Files
fimdlp/samples/sample.py

45 lines
1.3 KiB
Python

import time
import argparse
import os
from scipy.io import arff
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from fimdlp.mdlp import FImdlp
datasets = {
"mfeat-factors": True,
"iris": True,
"letter": True,
"kdd_JapaneseVowels": False,
}
ap = argparse.ArgumentParser()
ap.add_argument("--proposal", action="store_true")
ap.add_argument("--original", dest="proposal", action="store_false")
ap.add_argument("dataset", type=str, choices=datasets.keys())
args = ap.parse_args()
relative = "" if os.path.isdir("fimdlp") else ".."
file_name = os.path.join(
relative, "fimdlp", "testcpp", "datasets", args.dataset
)
data = arff.loadarff(file_name + ".arff")
df = pd.DataFrame(data[0])
class_column = -1 if datasets[args.dataset] else 0
class_name = df.columns.to_list()[class_column]
X = df.drop(class_name, axis=1)
y, _ = pd.factorize(df[class_name])
X = X.to_numpy()
test = FImdlp(proposal=args.proposal)
now = time.time()
test.fit(X, y)
fit_time = time.time()
print("Fitting: ", fit_time - now)
now = time.time()
Xt = test.transform(X)
print("Transforming: ", time.time() - now)
print(test.get_cut_points())
clf = RandomForestClassifier(random_state=0)
print(
"Random Forest score with discretized data: ", clf.fit(Xt, y).score(Xt, y)
)