import unittest from mdlp import MDLP from sklearn.datasets import load_wine, load_iris from ..Selection import MFS class MFS_test(unittest.TestCase): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) mdlp = MDLP(random_state=1) X, self.y_w = load_wine(return_X_y=True) self.X_w = mdlp.fit_transform(X, self.y_w).astype("int64") X, self.y_i = load_iris(return_X_y=True) mdlp = MDLP(random_state=1) self.X_i = mdlp.fit_transform(X, self.y_i).astype("int64") def test_initialize(self): mfs = MFS() mfs.fcbs(self.X_w, self.y_w, 0.05) mfs._initialize() self.assertIsNone(mfs.get_results()) self.assertListEqual([], mfs.get_scores()) self.assertDictEqual({}, mfs._su_features) self.assertIsNone(mfs._su_labels) def test_csf_wine(self): mfs = MFS() expected = [6, 12, 9, 4, 10, 0] self.assertListEqual( expected, mfs.cfs(self.X_w, self.y_w).get_results() ) expected = [ 0.5218299405215557, 0.602513857132804, 0.4877384978817362, 0.3743688234383051, 0.28795671854246285, 0.2309165735173175, ] self.assertListEqual(expected, mfs.get_scores()) def test_csf_iris(self): mfs = MFS() expected = [3, 2, 0, 1] computed = mfs.cfs(self.X_i, self.y_i).get_results() self.assertListEqual(expected, computed) expected = [ 0.870521418179061, 0.8968651482682227, 0.5908278453318913, 0.40371971570693366, ] self.assertListEqual(expected, mfs.get_scores()) def test_fcbs_wine(self): mfs = MFS() computed = mfs.fcbs(self.X_w, self.y_w, threshold=0.05).get_results() expected = [6, 9, 12, 0, 11, 4] self.assertListEqual(expected, computed) expected = [ 0.5218299405215557, 0.46224298637417455, 0.44518278979085646, 0.38942355544213786, 0.3790082191220976, 0.24972405134844652, ] self.assertListEqual(expected, mfs.get_scores()) def test_fcbs_iris(self): mfs = MFS() computed = mfs.fcbs(self.X_i, self.y_i, threshold=0.05).get_results() expected = [3, 2] self.assertListEqual(expected, computed) expected = [0.870521418179061, 0.810724587460511] self.assertListEqual(expected, mfs.get_scores()) def test_compute_su_labels(self): mfs = MFS() mfs.fcbs(self.X_i, self.y_i, threshold=0.05) expected = [0.0, 0.0, 0.810724587460511, 0.870521418179061] self.assertListEqual(expected, mfs._compute_su_labels().tolist()) mfs._su_labels = [1, 2, 3, 4] self.assertListEqual([1, 2, 3, 4], mfs._compute_su_labels()) def test_invalid_threshold(self): mfs = MFS() with self.assertRaises(ValueError): mfs.fcbs(self.X_i, self.y_i, threshold=1e-5) def test_fcbs_exit_threshold(self): mfs = MFS() computed = mfs.fcbs(self.X_w, self.y_w, threshold=0.4).get_results() expected = [6, 9, 12] self.assertListEqual(expected, computed) expected = [ 0.5218299405215557, 0.46224298637417455, 0.44518278979085646, ] self.assertListEqual(expected, mfs.get_scores())