mirror of
https://github.com/Doctorado-ML/mufs.git
synced 2025-08-17 08:35:52 +00:00
Complete implementation of both algorithms
Check results Complete coverage tests
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
from math import log
|
||||
from math import log, sqrt
|
||||
from sys import float_info
|
||||
from itertools import combinations
|
||||
import numpy as np
|
||||
@@ -145,7 +145,7 @@ class MFS:
|
||||
k = len(features)
|
||||
for pair in list(combinations(features, 2)):
|
||||
rff += self._compute_su_features(*pair)
|
||||
return rcf / ((k ** 2 - k) * rff)
|
||||
return rcf / sqrt(k + (k ** 2 - k) * rff)
|
||||
|
||||
def cfs(self, X, y):
|
||||
"""CFS forward best first heuristic search
|
||||
@@ -161,34 +161,41 @@ class MFS:
|
||||
self.X_ = X
|
||||
self.y_ = y
|
||||
s_list = self._compute_su_labels()
|
||||
# Descending orders
|
||||
# Descending order
|
||||
feature_order = (-s_list).argsort().tolist()
|
||||
merit = float_info.min
|
||||
exit_condition = 0
|
||||
continue_condition = True
|
||||
candidates = []
|
||||
# start with the best feature (max symmetrical uncertainty wrt label)
|
||||
first_candidate = feature_order.pop(0)
|
||||
candidates.append(first_candidate)
|
||||
self._scores.append(s_list[first_candidate])
|
||||
while exit_condition < 5: # as proposed in the original algorithm
|
||||
id_selected = -1
|
||||
while continue_condition:
|
||||
merit = float_info.min
|
||||
id_selected = None
|
||||
for idx, feature in enumerate(feature_order):
|
||||
candidates.append(feature)
|
||||
merit_new = self._compute_merit(candidates)
|
||||
if merit_new > merit:
|
||||
id_selected = idx
|
||||
merit = merit_new
|
||||
exit_condition = 0
|
||||
candidates.pop()
|
||||
if id_selected == -1:
|
||||
exit_condition += 1
|
||||
else:
|
||||
candidates.append(feature_order[id_selected])
|
||||
self._scores.append(merit_new)
|
||||
del feature_order[id_selected]
|
||||
candidates.append(feature_order[id_selected])
|
||||
self._scores.append(merit)
|
||||
del feature_order[id_selected]
|
||||
if len(feature_order) == 0:
|
||||
# Force leaving the loop
|
||||
exit_condition = 5
|
||||
continue_condition = False
|
||||
if len(self._scores) >= 5:
|
||||
item_ant = -1
|
||||
for item in self._scores[-5:]:
|
||||
if item_ant == -1:
|
||||
item_ant = item
|
||||
if item > item_ant:
|
||||
break
|
||||
else:
|
||||
item_ant = item
|
||||
else:
|
||||
continue_condition = False
|
||||
self._result = candidates
|
||||
return self
|
||||
|
||||
@@ -213,7 +220,6 @@ class MFS:
|
||||
break
|
||||
# Remove redundant features
|
||||
for index_q in feature_dup:
|
||||
# test if feature(index_q) su with feature(index_p) is
|
||||
su_pq = self._compute_su_features(index_p, index_q)
|
||||
if su_pq >= s_list[index_q]:
|
||||
# remove feature from list
|
||||
|
@@ -1,6 +1,6 @@
|
||||
import unittest
|
||||
from mdlp import MDLP
|
||||
from sklearn.datasets import load_wine
|
||||
from sklearn.datasets import load_wine, load_iris
|
||||
|
||||
from ..Selection import MFS
|
||||
|
||||
@@ -9,33 +9,53 @@ class MFS_test(unittest.TestCase):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
mdlp = MDLP(random_state=1)
|
||||
X, self.y = load_wine(return_X_y=True)
|
||||
self.X = mdlp.fit_transform(X, self.y).astype("int64")
|
||||
self.m, self.n = self.X.shape
|
||||
|
||||
# @classmethod
|
||||
# def setup(cls):
|
||||
# pass
|
||||
X, self.y_w = load_wine(return_X_y=True)
|
||||
self.X_w = mdlp.fit_transform(X, self.y_w).astype("int64")
|
||||
X, self.y_i = load_iris(return_X_y=True)
|
||||
mdlp = MDLP(random_state=1)
|
||||
self.X_i = mdlp.fit_transform(X, self.y_i).astype("int64")
|
||||
|
||||
def test_initialize(self):
|
||||
mfs = MFS()
|
||||
mfs.fcbs(self.X, self.y, 0.05)
|
||||
mfs.fcbs(self.X_w, self.y_w, 0.05)
|
||||
mfs._initialize()
|
||||
self.assertIsNone(mfs.get_results())
|
||||
self.assertListEqual([], mfs.get_scores())
|
||||
self.assertDictEqual({}, mfs._su_features)
|
||||
self.assertIsNone(mfs._su_labels)
|
||||
|
||||
def test_csf(self):
|
||||
def test_csf_wine(self):
|
||||
mfs = MFS()
|
||||
expected = [6, 4]
|
||||
self.assertListEqual(expected, mfs.cfs(self.X, self.y).get_results())
|
||||
expected = [0.5218299405215557, 2.4168234005280964]
|
||||
expected = [6, 12, 9, 4, 10, 0]
|
||||
self.assertListEqual(
|
||||
expected, mfs.cfs(self.X_w, self.y_w).get_results()
|
||||
)
|
||||
expected = [
|
||||
0.5218299405215557,
|
||||
0.602513857132804,
|
||||
0.4877384978817362,
|
||||
0.3743688234383051,
|
||||
0.28795671854246285,
|
||||
0.2309165735173175,
|
||||
]
|
||||
self.assertListEqual(expected, mfs.get_scores())
|
||||
|
||||
def test_fcbs(self):
|
||||
def test_csf_iris(self):
|
||||
mfs = MFS()
|
||||
computed = mfs.fcbs(self.X, self.y, threshold=0.05).get_results()
|
||||
expected = [3, 2, 0, 1]
|
||||
computed = mfs.cfs(self.X_i, self.y_i).get_results()
|
||||
self.assertListEqual(expected, computed)
|
||||
expected = [
|
||||
0.870521418179061,
|
||||
0.8968651482682227,
|
||||
0.5908278453318913,
|
||||
0.40371971570693366,
|
||||
]
|
||||
self.assertListEqual(expected, mfs.get_scores())
|
||||
|
||||
def test_fcbs_wine(self):
|
||||
mfs = MFS()
|
||||
computed = mfs.fcbs(self.X_w, self.y_w, threshold=0.05).get_results()
|
||||
expected = [6, 9, 12, 0, 11, 4]
|
||||
self.assertListEqual(expected, computed)
|
||||
expected = [
|
||||
@@ -47,3 +67,36 @@ class MFS_test(unittest.TestCase):
|
||||
0.24972405134844652,
|
||||
]
|
||||
self.assertListEqual(expected, mfs.get_scores())
|
||||
|
||||
def test_fcbs_iris(self):
|
||||
mfs = MFS()
|
||||
computed = mfs.fcbs(self.X_i, self.y_i, threshold=0.05).get_results()
|
||||
expected = [3, 2]
|
||||
self.assertListEqual(expected, computed)
|
||||
expected = [0.870521418179061, 0.810724587460511]
|
||||
self.assertListEqual(expected, mfs.get_scores())
|
||||
|
||||
def test_compute_su_labels(self):
|
||||
mfs = MFS()
|
||||
mfs.fcbs(self.X_i, self.y_i, threshold=0.05)
|
||||
expected = [0.0, 0.0, 0.810724587460511, 0.870521418179061]
|
||||
self.assertListEqual(expected, mfs._compute_su_labels().tolist())
|
||||
mfs._su_labels = [1, 2, 3, 4]
|
||||
self.assertListEqual([1, 2, 3, 4], mfs._compute_su_labels())
|
||||
|
||||
def test_invalid_threshold(self):
|
||||
mfs = MFS()
|
||||
with self.assertRaises(ValueError):
|
||||
mfs.fcbs(self.X_i, self.y_i, threshold=1e-5)
|
||||
|
||||
def test_fcbs_exit_threshold(self):
|
||||
mfs = MFS()
|
||||
computed = mfs.fcbs(self.X_w, self.y_w, threshold=0.4).get_results()
|
||||
expected = [6, 9, 12]
|
||||
self.assertListEqual(expected, computed)
|
||||
expected = [
|
||||
0.5218299405215557,
|
||||
0.46224298637417455,
|
||||
0.44518278979085646,
|
||||
]
|
||||
self.assertListEqual(expected, mfs.get_scores())
|
||||
|
Reference in New Issue
Block a user