mirror of
https://github.com/Doctorado-ML/FImdlp.git
synced 2025-08-16 16:05:52 +00:00
Refactor samples and fix Metrics tests
This commit is contained in:
@@ -6,5 +6,7 @@ Fayyad - Irani MDLP discretization algorithm
|
||||
|
||||
```bash
|
||||
python setup.py build_ext --inplace
|
||||
python sample.py
|
||||
python samples/sample.py iris --original
|
||||
python samples/sample.py iris --proposal
|
||||
python samples/sample.py -h # for more options
|
||||
```
|
||||
|
@@ -1,21 +1,17 @@
|
||||
#include <numeric>
|
||||
#include <iostream>
|
||||
#include <algorithm>
|
||||
#include <set>
|
||||
#include "CPPFImdlp.h"
|
||||
#include "Metrics.h"
|
||||
|
||||
namespace mdlp {
|
||||
CPPFImdlp::CPPFImdlp(): proposal(true), debug(false), indices(indices_t()), y(labels()), metrics(Metrics(y, indices))
|
||||
{
|
||||
}
|
||||
CPPFImdlp::CPPFImdlp(bool proposal, bool debug): proposal(proposal), debug(debug), indices(indices_t()), y(labels()), metrics(Metrics(y, indices))
|
||||
CPPFImdlp::CPPFImdlp(bool proposal):proposal(proposal), indices(indices_t()), y(labels_t()), metrics(Metrics(y, indices))
|
||||
{
|
||||
}
|
||||
CPPFImdlp::~CPPFImdlp()
|
||||
= default;
|
||||
|
||||
CPPFImdlp& CPPFImdlp::fit(samples& X_, labels& y_)
|
||||
CPPFImdlp& CPPFImdlp::fit(samples_t& X_, labels_t& y_)
|
||||
{
|
||||
X = X_;
|
||||
y = y_;
|
||||
@@ -28,8 +24,10 @@ namespace mdlp {
|
||||
}
|
||||
indices = sortIndices(X_);
|
||||
metrics.setData(y, indices);
|
||||
//computeCutPoints(0, X.size());
|
||||
computeCutPointsProposal();
|
||||
if (proposal)
|
||||
computeCutPointsProposal();
|
||||
else
|
||||
computeCutPoints(0, X.size());
|
||||
return *this;
|
||||
}
|
||||
void CPPFImdlp::computeCutPoints(size_t start, size_t end)
|
||||
@@ -53,7 +51,6 @@ namespace mdlp {
|
||||
}
|
||||
void CPPFImdlp::computeCutPointsOriginal(size_t start, size_t end)
|
||||
{
|
||||
size_t idx;
|
||||
precision_t cut;
|
||||
if (end - start < 2)
|
||||
return;
|
||||
@@ -76,14 +73,9 @@ namespace mdlp {
|
||||
yCur = yPrev = y[indices[0]];
|
||||
numElements = indices.size() - 1;
|
||||
idx = start = 0;
|
||||
bool firstCutPoint = true;
|
||||
if (debug)
|
||||
printf("*idx=%lu -> (-1, -1) Prev(%3.1f, %d) Elementos: %lu\n", idx, xCur, yCur, numElements);
|
||||
while (idx < numElements) {
|
||||
xPivot = xCur;
|
||||
yPivot = yCur;
|
||||
if (debug)
|
||||
printf("<idx=%lu -> Prev(%3.1f, %d) Pivot(%3.1f, %d) Cur(%3.1f, %d) \n", idx, xPrev, yPrev, xPivot, yPivot, xCur, yCur);
|
||||
// Read the same values and check class changes
|
||||
do {
|
||||
idx++;
|
||||
@@ -92,17 +84,12 @@ namespace mdlp {
|
||||
if (yCur != yPivot && xCur == xPivot) {
|
||||
yPivot = -1;
|
||||
}
|
||||
if (debug)
|
||||
printf(">idx=%lu -> Prev(%3.1f, %d) Pivot(%3.1f, %d) Cur(%3.1f, %d) \n", idx, xPrev, yPrev, xPivot, yPivot, xCur, yCur);
|
||||
}
|
||||
while (idx < numElements && xCur == xPivot);
|
||||
// Check if the class changed and there are more than 1 element
|
||||
if ((idx - start > 1) && (yPivot == -1 || yPrev != yCur) && mdlp(start, idx, indices.size())) {
|
||||
start = idx;
|
||||
cutPoint = (xPrev + xCur) / 2;
|
||||
if (debug) {
|
||||
printf("Cutpoint idx=%lu Cur(%3.1f, %d) Prev(%3.1f, %d) Pivot(%3.1f, %d) = %3.1g \n", idx, xCur, yCur, xPrev, yPrev, xPivot, yPivot, cutPoint);
|
||||
}
|
||||
cutPoints.push_back(cutPoint);
|
||||
}
|
||||
yPrev = yPivot;
|
||||
@@ -160,7 +147,7 @@ namespace mdlp {
|
||||
return output;
|
||||
}
|
||||
// Argsort from https://stackoverflow.com/questions/1577475/c-sorting-and-keeping-track-of-indexes
|
||||
indices_t CPPFImdlp::sortIndices(samples& X_)
|
||||
indices_t CPPFImdlp::sortIndices(samples_t& X_)
|
||||
{
|
||||
indices_t idx(X_.size());
|
||||
iota(idx.begin(), idx.end(), 0);
|
||||
|
@@ -6,15 +6,14 @@
|
||||
namespace mdlp {
|
||||
class CPPFImdlp {
|
||||
protected:
|
||||
bool proposal; // proposed algorithm or original algorithm
|
||||
bool debug;
|
||||
bool proposal;
|
||||
indices_t indices; // sorted indices to use with X and y
|
||||
samples X;
|
||||
labels y;
|
||||
samples_t X;
|
||||
labels_t y;
|
||||
Metrics metrics;
|
||||
cutPoints_t cutPoints;
|
||||
|
||||
static indices_t sortIndices(samples&);
|
||||
static indices_t sortIndices(samples_t&);
|
||||
void computeCutPoints(size_t, size_t);
|
||||
long int getCandidate(size_t, size_t);
|
||||
bool mdlp(size_t, size_t, size_t);
|
||||
@@ -25,11 +24,10 @@ namespace mdlp {
|
||||
void computeCutPointsProposal();
|
||||
|
||||
public:
|
||||
CPPFImdlp();
|
||||
CPPFImdlp(bool, bool debug = false);
|
||||
CPPFImdlp(bool);
|
||||
~CPPFImdlp();
|
||||
CPPFImdlp& fit(samples&, labels&);
|
||||
samples getCutPoints();
|
||||
CPPFImdlp& fit(samples_t&, labels_t&);
|
||||
samples_t getCutPoints();
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,8 +1,9 @@
|
||||
#include "Metrics.h"
|
||||
#include <set>
|
||||
#include <cmath>
|
||||
using namespace std;
|
||||
namespace mdlp {
|
||||
Metrics::Metrics(labels& y_, indices_t& indices_): y(y_), indices(indices_), numClasses(computeNumClasses(0, indices.size())), entropyCache(cacheEnt_t()), igCache(cacheIg_t())
|
||||
Metrics::Metrics(labels_t& y_, indices_t& indices_): y(y_), indices(indices_), numClasses(computeNumClasses(0, indices.size())), entropyCache(cacheEnt_t()), igCache(cacheIg_t())
|
||||
{
|
||||
}
|
||||
int Metrics::computeNumClasses(size_t start, size_t end)
|
||||
@@ -13,7 +14,7 @@ namespace mdlp {
|
||||
}
|
||||
return nClasses.size();
|
||||
}
|
||||
void Metrics::setData(labels& y_, indices_t& indices_)
|
||||
void Metrics::setData(labels_t& y_, indices_t& indices_)
|
||||
{
|
||||
indices = indices_;
|
||||
y = y_;
|
||||
@@ -25,7 +26,7 @@ namespace mdlp {
|
||||
{
|
||||
precision_t p, ventropy = 0;
|
||||
int nElements = 0;
|
||||
labels counts(numClasses + 1, 0);
|
||||
labels_t counts(numClasses + 1, 0);
|
||||
if (end - start < 2)
|
||||
return 0;
|
||||
if (entropyCache.find(make_tuple(start, end)) != entropyCache.end()) {
|
||||
|
@@ -1,18 +1,17 @@
|
||||
#ifndef CCMETRICS_H
|
||||
#define CCMETRICS_H
|
||||
#include "typesFImdlp.h"
|
||||
#include <cmath>
|
||||
namespace mdlp {
|
||||
class Metrics {
|
||||
protected:
|
||||
labels& y;
|
||||
labels_t& y;
|
||||
indices_t& indices;
|
||||
int numClasses;
|
||||
cacheEnt_t entropyCache;
|
||||
cacheIg_t igCache;
|
||||
public:
|
||||
Metrics(labels&, indices_t&);
|
||||
void setData(labels&, indices_t&);
|
||||
Metrics(labels_t&, indices_t&);
|
||||
void setData(labels_t&, indices_t&);
|
||||
int computeNumClasses(size_t, size_t);
|
||||
precision_t entropy(size_t, size_t);
|
||||
precision_t informationGain(size_t, size_t, size_t);
|
||||
|
@@ -1 +1 @@
|
||||
__version__ = '0.1.1'
|
||||
__version__ = "0.9.1"
|
||||
|
@@ -6,24 +6,15 @@ from libcpp cimport bool
|
||||
cdef extern from "CPPFImdlp.h" namespace "mdlp":
|
||||
ctypedef float precision_t
|
||||
cdef cppclass CPPFImdlp:
|
||||
CPPFImdlp() except +
|
||||
CPPFImdlp(bool, bool) except +
|
||||
CPPFImdlp(bool) except +
|
||||
CPPFImdlp& fit(vector[precision_t]&, vector[int]&)
|
||||
vector[precision_t] getCutPoints()
|
||||
|
||||
|
||||
class PcutPoint_t:
|
||||
def __init__(self, start, end, fromValue, toValue):
|
||||
self.start = start
|
||||
self.end = end
|
||||
self.fromValue = fromValue
|
||||
self.toValue = toValue
|
||||
|
||||
cdef class CFImdlp:
|
||||
cdef CPPFImdlp *thisptr
|
||||
def __cinit__(self, debug=False, proposal=True):
|
||||
# Proposal or original algorithm
|
||||
self.thisptr = new CPPFImdlp(proposal, debug)
|
||||
def __cinit__(self, proposal):
|
||||
self.thisptr = new CPPFImdlp(proposal)
|
||||
def __dealloc__(self):
|
||||
del self.thisptr
|
||||
def fit(self, X, y):
|
||||
|
Binary file not shown.
@@ -3,33 +3,35 @@ from .cppfimdlp import CFImdlp
|
||||
from sklearn.base import BaseEstimator, TransformerMixin
|
||||
from sklearn.utils.multiclass import unique_labels
|
||||
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted
|
||||
from joblib import Parallel, delayed
|
||||
|
||||
|
||||
class FImdlp(TransformerMixin, BaseEstimator):
|
||||
def __init__(self, proposal=True):
|
||||
self.proposal = proposal # proposed algorithm or original algorithm
|
||||
def __init__(self, n_jobs=-1, proposal=False):
|
||||
self.n_jobs = n_jobs
|
||||
self.proposal = proposal
|
||||
|
||||
"""Fayyad - Irani MDLP discretization algorithm.
|
||||
"""Fayyad - Irani MDLP discretization algorithm based implementation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
demo_param : str, default='demo'
|
||||
A parameter used for demonstation of how to pass and store paramters.
|
||||
n_jobs : int, default=-1
|
||||
The number of jobs to run in parallel. :meth:`fit` and
|
||||
:meth:`transform`, are parallelized over the features. ``-1`` means
|
||||
using all cores available.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
n_features_ : int
|
||||
The number of features of the data passed to :meth:`fit`.
|
||||
discretizer_ : list
|
||||
The list of discretizers for each feature.
|
||||
The list of discretizers, one for each feature.
|
||||
cut_points_ : list
|
||||
The list of cut points for each feature.
|
||||
X_ : array
|
||||
the samples used to fit, shape (n_samples, n_features)
|
||||
y_ : array
|
||||
the labels used to fit, shape (n_samples,)
|
||||
discretized_X_ :
|
||||
array of the discretized samples passed to fit(n_samples, n_features)
|
||||
features_ : list
|
||||
the list of features to be discretized
|
||||
"""
|
||||
@@ -70,6 +72,8 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
||||
y : None
|
||||
There is no need of a target in a transformer, yet the pipeline API
|
||||
requires this parameter.
|
||||
features : list, default=[i for i in range(n_features)]
|
||||
The list of features to be discretized.
|
||||
Returns
|
||||
-------
|
||||
self : object
|
||||
@@ -83,36 +87,22 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
||||
self.y_ = y
|
||||
self.discretizer_ = [None] * self.n_features_
|
||||
self.cut_points_ = [None] * self.n_features_
|
||||
# Can do it in parallel
|
||||
for feature in self.features_:
|
||||
self.discretizer_[feature] = CFImdlp(
|
||||
proposal=self.proposal, debug=False
|
||||
)
|
||||
self.discretizer_[feature].fit(X[:, feature], y)
|
||||
self.cut_points_[feature] = self.discretizer_[
|
||||
feature
|
||||
].get_cut_points()
|
||||
Parallel(n_jobs=self.n_jobs, prefer="threads")(
|
||||
delayed(self._fit_discretizer)(feature)
|
||||
for feature in range(self.n_features_)
|
||||
)
|
||||
return self
|
||||
|
||||
def get_fitted(self):
|
||||
"""Return the discretized X computed during fit.
|
||||
def _fit_discretizer(self, feature):
|
||||
self.discretizer_[feature] = CFImdlp(proposal=self.proposal)
|
||||
self.discretizer_[feature].fit(self.X_[:, feature], self.y_)
|
||||
self.cut_points_[feature] = self.discretizer_[feature].get_cut_points()
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_transformed : array, shape (n_samples, n_features)
|
||||
discretized X computed during fit.
|
||||
"""
|
||||
# Check is fit had been called
|
||||
check_is_fitted(self, "n_features_")
|
||||
result = np.zeros_like(self.X_, dtype=np.int32) - 1
|
||||
for feature in range(self.n_features_):
|
||||
if feature in self.features_:
|
||||
result[:, feature] = self.discretizer_[
|
||||
feature
|
||||
].get_discretized_values()
|
||||
else:
|
||||
result[:, feature] = self.X_[:, feature]
|
||||
return result
|
||||
def _discretize_feature(self, feature, X, result):
|
||||
if feature in self.features_:
|
||||
result[:, feature] = np.searchsorted(self.cut_points_[feature], X)
|
||||
else:
|
||||
result[:, feature] = X
|
||||
|
||||
def transform(self, X):
|
||||
"""Discretize X values.
|
||||
@@ -127,28 +117,28 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
||||
"""
|
||||
# Check is fit had been called
|
||||
check_is_fitted(self, "n_features_")
|
||||
|
||||
# Input validation
|
||||
X = check_array(X)
|
||||
|
||||
# Check that the input is of the same shape as the one passed
|
||||
# during fit.
|
||||
# if X.shape[1] != self.n_features_:
|
||||
# raise ValueError(
|
||||
# "Shape of input is different from what was seen in `fit`"
|
||||
# )
|
||||
if X.shape[1] != self.n_features_:
|
||||
raise ValueError(
|
||||
"Shape of input is different from what was seen in `fit`"
|
||||
)
|
||||
result = np.zeros_like(X, dtype=np.int32) - 1
|
||||
# Can do it in parallel
|
||||
for feature in range(self.n_features_):
|
||||
if feature in self.features_:
|
||||
result[:, feature] = np.searchsorted(
|
||||
self.cut_points_[feature], X[:, feature]
|
||||
)
|
||||
else:
|
||||
result[:, feature] = X[:, feature]
|
||||
Parallel(n_jobs=self.n_jobs, prefer="threads")(
|
||||
delayed(self._discretize_feature)(feature, X[:, feature], result)
|
||||
for feature in range(self.n_features_)
|
||||
)
|
||||
return result
|
||||
|
||||
def get_cut_points(self):
|
||||
"""Get the cut points for each feature.
|
||||
Returns
|
||||
-------
|
||||
result: list
|
||||
The list of cut points for each feature.
|
||||
"""
|
||||
result = []
|
||||
for feature in range(self.n_features_):
|
||||
result.append(self.cut_points_[feature])
|
||||
|
@@ -1,74 +1,63 @@
|
||||
//#include "gtest/gtest.h"
|
||||
//#include "../Metrics.h"
|
||||
//#include "../CPPFImdlp.h"
|
||||
//namespace mdlp {
|
||||
// class TestFImdlp : public CPPFImdlp, public testing::Test {
|
||||
// public:
|
||||
// TestFImdlp() : CPPFImdlp(true, true) {}
|
||||
// void SetUp()
|
||||
// {
|
||||
// // 5.0, 5.1, 5.1, 5.1, 5.2, 5.3, 5.6, 5.7, 5.9, 6.0]
|
||||
// //(5.0, 1) (5.1, 1) (5.1, 2) (5.1, 2) (5.2, 1) (5.3, 1) (5.6, 2) (5.7, 1) (5.9, 2) (6.0, 2)
|
||||
// X = { 5.7, 5.3, 5.2, 5.1, 5.0, 5.6, 5.1, 6.0, 5.1, 5.9 };
|
||||
// y = { 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 };
|
||||
// fit(X, y);
|
||||
// }
|
||||
// void setProposal(bool value)
|
||||
// {
|
||||
// proposal = value;
|
||||
// }
|
||||
// void initCutPoints()
|
||||
// {
|
||||
// setCutPoints(cutPoints_t());
|
||||
// }
|
||||
// void initIndices()
|
||||
// {
|
||||
// indices = indices_t();
|
||||
// }
|
||||
// void initDiscretized()
|
||||
// {
|
||||
// xDiscretized = labels();
|
||||
// }
|
||||
// void checkSortedVector(samples& X_, indices_t indices_)
|
||||
// {
|
||||
// X = X_;
|
||||
// indices = indices_;
|
||||
// indices_t testSortedIndices = sortIndices(X);
|
||||
// precision_t prev = X[testSortedIndices[0]];
|
||||
// for (auto i = 0; i < X.size(); ++i) {
|
||||
// EXPECT_EQ(testSortedIndices[i], indices[i]);
|
||||
// EXPECT_LE(prev, X[testSortedIndices[i]]);
|
||||
// prev = X[testSortedIndices[i]];
|
||||
// }
|
||||
// }
|
||||
// void checkCutPoints(cutPoints_t& expected)
|
||||
// {
|
||||
// int expectedSize = expected.size();
|
||||
// EXPECT_EQ(cutPoints.size(), expectedSize);
|
||||
// for (auto i = 0; i < expectedSize; i++) {
|
||||
// EXPECT_EQ(cutPoints[i].start, expected[i].start);
|
||||
// EXPECT_EQ(cutPoints[i].end, expected[i].end);
|
||||
// EXPECT_EQ(cutPoints[i].classNumber, expected[i].classNumber);
|
||||
// EXPECT_NEAR(cutPoints[i].fromValue, expected[i].fromValue, precision);
|
||||
// EXPECT_NEAR(cutPoints[i].toValue, expected[i].toValue, precision);
|
||||
// }
|
||||
// }
|
||||
// template<typename T, typename A>
|
||||
// void checkVectors(std::vector<T, A> const& expected, std::vector<T, A> const& computed)
|
||||
// {
|
||||
// EXPECT_EQ(expected.size(), computed.size());
|
||||
// for (auto i = 0; i < expected.size(); i++) {
|
||||
// EXPECT_EQ(expected[i], computed[i]);
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// };
|
||||
// TEST_F(TestFImdlp, FitErrorEmptyDataset)
|
||||
// {
|
||||
// X = samples();
|
||||
// y = labels();
|
||||
// EXPECT_THROW(fit(X, y), std::invalid_argument);
|
||||
// }
|
||||
#include "gtest/gtest.h"
|
||||
#include "../Metrics.h"
|
||||
#include "../CPPFImdlp.h"
|
||||
namespace mdlp {
|
||||
class TestFImdlp: public CPPFImdlp, public testing::Test {
|
||||
public:
|
||||
TestFImdlp(): CPPFImdlp(false) {}
|
||||
void SetUp()
|
||||
{
|
||||
// 5.0, 5.1, 5.1, 5.1, 5.2, 5.3, 5.6, 5.7, 5.9, 6.0]
|
||||
//(5.0, 1) (5.1, 1) (5.1, 2) (5.1, 2) (5.2, 1) (5.3, 1) (5.6, 2) (5.7, 1) (5.9, 2) (6.0, 2)
|
||||
X = { 5.7, 5.3, 5.2, 5.1, 5.0, 5.6, 5.1, 6.0, 5.1, 5.9 };
|
||||
y = { 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 };
|
||||
fit(X, y);
|
||||
}
|
||||
void setProposal(bool value)
|
||||
{
|
||||
proposal = value;
|
||||
}
|
||||
void initIndices()
|
||||
{
|
||||
indices = indices_t();
|
||||
}
|
||||
void checkSortedVector(samples_t& X_, indices_t indices_)
|
||||
{
|
||||
X = X_;
|
||||
indices = indices_;
|
||||
indices_t testSortedIndices = sortIndices(X);
|
||||
precision_t prev = X[testSortedIndices[0]];
|
||||
for (auto i = 0; i < X.size(); ++i) {
|
||||
EXPECT_EQ(testSortedIndices[i], indices[i]);
|
||||
EXPECT_LE(prev, X[testSortedIndices[i]]);
|
||||
prev = X[testSortedIndices[i]];
|
||||
}
|
||||
}
|
||||
void checkCutPoints(cutPoints_t& expected)
|
||||
{
|
||||
int expectedSize = expected.size();
|
||||
EXPECT_EQ(cutPoints.size(), expectedSize);
|
||||
for (auto i = 0; i < expectedSize; i++) {
|
||||
EXPECT_EQ(cutPoints[i], expected[i]);
|
||||
}
|
||||
}
|
||||
template<typename T, typename A>
|
||||
void checkVectors(std::vector<T, A> const& expected, std::vector<T, A> const& computed)
|
||||
{
|
||||
EXPECT_EQ(expected.size(), computed.size());
|
||||
for (auto i = 0; i < expected.size(); i++) {
|
||||
EXPECT_EQ(expected[i], computed[i]);
|
||||
}
|
||||
}
|
||||
};
|
||||
TEST_F(TestFImdlp, FitErrorEmptyDataset)
|
||||
{
|
||||
X = samples_t();
|
||||
y = labels_t();
|
||||
EXPECT_THROW(fit(X, y), std::invalid_argument);
|
||||
}
|
||||
}
|
||||
//
|
||||
// TEST_F(TestFImdlp, FitErrorDifferentSize)
|
||||
// {
|
||||
// X = { 1, 2, 3 };
|
||||
@@ -143,7 +132,7 @@
|
||||
// }
|
||||
// TEST_F(TestFImdlp, DiscretizedValues)
|
||||
// {
|
||||
// labels computed, expected = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
|
||||
// labels_t computed, expected = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
|
||||
// computed = getDiscretizedValues();
|
||||
// checkVectors(expected, computed);
|
||||
// }
|
||||
@@ -157,7 +146,7 @@
|
||||
// TEST_F(TestFImdlp, Constructor)
|
||||
// {
|
||||
// samples X = { 5.7, 5.3, 5.2, 5.1, 5.0, 5.6, 5.1, 6.0, 5.1, 5.9 };
|
||||
// labels y = { 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 };
|
||||
// labels_t y = { 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 };
|
||||
// setProposal(false);
|
||||
// fit(X, y);
|
||||
// computeCutPointsOriginal();
|
||||
|
@@ -1,31 +1,43 @@
|
||||
#include "gtest/gtest.h"
|
||||
#include "../Metrics.h"
|
||||
|
||||
|
||||
namespace mdlp {
|
||||
precision_t precision = 0.000001;
|
||||
TEST(MetricTest, NumClasses)
|
||||
class TestMetrics: public Metrics, public testing::Test {
|
||||
public:
|
||||
labels_t y;
|
||||
samples_t X;
|
||||
indices_t indices;
|
||||
precision_t precision = 0.000001;
|
||||
|
||||
TestMetrics(): Metrics(y, indices) {}
|
||||
void SetUp()
|
||||
{
|
||||
y = { 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 };
|
||||
indices = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
|
||||
setData(y, indices);
|
||||
}
|
||||
};
|
||||
TEST_F(TestMetrics, NumClasses)
|
||||
{
|
||||
labels y = { 1, 1, 1, 1, 1, 1, 1, 1, 2, 1 };
|
||||
indices_t indices = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
|
||||
EXPECT_EQ(1, Metrics::numClasses(y, indices, 4, 8));
|
||||
EXPECT_EQ(2, Metrics::numClasses(y, indices, 0, 10));
|
||||
EXPECT_EQ(2, Metrics::numClasses(y, indices, 8, 10));
|
||||
y = { 1, 1, 1, 1, 1, 1, 1, 1, 2, 1 };
|
||||
EXPECT_EQ(1, computeNumClasses(4, 8));
|
||||
EXPECT_EQ(2, computeNumClasses(0, 10));
|
||||
EXPECT_EQ(2, computeNumClasses(8, 10));
|
||||
}
|
||||
TEST(MetricTest, Entropy)
|
||||
TEST_F(TestMetrics, Entropy)
|
||||
{
|
||||
labels y = { 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 };
|
||||
indices_t indices = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
|
||||
EXPECT_EQ(1, Metrics::entropy(y, indices, 0, 10, 2));
|
||||
EXPECT_EQ(0, Metrics::entropy(y, indices, 0, 5, 1));
|
||||
labels yz = { 1, 1, 1, 1, 1, 1, 1, 1, 2, 1 };
|
||||
ASSERT_NEAR(0.468996, Metrics::entropy(yz, indices, 0, 10, 2), precision);
|
||||
EXPECT_EQ(1, entropy(0, 10));
|
||||
EXPECT_EQ(0, entropy(0, 5));
|
||||
y = { 1, 1, 1, 1, 1, 1, 1, 1, 2, 1 };
|
||||
setData(y, indices);
|
||||
ASSERT_NEAR(0.468996, entropy(0, 10), precision);
|
||||
}
|
||||
TEST(MetricTest, InformationGain)
|
||||
TEST_F(TestMetrics, InformationGain)
|
||||
{
|
||||
labels y = { 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 };
|
||||
indices_t indices = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
|
||||
labels yz = { 1, 1, 1, 1, 1, 1, 1, 1, 2, 1 };
|
||||
ASSERT_NEAR(1, Metrics::informationGain(y, indices, 0, 10, 5, 2), precision);
|
||||
ASSERT_NEAR(0.108032, Metrics::informationGain(yz, indices, 0, 10, 5, 2), precision);
|
||||
ASSERT_NEAR(1, informationGain(0, 5, 10), precision);
|
||||
y = { 1, 1, 1, 1, 1, 1, 1, 1, 2, 1 };
|
||||
setData(y, indices);
|
||||
ASSERT_NEAR(0.108032, informationGain(0, 5, 10), precision);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Binary file not shown.
@@ -101,13 +101,13 @@ string ArffFiles::trim(const string& source)
|
||||
s.erase(s.find_last_not_of(" \n\r\t") + 1);
|
||||
return s;
|
||||
}
|
||||
vector<int> ArffFiles::factorize(const vector<string>& labels)
|
||||
vector<int> ArffFiles::factorize(const vector<string>& labels_t)
|
||||
{
|
||||
vector<int> yy;
|
||||
yy.reserve(labels.size());
|
||||
yy.reserve(labels_t.size());
|
||||
map<string, int> labelMap;
|
||||
int i = 0;
|
||||
for (string label : labels) {
|
||||
for (string label : labels_t) {
|
||||
if (labelMap.find(label) == labelMap.end()) {
|
||||
labelMap[label] = i++;
|
||||
}
|
||||
|
@@ -23,6 +23,6 @@ public:
|
||||
vector<vector<float>>& getX();
|
||||
vector<int>& getY();
|
||||
vector<tuple<string, string>> getAttributes();
|
||||
vector<int> factorize(const vector<string>& labels);
|
||||
vector<int> factorize(const vector<string>& labels_t);
|
||||
};
|
||||
#endif
|
@@ -8,12 +8,14 @@ from ..mdlp import FImdlp
|
||||
class FImdlpTest(unittest.TestCase):
|
||||
def test_init(self):
|
||||
clf = FImdlp()
|
||||
self.assertTrue(clf.proposal)
|
||||
clf = FImdlp(proposal=False)
|
||||
self.assertEqual(-1, clf.n_jobs)
|
||||
self.assertFalse(clf.proposal)
|
||||
clf = FImdlp(proposal=True, n_jobs=7)
|
||||
self.assertTrue(clf.proposal)
|
||||
self.assertEqual(7, clf.n_jobs)
|
||||
|
||||
def test_fit(self):
|
||||
clf = FImdlp()
|
||||
def test_fit_proposal(self):
|
||||
clf = FImdlp(proposal=True)
|
||||
clf.fit([[1, 2], [3, 4]], [1, 2])
|
||||
self.assertEqual(clf.n_features_, 2)
|
||||
self.assertListEqual(clf.X_.tolist(), [[1, 2], [3, 4]])
|
||||
@@ -25,10 +27,39 @@ class FImdlpTest(unittest.TestCase):
|
||||
self.assertTrue(np.array_equal(X, clf.X_))
|
||||
self.assertTrue(np.array_equal(y, clf.y_))
|
||||
expected = [
|
||||
[4.900000095367432, 5.0, 5.099999904632568, 5.400000095367432],
|
||||
[2.6999998092651367, 2.9000000953674316],
|
||||
[2.3499999046325684, 4.5],
|
||||
[0.75, 1.399999976158142, 1.5],
|
||||
[
|
||||
4.900000095367432,
|
||||
5.0,
|
||||
5.099999904632568,
|
||||
5.400000095367432,
|
||||
5.699999809265137,
|
||||
],
|
||||
[2.6999998092651367, 2.9000000953674316, 3.1999998092651367],
|
||||
[2.3499999046325684, 4.5, 4.800000190734863],
|
||||
[0.75, 1.399999976158142, 1.5, 1.7000000476837158],
|
||||
]
|
||||
self.assertListEqual(expected, clf.get_cut_points())
|
||||
self.assertListEqual([0, 1, 2, 3], clf.features_)
|
||||
clf.fit(X, y, features=[0, 2, 3])
|
||||
self.assertListEqual([0, 2, 3], clf.features_)
|
||||
|
||||
def test_fit_original(self):
|
||||
clf = FImdlp(proposal=False)
|
||||
clf.fit([[1, 2], [3, 4]], [1, 2])
|
||||
self.assertEqual(clf.n_features_, 2)
|
||||
self.assertListEqual(clf.X_.tolist(), [[1, 2], [3, 4]])
|
||||
self.assertListEqual(clf.y_.tolist(), [1, 2])
|
||||
self.assertListEqual([[], []], clf.get_cut_points())
|
||||
X, y = load_iris(return_X_y=True)
|
||||
clf.fit(X, y)
|
||||
self.assertEqual(clf.n_features_, 4)
|
||||
self.assertTrue(np.array_equal(X, clf.X_))
|
||||
self.assertTrue(np.array_equal(y, clf.y_))
|
||||
expected = [
|
||||
[5.5, 5.800000190734863],
|
||||
[3.0999999046325684],
|
||||
[2.450000047683716, 4.800000190734863, 5.099999904632568],
|
||||
[0.800000011920929, 1.7000000476837158],
|
||||
]
|
||||
self.assertListEqual(expected, clf.get_cut_points())
|
||||
self.assertListEqual([0, 1, 2, 3], clf.features_)
|
||||
@@ -44,8 +75,38 @@ class FImdlpTest(unittest.TestCase):
|
||||
with self.assertRaises(ValueError):
|
||||
clf.fit([[1, 2], [3, 4]], [1, 2], unexpected="class_name")
|
||||
|
||||
def test_transform(self):
|
||||
clf = FImdlp()
|
||||
def test_transform_original(self):
|
||||
clf = FImdlp(proposal=False)
|
||||
clf.fit([[1, 2], [3, 4]], [1, 2])
|
||||
self.assertEqual(
|
||||
clf.transform([[1, 2], [3, 4]]).tolist(), [[0, 0], [0, 0]]
|
||||
)
|
||||
X, y = load_iris(return_X_y=True)
|
||||
clf.fit(X, y)
|
||||
self.assertEqual(clf.n_features_, 4)
|
||||
self.assertTrue(np.array_equal(X, clf.X_))
|
||||
self.assertTrue(np.array_equal(y, clf.y_))
|
||||
self.assertListEqual(
|
||||
clf.transform(X).tolist(), clf.fit(X, y).transform(X).tolist()
|
||||
)
|
||||
expected = [
|
||||
[0, 0, 1, 1],
|
||||
[2, 0, 1, 1],
|
||||
[1, 0, 1, 1],
|
||||
[0, 0, 1, 1],
|
||||
[1, 0, 1, 1],
|
||||
[1, 0, 1, 1],
|
||||
[1, 0, 1, 1],
|
||||
]
|
||||
self.assertTrue(np.array_equal(clf.transform(X[90:97]), expected))
|
||||
with self.assertRaises(ValueError):
|
||||
clf.transform([[1, 2, 3], [4, 5, 6]])
|
||||
with self.assertRaises(sklearn.exceptions.NotFittedError):
|
||||
clf = FImdlp(proposal=False)
|
||||
clf.transform([[1, 2], [3, 4]])
|
||||
|
||||
def test_transform_proposal(self):
|
||||
clf = FImdlp(proposal=True)
|
||||
clf.fit([[1, 2], [3, 4]], [1, 2])
|
||||
self.assertEqual(
|
||||
clf.transform([[1, 2], [3, 4]]).tolist(), [[0, 0], [0, 0]]
|
||||
@@ -60,16 +121,16 @@ class FImdlpTest(unittest.TestCase):
|
||||
)
|
||||
expected = [
|
||||
[4, 0, 1, 1],
|
||||
[4, 2, 2, 2],
|
||||
[4, 0, 1, 1],
|
||||
[5, 2, 2, 2],
|
||||
[5, 0, 1, 1],
|
||||
[1, 0, 1, 1],
|
||||
[4, 1, 1, 1],
|
||||
[4, 2, 1, 1],
|
||||
[4, 1, 1, 1],
|
||||
[5, 2, 1, 1],
|
||||
[5, 1, 1, 1],
|
||||
]
|
||||
self.assertTrue(np.array_equal(clf.transform(X[90:97]), expected))
|
||||
with self.assertRaises(ValueError):
|
||||
clf.transform([[1, 2, 3], [4, 5, 6]])
|
||||
with self.assertRaises(sklearn.exceptions.NotFittedError):
|
||||
clf = FImdlp()
|
||||
clf = FImdlp(proposal=True)
|
||||
clf.transform([[1, 2], [3, 4]])
|
||||
|
@@ -6,8 +6,8 @@
|
||||
using namespace std;
|
||||
namespace mdlp {
|
||||
typedef float precision_t;
|
||||
typedef vector<precision_t> samples;
|
||||
typedef vector<int> labels;
|
||||
typedef vector<precision_t> samples_t;
|
||||
typedef vector<int> labels_t;
|
||||
typedef vector<size_t> indices_t;
|
||||
typedef vector<precision_t> cutPoints_t;
|
||||
typedef map<tuple<int, int>, precision_t> cacheEnt_t;
|
||||
|
37
sample.py
37
sample.py
@@ -1,37 +0,0 @@
|
||||
from fimdlp.mdlp import FImdlp
|
||||
from fimdlp.cppfimdlp import CFImdlp
|
||||
from sklearn.ensemble import RandomForestClassifier
|
||||
import time
|
||||
|
||||
from scipy.io import arff
|
||||
import pandas as pd
|
||||
|
||||
path = "fimdlp/testcpp/datasets/"
|
||||
# class_name = "speaker"
|
||||
# file_name = "kdd_JapaneseVowels.arff"
|
||||
class_name = "class"
|
||||
# file_name = "mfeat-factors.arff"
|
||||
file_name = "letter.arff"
|
||||
data = arff.loadarff(path + file_name)
|
||||
df = pd.DataFrame(data[0])
|
||||
df.dropna(axis=0, how="any", inplace=True)
|
||||
dataset = df
|
||||
X = df.drop(class_name, axis=1)
|
||||
features = X.columns
|
||||
class_name = class_name
|
||||
y, _ = pd.factorize(df[class_name])
|
||||
X = X.to_numpy()
|
||||
|
||||
test = FImdlp()
|
||||
now = time.time()
|
||||
# test.fit(X, y, features=[i for i in (range(3, 14))])
|
||||
test.fit(X, y)
|
||||
fit_time = time.time()
|
||||
print("Fitting: ", fit_time - now)
|
||||
now = time.time()
|
||||
Xt = test.transform(X)
|
||||
print("Transforming: ", time.time() - now)
|
||||
print(test.get_cut_points())
|
||||
|
||||
clf = RandomForestClassifier(random_state=0)
|
||||
print(clf.fit(Xt, y).score(Xt, y))
|
@@ -101,13 +101,13 @@ string ArffFiles::trim(const string& source)
|
||||
s.erase(s.find_last_not_of(" \n\r\t") + 1);
|
||||
return s;
|
||||
}
|
||||
vector<int> ArffFiles::factorize(const vector<string>& labels)
|
||||
vector<int> ArffFiles::factorize(const vector<string>& labels_t)
|
||||
{
|
||||
vector<int> yy;
|
||||
yy.reserve(labels.size());
|
||||
yy.reserve(labels_t.size());
|
||||
map<string, int> labelMap;
|
||||
int i = 0;
|
||||
for (string label : labels) {
|
||||
for (string label : labels_t) {
|
||||
if (labelMap.find(label) == labelMap.end()) {
|
||||
labelMap[label] = i++;
|
||||
}
|
@@ -23,6 +23,6 @@ public:
|
||||
vector<vector<float>>& getX();
|
||||
vector<int>& getY();
|
||||
vector<tuple<string, string>> getAttributes();
|
||||
vector<int> factorize(const vector<string>& labels);
|
||||
vector<int> factorize(const vector<string>& labels_t);
|
||||
};
|
||||
#endif
|
6
samples/CMakeLists.txt
Normal file
6
samples/CMakeLists.txt
Normal file
@@ -0,0 +1,6 @@
|
||||
cmake_minimum_required(VERSION 3.24)
|
||||
project(main)
|
||||
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
|
||||
add_executable(sample sample.cpp ArffFiles.cpp ../fimdlp/Metrics.cpp ../fimdlp/CPPFImdlp.cpp)
|
@@ -2,7 +2,7 @@
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <iomanip>
|
||||
#include "../CPPFImdlp.h"
|
||||
#include "../fimdlp/CPPFImdlp.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
@@ -10,7 +10,7 @@ int main(int argc, char** argv)
|
||||
{
|
||||
ArffFiles file;
|
||||
vector<string> lines;
|
||||
string path = "/Users/rmontanana/Code/FImdlp/fimdlp/testcpp/datasets/";
|
||||
string path = "../fimdlp/testcpp/datasets/";
|
||||
map<string, bool > datasets = {
|
||||
{"mfeat-factors", true},
|
||||
{"iris", true},
|
||||
@@ -41,7 +41,7 @@ int main(int argc, char** argv)
|
||||
}
|
||||
cout << y[i] << endl;
|
||||
}
|
||||
mdlp::CPPFImdlp test = mdlp::CPPFImdlp();
|
||||
mdlp::CPPFImdlp test = mdlp::CPPFImdlp(false);
|
||||
for (auto i = 0; i < attributes.size(); i++) {
|
||||
cout << "Cut points for " << get<0>(attributes[i]) << endl;
|
||||
cout << "--------------------------" << setprecision(3) << endl;
|
44
samples/sample.py
Normal file
44
samples/sample.py
Normal file
@@ -0,0 +1,44 @@
|
||||
import time
|
||||
import argparse
|
||||
import os
|
||||
from scipy.io import arff
|
||||
import pandas as pd
|
||||
from sklearn.ensemble import RandomForestClassifier
|
||||
from fimdlp.mdlp import FImdlp
|
||||
|
||||
datasets = {
|
||||
"mfeat-factors": True,
|
||||
"iris": True,
|
||||
"letter": True,
|
||||
"kdd_JapaneseVowels": False,
|
||||
}
|
||||
|
||||
ap = argparse.ArgumentParser()
|
||||
ap.add_argument("--proposal", action="store_true")
|
||||
ap.add_argument("--original", dest="proposal", action="store_false")
|
||||
ap.add_argument("dataset", type=str, choices=datasets.keys())
|
||||
args = ap.parse_args()
|
||||
relative = "" if os.path.isdir("fimdlp") else ".."
|
||||
file_name = os.path.join(
|
||||
relative, "fimdlp", "testcpp", "datasets", args.dataset
|
||||
)
|
||||
data = arff.loadarff(file_name + ".arff")
|
||||
df = pd.DataFrame(data[0])
|
||||
class_column = -1 if datasets[args.dataset] else 0
|
||||
class_name = df.columns.to_list()[class_column]
|
||||
X = df.drop(class_name, axis=1)
|
||||
y, _ = pd.factorize(df[class_name])
|
||||
X = X.to_numpy()
|
||||
test = FImdlp(proposal=args.proposal)
|
||||
now = time.time()
|
||||
test.fit(X, y)
|
||||
fit_time = time.time()
|
||||
print("Fitting: ", fit_time - now)
|
||||
now = time.time()
|
||||
Xt = test.transform(X)
|
||||
print("Transforming: ", time.time() - now)
|
||||
print(test.get_cut_points())
|
||||
clf = RandomForestClassifier(random_state=0)
|
||||
print(
|
||||
"Random Forest score with discretized data: ", clf.fit(Xt, y).score(Xt, y)
|
||||
)
|
Reference in New Issue
Block a user