mirror of
https://github.com/Doctorado-ML/mufs.git
synced 2025-08-17 08:35:52 +00:00
Compare commits
28 Commits
Author | SHA1 | Date | |
---|---|---|---|
0fdd754050
|
|||
7035cc4edc
|
|||
edc8816041
|
|||
20db8c5745
|
|||
a9384685fe
|
|||
86aaf23dd9
|
|||
9395e8cc23
|
|||
5723da9535
|
|||
fb4ed468b0
|
|||
57334a0b74
|
|||
c47f69847e
|
|||
4532309309
|
|||
aa53e3dbc0
|
|||
2861e22c57
|
|||
e0acd6d239
|
|||
3d98a39d4b
|
|||
1a4de38328
|
|||
a9c40f1fb7
|
|||
81da48ec31
|
|||
2548ab8533
|
|||
08cade5dec
|
|||
0a13f5e5eb
|
|||
a0f172ac13
|
|||
|
cfb37d2f6c | ||
5d1720c9ae
|
|||
1c5f1977e5
|
|||
27f8a370c5
|
|||
|
9d74bc8a70 |
39
.github/workflows/main.yml
vendored
39
.github/workflows/main.yml
vendored
@@ -12,11 +12,13 @@ jobs:
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
os: [macos-latest, ubuntu-latest]
|
||||
python: [3.8]
|
||||
os: [ubuntu-latest]
|
||||
python: ["3.10"]
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
- name: Set up Python ${{ matrix.python }}
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
@@ -26,14 +28,37 @@ jobs:
|
||||
pip install -q --upgrade pip
|
||||
pip install -q cython
|
||||
pip install -q numpy
|
||||
pip install -q git+git://github.com/doctorado-ml/mdlp
|
||||
pip install -q -r requirements.txt
|
||||
pip install -q --upgrade codecov coverage black flake8 codacy-coverage
|
||||
pip install -q git+https://github.com/doctorado-ml/mdlp
|
||||
pip install -q -r requirements/dev.txt
|
||||
pip install -q --upgrade codecov coverage black flake8 codacy-coverage unittest-xml-reporting
|
||||
- name: Lint
|
||||
run: |
|
||||
black --check --diff mufs
|
||||
flake8 --count mufs
|
||||
- name: Tests & coverage
|
||||
run: |
|
||||
coverage run -m unittest -v mufs.tests
|
||||
mkdir .report
|
||||
coverage run -m xmlrunner -v mufs.tests -o .report
|
||||
coverage xml -i -o .report/coverage.xml
|
||||
coverage report -m --fail-under=100
|
||||
- name: Get project version
|
||||
run: echo "project_version=$(git describe --tags --abbrev=0)" >> $GITHUB_ENV
|
||||
- name: Override Coverage Source Path for Sonar
|
||||
run: sed -i 's/\/home\/runner\/work\/mufs\/mufs\//\/github\/workspace\//g' .report/coverage.xml
|
||||
- name: SonarQube scanner
|
||||
uses: sonarsource/sonarqube-scan-action@master
|
||||
env:
|
||||
SONAR_TOKEN: ${{ secrets.SONAR_TOKEN }}
|
||||
SONAR_HOST_URL: ${{ secrets.SONAR_HOST_URL }}
|
||||
with:
|
||||
args: >
|
||||
-Dsonar.projectVersion=${{ env.project_version }}
|
||||
-Dsonar.python.coverage.reportPaths=.report/coverage.xml
|
||||
-Dsonar.python.xunit.reportPath=.report/TEST*
|
||||
# If you wish to fail your job when the Quality Gate is red, uncomment the
|
||||
# following lines. This would typically be used to fail a deployment.
|
||||
- name: Quality Gate
|
||||
uses: sonarsource/sonarqube-quality-gate-action@master
|
||||
timeout-minutes: 5
|
||||
env:
|
||||
SONAR_TOKEN: ${{ secrets.SONAR_TOKEN }}
|
||||
|
@@ -1,12 +1,12 @@
|
||||
repos:
|
||||
- repo: https://github.com/ambv/black
|
||||
rev: 20.8b1
|
||||
rev: 22.3.0
|
||||
hooks:
|
||||
- id: black
|
||||
exclude: ".virtual_documents"
|
||||
language_version: python3.8
|
||||
- repo: https://gitlab.com/pycqa/flake8
|
||||
rev: 3.8.4
|
||||
rev: 3.9.2
|
||||
hooks:
|
||||
- id: flake8
|
||||
exclude: ".virtual_documents"
|
||||
@@ -16,7 +16,7 @@ repos:
|
||||
# - id: mypy
|
||||
# # args: [--strict, --ignore-missing-imports]
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v3.4.0
|
||||
rev: v4.2.0
|
||||
hooks:
|
||||
- id: trailing-whitespace
|
||||
- id: check-case-conflict
|
||||
|
5
Makefile
5
Makefile
@@ -1,6 +1,6 @@
|
||||
SHELL := /bin/bash
|
||||
.DEFAULT_GOAL := help
|
||||
.PHONY: coverage deps help lint push test doc build
|
||||
.PHONY: coverage deps help lint push test build
|
||||
|
||||
coverage: ## Run tests with coverage
|
||||
coverage erase
|
||||
@@ -26,9 +26,6 @@ build: ## Build package
|
||||
rm -fr build/*
|
||||
python setup.py sdist bdist_wheel
|
||||
|
||||
doc-clean: ## Update documentation
|
||||
make -C docs --makefile=Makefile clean
|
||||
|
||||
help: ## Show help message
|
||||
@IFS=$$'\n' ; \
|
||||
help_lines=(`fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \
|
||||
|
@@ -1,6 +1,10 @@
|
||||

|
||||
[](https://www.codacy.com/gh/Doctorado-ML/mufs/dashboard?utm_source=github.com&utm_medium=referral&utm_content=Doctorado-ML/mufs&utm_campaign=Badge_Grade)
|
||||
[](https://lgtm.com/projects/g/Doctorado-ML/mufs/context:python)
|
||||
[](https://badge.fury.io/py/MUFS)
|
||||
[](https://haystack.rmontanana.es:25000/dashboard?id=mufs)
|
||||
[](https://haystack.rmontanana.es:25000/dashboard?id=mufs)
|
||||

|
||||
|
||||
# MUFS
|
||||
|
||||
@@ -15,3 +19,7 @@ Proceedings, Twentieth International Conference on Machine Learning. ed. / T. Fa
|
||||
### Correlation-based Feature Selection
|
||||
|
||||
Hall, M. A. (1999), 'Correlation-based Feature Selection for Machine Learning'.
|
||||
|
||||
### IWSS
|
||||
|
||||
Based on: P. Bermejo, J. A. Gamez and J. M. Puerta, "Incremental Wrapper-based subset Selection with replacement: An advantageous alternative to sequential forward selection," 2009 IEEE Symposium on Computational Intelligence and Data Mining, 2009, pp. 367-374, doi: 10.1109/CIDM.2009.4938673.
|
||||
|
@@ -3,6 +3,7 @@ from sys import float_info
|
||||
from itertools import combinations
|
||||
import numpy as np
|
||||
from .Metrics import Metrics
|
||||
from ._version import __version__
|
||||
|
||||
|
||||
class MUFS:
|
||||
@@ -26,7 +27,7 @@ class MUFS:
|
||||
"""
|
||||
|
||||
def __init__(self, max_features=None, discrete=True):
|
||||
self._max_features = max_features
|
||||
self.max_features = max_features
|
||||
self._discrete = discrete
|
||||
self.symmetrical_uncertainty = (
|
||||
Metrics.symmetrical_uncertainty
|
||||
@@ -40,6 +41,11 @@ class MUFS:
|
||||
)
|
||||
self._fitted = False
|
||||
|
||||
@staticmethod
|
||||
def version() -> str:
|
||||
"""Return the version of the package."""
|
||||
return __version__
|
||||
|
||||
def _initialize(self, X, y):
|
||||
"""Initialize the attributes so support multiple calls using same
|
||||
object
|
||||
@@ -53,8 +59,10 @@ class MUFS:
|
||||
"""
|
||||
self.X_ = X
|
||||
self.y_ = y
|
||||
if self._max_features is None:
|
||||
if self.max_features is None:
|
||||
self._max_features = X.shape[1]
|
||||
else:
|
||||
self._max_features = self.max_features
|
||||
self._result = None
|
||||
self._scores = []
|
||||
self._su_labels = None
|
||||
@@ -105,7 +113,9 @@ class MUFS:
|
||||
|
||||
def _compute_merit(self, features):
|
||||
"""Compute the merit function for cfs algorithms
|
||||
|
||||
"Good feature subsets contain features highly correlated with
|
||||
(predictive of) the class, yet uncorrelated with (not predictive of)
|
||||
each other"
|
||||
Parameters
|
||||
----------
|
||||
features : list
|
||||
@@ -124,7 +134,7 @@ class MUFS:
|
||||
k = len(features)
|
||||
for pair in list(combinations(features, 2)):
|
||||
rff += self._compute_su_features(*pair)
|
||||
return rcf / sqrt(k + (k ** 2 - k) * rff)
|
||||
return rcf / sqrt(k + (k**2 - k) * rff)
|
||||
|
||||
def cfs(self, X, y):
|
||||
"""Correlation-based Feature Selection
|
||||
@@ -162,6 +172,10 @@ class MUFS:
|
||||
id_selected = idx
|
||||
merit = merit_new
|
||||
candidates.pop()
|
||||
if id_selected is None:
|
||||
# No more features to add all merits are nan because of
|
||||
# constant features
|
||||
break
|
||||
candidates.append(feature_order[id_selected])
|
||||
self._scores.append(merit)
|
||||
del feature_order[id_selected]
|
||||
@@ -264,3 +278,58 @@ class MUFS:
|
||||
list of scores of the features selected
|
||||
"""
|
||||
return self._scores if self._fitted else []
|
||||
|
||||
def iwss(self, X, y, threshold):
|
||||
"""Incremental Wrapper Subset Selection
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : np.array
|
||||
array of features
|
||||
y : np.array
|
||||
vector of labels
|
||||
threshold : float
|
||||
threshold to select relevant features
|
||||
|
||||
Returns
|
||||
-------
|
||||
self
|
||||
self
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
if the threshold is less than a selected value of 1e-7
|
||||
or greater than .5
|
||||
|
||||
"""
|
||||
if threshold < 0 or threshold > 0.5:
|
||||
raise ValueError(
|
||||
"Threshold cannot be less than 0 or greater than 0.5"
|
||||
)
|
||||
self._initialize(X, y)
|
||||
s_list = self._compute_su_labels()
|
||||
feature_order = (-s_list).argsort()
|
||||
features = feature_order.copy().tolist()
|
||||
candidates = []
|
||||
# Add first and second features to result
|
||||
first_feature = features.pop(0)
|
||||
candidates.append(first_feature)
|
||||
self._scores.append(s_list[first_feature])
|
||||
candidates.append(features.pop(0))
|
||||
merit = self._compute_merit(candidates)
|
||||
self._scores.append(merit)
|
||||
for feature in features:
|
||||
candidates.append(feature)
|
||||
merit_new = self._compute_merit(candidates)
|
||||
delta = abs(merit - merit_new) / merit if merit != 0.0 else 0.0
|
||||
if merit_new > merit or delta < threshold:
|
||||
if merit_new > merit:
|
||||
merit = merit_new
|
||||
self._scores.append(merit_new)
|
||||
else:
|
||||
candidates.pop()
|
||||
break
|
||||
if len(candidates) == self._max_features:
|
||||
break
|
||||
self._result = candidates
|
||||
return self
|
||||
|
@@ -1,9 +1,8 @@
|
||||
from .Selection import MUFS
|
||||
|
||||
__version__ = "0.1.1"
|
||||
__author__ = "Ricardo Montañana Gómez"
|
||||
__author_email__ = "Ricardo.Montanana@alu.uclm.es"
|
||||
__copyright__ = "Copyright 2021, Ricardo Montañana Gómez"
|
||||
__copyright__ = "Copyright 2021-2022, Ricardo Montañana Gómez"
|
||||
__license__ = "MIT License"
|
||||
|
||||
__all__ = ["MUFS"]
|
||||
|
1
mufs/_version.py
Normal file
1
mufs/_version.py
Normal file
@@ -0,0 +1 @@
|
||||
__version__ = "0.1.3"
|
@@ -1,11 +1,14 @@
|
||||
import unittest
|
||||
import os
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from mdlp import MDLP
|
||||
from sklearn.datasets import load_wine, load_iris
|
||||
|
||||
from ..Selection import MUFS
|
||||
from .._version import __version__
|
||||
|
||||
|
||||
class MUFS_test(unittest.TestCase):
|
||||
class MUFSTest(unittest.TestCase):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
mdlp = MDLP(random_state=1)
|
||||
@@ -15,6 +18,11 @@ class MUFS_test(unittest.TestCase):
|
||||
mdlp = MDLP(random_state=1)
|
||||
self.X_i = mdlp.fit_transform(self.X_ic, self.y_i).astype("int64")
|
||||
|
||||
def test_version(self):
|
||||
"""Check package version."""
|
||||
mufs = MUFS()
|
||||
self.assertEqual(__version__, mufs.version())
|
||||
|
||||
def assertListAlmostEqual(self, list1, list2, tol=7):
|
||||
self.assertEqual(len(list1), len(list2))
|
||||
for a, b in zip(list1, list2):
|
||||
@@ -32,7 +40,7 @@ class MUFS_test(unittest.TestCase):
|
||||
def test_csf_wine(self):
|
||||
mufs = MUFS()
|
||||
expected = [6, 12, 9, 4, 10, 0]
|
||||
self.assertListAlmostEqual(
|
||||
self.assertListEqual(
|
||||
expected, mufs.cfs(self.X_w, self.y_w).get_results()
|
||||
)
|
||||
expected = [
|
||||
@@ -78,7 +86,7 @@ class MUFS_test(unittest.TestCase):
|
||||
mufs = MUFS()
|
||||
expected = [3, 2, 0, 1]
|
||||
computed = mufs.cfs(self.X_i, self.y_i).get_results()
|
||||
self.assertListAlmostEqual(expected, computed)
|
||||
self.assertListEqual(expected, computed)
|
||||
expected = [
|
||||
0.870521418179061,
|
||||
0.8968651482682227,
|
||||
@@ -148,3 +156,46 @@ class MUFS_test(unittest.TestCase):
|
||||
0.44518278979085646,
|
||||
]
|
||||
self.assertListAlmostEqual(expected, mufs.get_scores())
|
||||
|
||||
def test_iwss_wine(self):
|
||||
mufs = MUFS()
|
||||
expected = [6, 9, 12]
|
||||
self.assertListEqual(
|
||||
expected, mufs.iwss(self.X_w, self.y_w, 0.2).get_results()
|
||||
)
|
||||
expected = [0.5218299405215557, 0.5947822876110085, 0.4877384978817362]
|
||||
self.assertListAlmostEqual(expected, mufs.get_scores())
|
||||
|
||||
def test_iwss_wine_max_features(self):
|
||||
mufs = MUFS(max_features=3)
|
||||
expected = [6, 9, 12]
|
||||
self.assertListEqual(
|
||||
expected, mufs.iwss(self.X_w, self.y_w, 0.4).get_results()
|
||||
)
|
||||
expected = [0.5218299405215557, 0.5947822876110085, 0.4877384978817362]
|
||||
self.assertListAlmostEqual(expected, mufs.get_scores())
|
||||
|
||||
def test_iwss_exception(self):
|
||||
mufs = MUFS()
|
||||
with self.assertRaises(ValueError):
|
||||
mufs.iwss(self.X_w, self.y_w, 0.51)
|
||||
with self.assertRaises(ValueError):
|
||||
mufs.iwss(self.X_w, self.y_w, -0.01)
|
||||
|
||||
def test_iwss_better_merit_condition(self):
|
||||
folder = os.path.dirname(os.path.abspath(__file__))
|
||||
data = pd.read_csv(
|
||||
os.path.join(folder, "balloons_R.dat"),
|
||||
sep="\t",
|
||||
index_col=0,
|
||||
)
|
||||
X = data.drop("clase", axis=1).to_numpy()
|
||||
y = data["clase"].to_numpy()
|
||||
mufs = MUFS()
|
||||
expected = [0, 2, 3, 1]
|
||||
self.assertListEqual(expected, mufs.iwss(X, y, 0.3).get_results())
|
||||
|
||||
def test_iwss_empty(self):
|
||||
mufs = MUFS()
|
||||
X = np.delete(self.X_i, [0, 1], 1)
|
||||
self.assertListEqual(mufs.iwss(X, self.y_i, 0.3).get_results(), [1, 0])
|
||||
|
@@ -6,7 +6,7 @@ from mdlp import MDLP
|
||||
from ..Selection import Metrics
|
||||
|
||||
|
||||
class Metrics_test(unittest.TestCase):
|
||||
class MetricsTest(unittest.TestCase):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
mdlp = MDLP(random_state=1)
|
||||
|
@@ -1,4 +1,4 @@
|
||||
from .MUFS_test import MUFS_test
|
||||
from .Metrics_test import Metrics_test
|
||||
from .MUFS_test import MUFSTest
|
||||
from .Metrics_test import MetricsTest
|
||||
|
||||
__all__ = ["MUFS_test", "Metrics_test"]
|
||||
__all__ = ["MUFSTest", "MetricsTest"]
|
||||
|
17
mufs/tests/balloons_R.dat
Executable file
17
mufs/tests/balloons_R.dat
Executable file
@@ -0,0 +1,17 @@
|
||||
f1 f2 f3 f4 clase
|
||||
1 0.968246 -0.968246 0.968246 0.968246 1
|
||||
2 0.968246 -0.968246 0.968246 -0.968246 1
|
||||
3 0.968246 -0.968246 -0.968246 0.968246 1
|
||||
4 0.968246 -0.968246 -0.968246 -0.968246 1
|
||||
5 0.968246 0.968246 0.968246 0.968246 1
|
||||
6 0.968246 0.968246 0.968246 -0.968246 0
|
||||
7 0.968246 0.968246 -0.968246 0.968246 0
|
||||
8 0.968246 0.968246 -0.968246 -0.968246 0
|
||||
9 -0.968246 -0.968246 0.968246 0.968246 1
|
||||
10 -0.968246 -0.968246 0.968246 -0.968246 0
|
||||
11 -0.968246 -0.968246 -0.968246 0.968246 0
|
||||
12 -0.968246 -0.968246 -0.968246 -0.968246 0
|
||||
13 -0.968246 0.968246 0.968246 0.968246 1
|
||||
14 -0.968246 0.968246 0.968246 -0.968246 0
|
||||
15 -0.968246 0.968246 -0.968246 0.968246 0
|
||||
16 -0.968246 0.968246 -0.968246 -0.968246 0
|
3
requirements/dev.txt
Normal file
3
requirements/dev.txt
Normal file
@@ -0,0 +1,3 @@
|
||||
-r production.txt
|
||||
mdlp
|
||||
pandas
|
@@ -1,2 +1 @@
|
||||
scikit-learn>0.24
|
||||
mdlp
|
21
sample.py
21
sample.py
@@ -1,4 +1,5 @@
|
||||
import warnings
|
||||
import time
|
||||
from mufs import MUFS
|
||||
from mufs.Metrics import Metrics
|
||||
from stree import Stree
|
||||
@@ -26,16 +27,26 @@ for i in range(n):
|
||||
# Classification
|
||||
warnings.filterwarnings("ignore")
|
||||
print("CFS")
|
||||
now = time.time()
|
||||
cfs_f = mufsc.cfs(X, y).get_results()
|
||||
print(cfs_f)
|
||||
time_cfs = time.time() - now
|
||||
print(cfs_f, "items: ", len(cfs_f), f"time: {time_cfs:.3f} seconds")
|
||||
print("FCBF")
|
||||
fcfb_f = mufsc.fcbf(X, y, 5e-2).get_results()
|
||||
print(fcfb_f, len(fcfb_f))
|
||||
now = time.time()
|
||||
fcbf_f = mufsc.fcbf(X, y, 0.07).get_results()
|
||||
time_fcbf = time.time() - now
|
||||
print(fcbf_f, "items: ", len(fcbf_f), f"time: {time_fcbf:.3f} seconds")
|
||||
now = time.time()
|
||||
print("IWSS")
|
||||
iwss_f = mufsc.iwss(X, y, 0.5).get_results()
|
||||
time_iwss = time.time() - now
|
||||
print(iwss_f, "items: ", len(iwss_f), f"time: {time_iwss:.3f} seconds")
|
||||
print("X.shape=", X.shape)
|
||||
clf = Stree(random_state=0)
|
||||
print("Accuracy whole dataset", clf.fit(X, y).score(X, y))
|
||||
clf = Stree(random_state=0)
|
||||
print("Accuracy cfs", clf.fit(X[:, cfs_f], y).score(X[:, cfs_f], y))
|
||||
clf = Stree(random_state=0)
|
||||
subf = fcfb_f
|
||||
print("Accuracy fcfb", clf.fit(X[:, subf], y).score(X[:, subf], y))
|
||||
print("Accuracy fcfb", clf.fit(X[:, fcbf_f], y).score(X[:, fcbf_f], y))
|
||||
clf = Stree(random_state=0)
|
||||
print("Accuracy iwss", clf.fit(X[:, iwss_f], y).score(X[:, iwss_f], y))
|
||||
|
15
setup.py
15
setup.py
@@ -1,3 +1,4 @@
|
||||
import os
|
||||
import setuptools
|
||||
|
||||
|
||||
@@ -6,9 +7,10 @@ def readme():
|
||||
return f.read()
|
||||
|
||||
|
||||
def get_data(field: str):
|
||||
def get_data(field):
|
||||
item = ""
|
||||
with open("mufs/__init__.py") as f:
|
||||
file_name = "_version.py" if field == "version" else "__init__.py"
|
||||
with open(os.path.join("mufs", file_name)) as f:
|
||||
for line in f.readlines():
|
||||
if line.startswith(f"__{field}__"):
|
||||
delim = '"' if '"' in line else "'"
|
||||
@@ -19,6 +21,11 @@ def get_data(field: str):
|
||||
return item
|
||||
|
||||
|
||||
def get_requirements():
|
||||
with open("requirements/production.txt") as f:
|
||||
return f.read().splitlines()
|
||||
|
||||
|
||||
setuptools.setup(
|
||||
name="MUFS",
|
||||
version=get_data("version"),
|
||||
@@ -38,11 +45,13 @@ setuptools.setup(
|
||||
"Development Status :: 4 - Beta",
|
||||
"License :: OSI Approved :: " + get_data("license"),
|
||||
"Programming Language :: Python :: 3.8",
|
||||
"Programming Language :: Python :: 3.9",
|
||||
"Programming Language :: Python :: 3.10",
|
||||
"Natural Language :: English",
|
||||
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
||||
"Intended Audience :: Science/Research",
|
||||
],
|
||||
install_requires=["scikit-learn"],
|
||||
install_requires=get_requirements(),
|
||||
test_suite="mufs.tests",
|
||||
zip_safe=False,
|
||||
)
|
||||
|
4
sonar-project.properties
Normal file
4
sonar-project.properties
Normal file
@@ -0,0 +1,4 @@
|
||||
sonar.projectKey=mufs
|
||||
sonar.sourceEncoding=UTF-8
|
||||
sonar.sources=.
|
||||
sonar.python.version=3.8, 3.9, 3.10
|
Reference in New Issue
Block a user