB
Python
Executable File
import unittest
|
|
from mdlp import MDLP
|
|
from sklearn.datasets import load_wine, load_iris
|
|
|
|
from ..Selection import MFS
|
|
|
|
|
|
class MFS_test(unittest.TestCase):
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
mdlp = MDLP(random_state=1)
|
|
X, self.y_w = load_wine(return_X_y=True)
|
|
self.X_w = mdlp.fit_transform(X, self.y_w).astype("int64")
|
|
X, self.y_i = load_iris(return_X_y=True)
|
|
mdlp = MDLP(random_state=1)
|
|
self.X_i = mdlp.fit_transform(X, self.y_i).astype("int64")
|
|
|
|
def test_initialize(self):
|
|
mfs = MFS()
|
|
mfs.fcbs(self.X_w, self.y_w, 0.05)
|
|
mfs._initialize()
|
|
self.assertIsNone(mfs.get_results())
|
|
self.assertListEqual([], mfs.get_scores())
|
|
self.assertDictEqual({}, mfs._su_features)
|
|
self.assertIsNone(mfs._su_labels)
|
|
|
|
def test_csf_wine(self):
|
|
mfs = MFS()
|
|
expected = [6, 12, 9, 4, 10, 0]
|
|
self.assertListEqual(
|
|
expected, mfs.cfs(self.X_w, self.y_w).get_results()
|
|
)
|
|
expected = [
|
|
0.5218299405215557,
|
|
0.602513857132804,
|
|
0.4877384978817362,
|
|
0.3743688234383051,
|
|
0.28795671854246285,
|
|
0.2309165735173175,
|
|
]
|
|
self.assertListEqual(expected, mfs.get_scores())
|
|
|
|
def test_csf_iris(self):
|
|
mfs = MFS()
|
|
expected = [3, 2, 0, 1]
|
|
computed = mfs.cfs(self.X_i, self.y_i).get_results()
|
|
self.assertListEqual(expected, computed)
|
|
expected = [
|
|
0.870521418179061,
|
|
0.8968651482682227,
|
|
0.5908278453318913,
|
|
0.40371971570693366,
|
|
]
|
|
self.assertListEqual(expected, mfs.get_scores())
|
|
|
|
def test_fcbs_wine(self):
|
|
mfs = MFS()
|
|
computed = mfs.fcbs(self.X_w, self.y_w, threshold=0.05).get_results()
|
|
expected = [6, 9, 12, 0, 11, 4]
|
|
self.assertListEqual(expected, computed)
|
|
expected = [
|
|
0.5218299405215557,
|
|
0.46224298637417455,
|
|
0.44518278979085646,
|
|
0.38942355544213786,
|
|
0.3790082191220976,
|
|
0.24972405134844652,
|
|
]
|
|
self.assertListEqual(expected, mfs.get_scores())
|
|
|
|
def test_fcbs_iris(self):
|
|
mfs = MFS()
|
|
computed = mfs.fcbs(self.X_i, self.y_i, threshold=0.05).get_results()
|
|
expected = [3, 2]
|
|
self.assertListEqual(expected, computed)
|
|
expected = [0.870521418179061, 0.810724587460511]
|
|
self.assertListEqual(expected, mfs.get_scores())
|
|
|
|
def test_compute_su_labels(self):
|
|
mfs = MFS()
|
|
mfs.fcbs(self.X_i, self.y_i, threshold=0.05)
|
|
expected = [0.0, 0.0, 0.810724587460511, 0.870521418179061]
|
|
self.assertListEqual(expected, mfs._compute_su_labels().tolist())
|
|
mfs._su_labels = [1, 2, 3, 4]
|
|
self.assertListEqual([1, 2, 3, 4], mfs._compute_su_labels())
|
|
|
|
def test_invalid_threshold(self):
|
|
mfs = MFS()
|
|
with self.assertRaises(ValueError):
|
|
mfs.fcbs(self.X_i, self.y_i, threshold=1e-5)
|
|
|
|
def test_fcbs_exit_threshold(self):
|
|
mfs = MFS()
|
|
computed = mfs.fcbs(self.X_w, self.y_w, threshold=0.4).get_results()
|
|
expected = [6, 9, 12]
|
|
self.assertListEqual(expected, computed)
|
|
expected = [
|
|
0.5218299405215557,
|
|
0.46224298637417455,
|
|
0.44518278979085646,
|
|
]
|
|
self.assertListEqual(expected, mfs.get_scores())
|