mirror of
https://github.com/Doctorado-ML/mufs.git
synced 2025-08-16 08:05:56 +00:00
Update comments and CI workflow
This commit is contained in:
10
.github/workflows/main.yml
vendored
10
.github/workflows/main.yml
vendored
@@ -28,9 +28,9 @@ jobs:
|
||||
pip install -q --upgrade codecov coverage black flake8 codacy-coverage
|
||||
- name: Lint
|
||||
run: |
|
||||
black --check --diff stree
|
||||
flake8 --count stree
|
||||
- name: Tests
|
||||
black --check --diff mfs
|
||||
flake8 --count mfs
|
||||
- name: Tests & coverage
|
||||
run: |
|
||||
coverage run -m unittest -v stree.tests
|
||||
coverage xml
|
||||
coverage run -m unittest -v mfs.tests
|
||||
coverage report -m --fail-under=100
|
||||
|
16
README.md
16
README.md
@@ -1,13 +1,15 @@
|
||||

|
||||
|
||||
# MFS
|
||||
|
||||
## Multi Feature Selection
|
||||
|
||||
Compute Fast Fast Correlation Based Filter
|
||||
Yu, L. and Liu, H.; Feature Selection for High-Dimensional Data: A Fast
|
||||
Correlation Based Filter Solution,Proc. 20th Intl. Conf. Mach. Learn.
|
||||
(ICML-2003)
|
||||
### Fast Correlation-Based Filter
|
||||
|
||||
and
|
||||
Feature Selection for High-Dimensional Data : A Fast Correlation-Based Filter Solution. / Yu, Lei; Liu, Huan.
|
||||
|
||||
Correlated Feature Selection as in "Correlation-based Feature Selection for
|
||||
Machine Learning" by Mark Andrew Hall
|
||||
Proceedings, Twentieth International Conference on Machine Learning. ed. / T. Fawcett; N. Mishra. 2003. p. 856-863 (Proceedings, Twentieth International Conference on Machine Learning; Vol. 2).
|
||||
|
||||
### Correlation-based Feature Selection
|
||||
|
||||
Hall, M. A. (1999), 'Correlation-based Feature Selection for Machine Learning'.
|
||||
|
@@ -115,12 +115,23 @@ class MFS:
|
||||
self._initialize()
|
||||
|
||||
def _initialize(self):
|
||||
"""Initialize the attributes so support multiple calls using same
|
||||
object
|
||||
"""
|
||||
self._result = None
|
||||
self._scores = []
|
||||
self._su_labels = None
|
||||
self._su_features = {}
|
||||
|
||||
def _compute_su_labels(self):
|
||||
"""Compute symmetrical uncertainty between each feature of the dataset
|
||||
and the labels and store it to use in future calls
|
||||
|
||||
Returns
|
||||
-------
|
||||
list
|
||||
vector with sym. un. of every feature and the labels
|
||||
"""
|
||||
if self._su_labels is None:
|
||||
num_features = self.X_.shape[1]
|
||||
self._su_labels = np.zeros(num_features)
|
||||
@@ -131,6 +142,21 @@ class MFS:
|
||||
return self._su_labels
|
||||
|
||||
def _compute_su_features(self, feature_a, feature_b):
|
||||
"""Compute symmetrical uncertainty between two features and stores it
|
||||
to use in future calls
|
||||
|
||||
Parameters
|
||||
----------
|
||||
feature_a : int
|
||||
index of the first feature
|
||||
feature_b : int
|
||||
index of the second feature
|
||||
|
||||
Returns
|
||||
-------
|
||||
float
|
||||
The symmetrical uncertainty of the two features
|
||||
"""
|
||||
if (feature_a, feature_b) not in self._su_features:
|
||||
self._su_features[
|
||||
(feature_a, feature_b)
|
||||
@@ -140,6 +166,18 @@ class MFS:
|
||||
return self._su_features[(feature_a, feature_b)]
|
||||
|
||||
def _compute_merit(self, features):
|
||||
"""Compute the merit function for cfs algorithms
|
||||
|
||||
Parameters
|
||||
----------
|
||||
features : list
|
||||
list of features to include in the computation
|
||||
|
||||
Returns
|
||||
-------
|
||||
float
|
||||
The merit of the feature set passed
|
||||
"""
|
||||
rcf = self._su_labels[features].sum()
|
||||
rff = 0.0
|
||||
k = len(features)
|
||||
@@ -148,7 +186,8 @@ class MFS:
|
||||
return rcf / sqrt(k + (k ** 2 - k) * rff)
|
||||
|
||||
def cfs(self, X, y):
|
||||
"""CFS forward best first heuristic search
|
||||
"""Correlation-based Feature Selection
|
||||
with a forward best first heuristic search
|
||||
|
||||
Parameters
|
||||
----------
|
||||
@@ -156,6 +195,11 @@ class MFS:
|
||||
array of features
|
||||
y : np.array
|
||||
vector of labels
|
||||
|
||||
Returns
|
||||
-------
|
||||
self
|
||||
self
|
||||
"""
|
||||
self._initialize()
|
||||
self.X_ = X
|
||||
@@ -186,6 +230,13 @@ class MFS:
|
||||
# Force leaving the loop
|
||||
continue_condition = False
|
||||
if len(self._scores) >= 5:
|
||||
"""
|
||||
"To prevent the best first search from exploring the entire
|
||||
feature subset search space, a stopping criterion is imposed.
|
||||
The search will terminate if five consecutive fully expanded
|
||||
subsets show no improvement over the current best subset."
|
||||
as stated in Mark A. Hall Thesis
|
||||
"""
|
||||
item_ant = -1
|
||||
for item in self._scores[-5:]:
|
||||
if item_ant == -1:
|
||||
@@ -200,8 +251,29 @@ class MFS:
|
||||
return self
|
||||
|
||||
def fcbs(self, X, y, threshold):
|
||||
"""Fast Correlation-Based Filter
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : np.array
|
||||
array of features
|
||||
y : np.array
|
||||
vector of labels
|
||||
threshold : float
|
||||
threshold to select relevant features
|
||||
|
||||
Returns
|
||||
-------
|
||||
self
|
||||
self
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
if the threshold is less than a selected value of 1e-4
|
||||
"""
|
||||
if threshold < 1e-4:
|
||||
raise ValueError("Threshold cannot be less than 1e4")
|
||||
raise ValueError("Threshold cannot be less than 1e-4")
|
||||
self._initialize()
|
||||
self.X_ = X
|
||||
self.y_ = y
|
||||
@@ -229,7 +301,21 @@ class MFS:
|
||||
return self
|
||||
|
||||
def get_results(self):
|
||||
"""Return the results of the algorithm applied if any
|
||||
|
||||
Returns
|
||||
-------
|
||||
list
|
||||
list of features indices selected
|
||||
"""
|
||||
return self._result
|
||||
|
||||
def get_scores(self):
|
||||
"""Return the scores computed for the features selected
|
||||
|
||||
Returns
|
||||
-------
|
||||
list
|
||||
list of scores of the features selected
|
||||
"""
|
||||
return self._scores
|
||||
|
Reference in New Issue
Block a user