mirror of
https://github.com/Doctorado-ML/mufs.git
synced 2025-08-16 08:05:56 +00:00
26 lines
1.9 KiB
Markdown
26 lines
1.9 KiB
Markdown

|
|
[](https://www.codacy.com/gh/Doctorado-ML/mufs/dashboard?utm_source=github.com&utm_medium=referral&utm_content=Doctorado-ML/mufs&utm_campaign=Badge_Grade)
|
|
[](https://lgtm.com/projects/g/Doctorado-ML/mufs/context:python)
|
|
[](https://badge.fury.io/py/MUFS)
|
|
[](https://haystack.rmontanana.es:25000/dashboard?id=mufs)
|
|
[](https://haystack.rmontanana.es:25000/dashboard?id=mufs)
|
|

|
|
|
|
# MUFS
|
|
|
|
## Multi Feature Selection
|
|
|
|
### Fast Correlation-Based Filter
|
|
|
|
Feature Selection for High-Dimensional Data : A Fast Correlation-Based Filter Solution. / Yu, Lei; Liu, Huan.
|
|
|
|
Proceedings, Twentieth International Conference on Machine Learning. ed. / T. Fawcett; N. Mishra. 2003. p. 856-863 (Proceedings, Twentieth International Conference on Machine Learning; Vol. 2).
|
|
|
|
### Correlation-based Feature Selection
|
|
|
|
Hall, M. A. (1999), 'Correlation-based Feature Selection for Machine Learning'.
|
|
|
|
### IWSS
|
|
|
|
Based on: P. Bermejo, J. A. Gamez and J. M. Puerta, "Incremental Wrapper-based subset Selection with replacement: An advantageous alternative to sequential forward selection," 2009 IEEE Symposium on Computational Intelligence and Data Mining, 2009, pp. 367-374, doi: 10.1109/CIDM.2009.4938673.
|