mirror of
https://github.com/Doctorado-ML/FImdlp.git
synced 2025-08-18 00:45:52 +00:00
Compare commits
21 Commits
Author | SHA1 | Date | |
---|---|---|---|
f65efe3dfd
|
|||
e9d19d41da
|
|||
6450ccb9bd
|
|||
5d2f32bb0e
|
|||
|
8249e55b0c | ||
40871f128d
|
|||
718c9d0e63
|
|||
e0b7cae9a0
|
|||
31d79a77fa
|
|||
2d495293bb
|
|||
9899781640
|
|||
f20496203e
|
|||
cf09d92ccc
|
|||
1186e4ad53
|
|||
7913f5151e
|
|||
050b923631
|
|||
29fc88cecc
|
|||
16b31ec293
|
|||
ca7d158ac8
|
|||
|
34cd54f77e
|
||
70bf03155c
|
@@ -1,3 +1,4 @@
|
|||||||
include src/cppmdlp/CPPFImdlp.h
|
include src/cppmdlp/CPPFImdlp.h
|
||||||
include src/cppmdlp/typesFImdlp.h
|
include src/cppmdlp/typesFImdlp.h
|
||||||
include src/cppmdlp/Metrics.h
|
include src/cppmdlp/Metrics.h
|
||||||
|
include src/fimdlp/Factorize.h
|
5
Makefile
5
Makefile
@@ -37,6 +37,11 @@ install: ## Build extension
|
|||||||
audit: ## Audit pip
|
audit: ## Audit pip
|
||||||
pip-audit
|
pip-audit
|
||||||
|
|
||||||
|
version:
|
||||||
|
@echo "Current Python version .: $(shell python --version)"
|
||||||
|
@echo "Current FImdlp version .: $(shell python -c "from fimdlp import _version; print(_version.__version__)")"
|
||||||
|
@echo "Installed FImdlp version: $(shell pip show fimdlp | grep Version | cut -d' ' -f2)"
|
||||||
|
|
||||||
help: ## Show help message
|
help: ## Show help message
|
||||||
@IFS=$$'\n' ; \
|
@IFS=$$'\n' ; \
|
||||||
help_lines=(`fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \
|
help_lines=(`fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \
|
||||||
|
12
k.py
Normal file
12
k.py
Normal file
@@ -0,0 +1,12 @@
|
|||||||
|
from sklearn.datasets import load_wine
|
||||||
|
from fimdlp.mdlp import FImdlp
|
||||||
|
|
||||||
|
X, y = load_wine(return_X_y=True)
|
||||||
|
trans = FImdlp()
|
||||||
|
Xt = trans.join_transform(X, y, 12)
|
||||||
|
print("X shape = ", X.shape)
|
||||||
|
print("Xt.shape=", Xt.shape)
|
||||||
|
print("Xt ", Xt[:10])
|
||||||
|
print("trans.X_ shape = ", trans.X_.shape)
|
||||||
|
print("trans.y_ ", trans.y_[:10])
|
||||||
|
print("y_join ", trans.y_join_[:10])
|
@@ -18,7 +18,7 @@ authors = [
|
|||||||
{ name = "Ricardo Montañana", email = "ricardo.montanana@alu.uclm.es" },
|
{ name = "Ricardo Montañana", email = "ricardo.montanana@alu.uclm.es" },
|
||||||
]
|
]
|
||||||
dynamic = ['version']
|
dynamic = ['version']
|
||||||
dependencies = ["numpy", "joblib"]
|
dependencies = ["numpy", "joblib", "scikit-learn"]
|
||||||
requires-python = ">=3.9"
|
requires-python = ">=3.9"
|
||||||
classifiers = [
|
classifiers = [
|
||||||
"Development Status :: 3 - Alpha",
|
"Development Status :: 3 - Alpha",
|
||||||
|
5
setup.py
5
setup.py
@@ -14,10 +14,13 @@ setup(
|
|||||||
"src/fimdlp/cfimdlp.pyx",
|
"src/fimdlp/cfimdlp.pyx",
|
||||||
"src/cppmdlp/CPPFImdlp.cpp",
|
"src/cppmdlp/CPPFImdlp.cpp",
|
||||||
"src/cppmdlp/Metrics.cpp",
|
"src/cppmdlp/Metrics.cpp",
|
||||||
|
"src/fimdlp/Factorize.cpp",
|
||||||
],
|
],
|
||||||
language="c++",
|
language="c++",
|
||||||
include_dirs=["fimdlp"],
|
include_dirs=["fimdlp"],
|
||||||
extra_compile_args=["-std=c++2a"],
|
extra_compile_args=[
|
||||||
|
"-std=c++11",
|
||||||
|
],
|
||||||
),
|
),
|
||||||
]
|
]
|
||||||
)
|
)
|
||||||
|
Submodule src/cppmdlp updated: 7b20bde428...32a6fd9ba0
18
src/fimdlp/Factorize.cpp
Normal file
18
src/fimdlp/Factorize.cpp
Normal file
@@ -0,0 +1,18 @@
|
|||||||
|
#include "Factorize.h"
|
||||||
|
|
||||||
|
namespace utils {
|
||||||
|
vector<int> cppFactorize(const vector<string>& labels_t)
|
||||||
|
{
|
||||||
|
vector<int> yy;
|
||||||
|
yy.reserve(labels_t.size());
|
||||||
|
map<string, int> labelMap;
|
||||||
|
int i = 0;
|
||||||
|
for (string label : labels_t) {
|
||||||
|
if (labelMap.find(label) == labelMap.end()) {
|
||||||
|
labelMap[label] = i++;
|
||||||
|
}
|
||||||
|
yy.push_back(labelMap[label]);
|
||||||
|
}
|
||||||
|
return yy;
|
||||||
|
}
|
||||||
|
}
|
10
src/fimdlp/Factorize.h
Normal file
10
src/fimdlp/Factorize.h
Normal file
@@ -0,0 +1,10 @@
|
|||||||
|
#ifndef FACTORIZE_H
|
||||||
|
#define FACTORIZE_H
|
||||||
|
#include <vector>
|
||||||
|
#include <map>
|
||||||
|
#include <string>
|
||||||
|
namespace utils {
|
||||||
|
using namespace std;
|
||||||
|
vector<int> cppFactorize(const vector<string>&);
|
||||||
|
}
|
||||||
|
#endif
|
@@ -1,8 +1,4 @@
|
|||||||
from ._version import __version__
|
from ._version import __version__
|
||||||
|
|
||||||
|
|
||||||
def version():
|
|
||||||
return __version__
|
|
||||||
|
|
||||||
|
|
||||||
all = ["FImdlp", "__version__"]
|
all = ["FImdlp", "__version__"]
|
||||||
|
@@ -1 +1 @@
|
|||||||
__version__ = "0.9.2"
|
__version__ = "0.9.3"
|
||||||
|
@@ -6,15 +6,15 @@ from libcpp.string cimport string
|
|||||||
cdef extern from "../cppmdlp/CPPFImdlp.h" namespace "mdlp":
|
cdef extern from "../cppmdlp/CPPFImdlp.h" namespace "mdlp":
|
||||||
ctypedef float precision_t
|
ctypedef float precision_t
|
||||||
cdef cppclass CPPFImdlp:
|
cdef cppclass CPPFImdlp:
|
||||||
CPPFImdlp(int) except +
|
CPPFImdlp() except +
|
||||||
CPPFImdlp& fit(vector[precision_t]&, vector[int]&)
|
CPPFImdlp& fit(vector[precision_t]&, vector[int]&)
|
||||||
vector[precision_t] getCutPoints()
|
vector[precision_t] getCutPoints()
|
||||||
string version()
|
string version()
|
||||||
|
|
||||||
cdef class CFImdlp:
|
cdef class CFImdlp:
|
||||||
cdef CPPFImdlp *thisptr
|
cdef CPPFImdlp *thisptr
|
||||||
def __cinit__(self, algorithm):
|
def __cinit__(self):
|
||||||
self.thisptr = new CPPFImdlp(algorithm)
|
self.thisptr = new CPPFImdlp()
|
||||||
def __dealloc__(self):
|
def __dealloc__(self):
|
||||||
del self.thisptr
|
del self.thisptr
|
||||||
def fit(self, X, y):
|
def fit(self, X, y):
|
||||||
@@ -24,3 +24,10 @@ cdef class CFImdlp:
|
|||||||
return self.thisptr.getCutPoints()
|
return self.thisptr.getCutPoints()
|
||||||
def get_version(self):
|
def get_version(self):
|
||||||
return self.thisptr.version()
|
return self.thisptr.version()
|
||||||
|
def __reduce__(self):
|
||||||
|
return (CFImdlp, ())
|
||||||
|
|
||||||
|
cdef extern from "Factorize.h" namespace "utils":
|
||||||
|
vector[int] cppFactorize(vector[string] &input_vector)
|
||||||
|
def factorize(input_vector):
|
||||||
|
return cppFactorize(input_vector)
|
@@ -1,24 +1,22 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from .cppfimdlp import CFImdlp
|
from .cppfimdlp import CFImdlp, factorize
|
||||||
from sklearn.base import BaseEstimator, TransformerMixin
|
from sklearn.base import BaseEstimator, TransformerMixin
|
||||||
from sklearn.utils.multiclass import unique_labels
|
from sklearn.utils.multiclass import unique_labels
|
||||||
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted
|
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted
|
||||||
from joblib import Parallel, delayed
|
from joblib import Parallel, delayed
|
||||||
|
from ._version import __version__
|
||||||
|
|
||||||
|
# from ._version import __version__
|
||||||
|
|
||||||
|
|
||||||
class FImdlp(TransformerMixin, BaseEstimator):
|
class FImdlp(TransformerMixin, BaseEstimator):
|
||||||
def __init__(self, algorithm=0, n_jobs=-1):
|
def __init__(self, n_jobs=-1):
|
||||||
self.algorithm = algorithm
|
|
||||||
self.n_jobs = n_jobs
|
self.n_jobs = n_jobs
|
||||||
|
|
||||||
"""Fayyad - Irani MDLP discretization algorithm based implementation.
|
"""Fayyad - Irani MDLP discretization algorithm based implementation.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
algorithm : int, default=0
|
|
||||||
The type of algorithm to use computing the cut points.
|
|
||||||
0 - Definitive implementation
|
|
||||||
1 - Alternative proposal
|
|
||||||
n_jobs : int, default=-1
|
n_jobs : int, default=-1
|
||||||
The number of jobs to run in parallel. :meth:`fit` and
|
The number of jobs to run in parallel. :meth:`fit` and
|
||||||
:meth:`transform`, are parallelized over the features. ``-1`` means
|
:meth:`transform`, are parallelized over the features. ``-1`` means
|
||||||
@@ -26,27 +24,26 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
|||||||
|
|
||||||
Attributes
|
Attributes
|
||||||
----------
|
----------
|
||||||
n_features_ : int
|
n_features_in_ : int
|
||||||
The number of features of the data passed to :meth:`fit`.
|
The number of features of the data passed to :meth:`fit`.
|
||||||
discretizer_ : list
|
discretizer_ : list
|
||||||
The list of discretizers, one for each feature.
|
The list of discretizers, one for each feature.
|
||||||
cut_points_ : list
|
cut_points_ : list
|
||||||
The list of cut points for each feature.
|
The list of cut points for each feature.
|
||||||
X_ : array
|
X_ : array, shape (n_samples, n_features)
|
||||||
the samples used to fit, shape (n_samples, n_features)
|
the samples used to fit
|
||||||
y_ : array
|
y_ : array, shape(n_samples,)
|
||||||
the labels used to fit, shape (n_samples,)
|
the labels used to fit
|
||||||
features_ : list
|
features_ : list
|
||||||
the list of features to be discretized
|
the list of features to be discretized
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def _check_params_fit(self, X, y, expected_args, kwargs):
|
def _more_tags(self):
|
||||||
"""Check the common parameters passed to fit"""
|
return {"preserves_dtype": [np.int32], "requires_y": True}
|
||||||
|
|
||||||
|
def _check_args(self, X, y, expected_args, kwargs):
|
||||||
# Check that X and y have correct shape
|
# Check that X and y have correct shape
|
||||||
X, y = check_X_y(X, y)
|
X, y = check_X_y(X, y)
|
||||||
# Store the classes seen during fit
|
|
||||||
self.classes_ = unique_labels(y)
|
|
||||||
self.n_classes_ = self.classes_.shape[0]
|
|
||||||
# Default values
|
# Default values
|
||||||
self.features_ = [i for i in range(X.shape[1])]
|
self.features_ = [i for i in range(X.shape[1])]
|
||||||
for key, value in kwargs.items():
|
for key, value in kwargs.items():
|
||||||
@@ -67,15 +64,24 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
|||||||
raise ValueError("Feature index out of range")
|
raise ValueError("Feature index out of range")
|
||||||
return X, y
|
return X, y
|
||||||
|
|
||||||
|
def _update_params(self, X, y):
|
||||||
|
# Store the classes seen during fit
|
||||||
|
self.classes_ = unique_labels(y)
|
||||||
|
self.n_classes_ = self.classes_.shape[0]
|
||||||
|
self.n_features_in_ = X.shape[1]
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def get_version():
|
||||||
|
return f"{__version__}({CFImdlp().get_version().decode()})"
|
||||||
|
|
||||||
def fit(self, X, y, **kwargs):
|
def fit(self, X, y, **kwargs):
|
||||||
"""A reference implementation of a fitting function for a transformer.
|
"""A reference implementation of a fitting function for a transformer.
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
X : array, shape (n_samples, n_features)
|
||||||
The training input samples.
|
The training input samples.
|
||||||
y : None
|
y : array, shape (n_samples,)
|
||||||
There is no need of a target in a transformer, yet the pipeline API
|
the labels used to fit
|
||||||
requires this parameter.
|
|
||||||
features : list, default=[i for i in range(n_features)]
|
features : list, default=[i for i in range(n_features)]
|
||||||
The list of features to be discretized.
|
The list of features to be discretized.
|
||||||
Returns
|
Returns
|
||||||
@@ -83,23 +89,23 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
|||||||
self : object
|
self : object
|
||||||
Returns self.
|
Returns self.
|
||||||
"""
|
"""
|
||||||
X, y = self._check_params_fit(
|
X, y = self._check_args(
|
||||||
X, y, expected_args=["features"], kwargs=kwargs
|
X, y, expected_args=["features"], kwargs=kwargs
|
||||||
)
|
)
|
||||||
self.n_features_ = X.shape[1]
|
self._update_params(X, y)
|
||||||
self.X_ = X
|
self.X_ = X
|
||||||
self.y_ = y
|
self.y_ = y
|
||||||
self.discretizer_ = [None] * self.n_features_
|
self.discretizer_ = [None] * self.n_features_in_
|
||||||
self.cut_points_ = [None] * self.n_features_
|
self.cut_points_ = [None] * self.n_features_in_
|
||||||
Parallel(n_jobs=self.n_jobs, prefer="threads")(
|
Parallel(n_jobs=self.n_jobs, prefer="threads")(
|
||||||
delayed(self._fit_discretizer)(feature)
|
delayed(self._fit_discretizer)(feature)
|
||||||
for feature in range(self.n_features_)
|
for feature in range(self.n_features_in_)
|
||||||
)
|
)
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def _fit_discretizer(self, feature):
|
def _fit_discretizer(self, feature):
|
||||||
if feature in self.features_:
|
if feature in self.features_:
|
||||||
self.discretizer_[feature] = CFImdlp(algorithm=self.algorithm)
|
self.discretizer_[feature] = CFImdlp()
|
||||||
self.discretizer_[feature].fit(self.X_[:, feature], self.y_)
|
self.discretizer_[feature].fit(self.X_[:, feature], self.y_)
|
||||||
self.cut_points_[feature] = self.discretizer_[
|
self.cut_points_[feature] = self.discretizer_[
|
||||||
feature
|
feature
|
||||||
@@ -118,7 +124,7 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
|||||||
"""Discretize X values.
|
"""Discretize X values.
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
X : {array-like}, shape (n_samples, n_features)
|
X : array, shape (n_samples, n_features)
|
||||||
The input samples.
|
The input samples.
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
@@ -126,25 +132,41 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
|||||||
The array containing the discretized values of ``X``.
|
The array containing the discretized values of ``X``.
|
||||||
"""
|
"""
|
||||||
# Check is fit had been called
|
# Check is fit had been called
|
||||||
check_is_fitted(self, "n_features_")
|
check_is_fitted(self, "n_features_in_")
|
||||||
# Input validation
|
# Input validation
|
||||||
X = check_array(X)
|
X = check_array(X)
|
||||||
# Check that the input is of the same shape as the one passed
|
# Check that the input is of the same shape as the one passed
|
||||||
# during fit.
|
# during fit.
|
||||||
if X.shape[1] != self.n_features_:
|
if X.shape[1] != self.n_features_in_:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
"Shape of input is different from what was seen in `fit`"
|
"Shape of input is different from what was seen in `fit`"
|
||||||
)
|
)
|
||||||
if len(self.features_) == self.n_features_:
|
if len(self.features_) == self.n_features_in_:
|
||||||
result = np.zeros_like(X, dtype=np.int32) - 1
|
result = np.zeros_like(X, dtype=np.int32) - 1
|
||||||
else:
|
else:
|
||||||
result = np.zeros_like(X) - 1
|
result = np.zeros_like(X) - 1
|
||||||
Parallel(n_jobs=self.n_jobs, prefer="threads")(
|
Parallel(n_jobs=self.n_jobs, prefer="threads")(
|
||||||
delayed(self._discretize_feature)(feature, X[:, feature], result)
|
delayed(self._discretize_feature)(feature, X[:, feature], result)
|
||||||
for feature in range(self.n_features_)
|
for feature in range(self.n_features_in_)
|
||||||
)
|
)
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def factorize(yy):
|
||||||
|
"""Factorize the input labels
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
yy : array, shape (n_samples,)
|
||||||
|
Labels to be factorized, MUST be bytes, i.e. b"0", b"1", ...
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
array, shape (n_samples,)
|
||||||
|
Factorized labels
|
||||||
|
"""
|
||||||
|
return factorize(yy)
|
||||||
|
|
||||||
def get_cut_points(self):
|
def get_cut_points(self):
|
||||||
"""Get the cut points for each feature.
|
"""Get the cut points for each feature.
|
||||||
Returns
|
Returns
|
||||||
@@ -153,6 +175,70 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
|||||||
The list of cut points for each feature.
|
The list of cut points for each feature.
|
||||||
"""
|
"""
|
||||||
result = []
|
result = []
|
||||||
for feature in range(self.n_features_):
|
for feature in range(self.n_features_in_):
|
||||||
result.append(self.cut_points_[feature])
|
result.append(self.cut_points_[feature])
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
def get_states_feature(self, feature):
|
||||||
|
"""Return the states a feature can take
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
feature : int
|
||||||
|
feature to get the states
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
list
|
||||||
|
states of the feature
|
||||||
|
"""
|
||||||
|
if feature in self.features_:
|
||||||
|
return list(range(len(self.cut_points_[feature]) + 1))
|
||||||
|
return None
|
||||||
|
|
||||||
|
def join_fit(self, features, target, data):
|
||||||
|
"""Join the selected features with the labels and fit the discretizer
|
||||||
|
of the target variable
|
||||||
|
join - fit - transform
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
features : [list]
|
||||||
|
index of the features to join with the labels
|
||||||
|
target : [int]
|
||||||
|
index of the target variable to discretize
|
||||||
|
data: [array] shape (n_samples, n_features)
|
||||||
|
dataset that contains the features to join
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
result: np.array
|
||||||
|
The target variable newly discretized
|
||||||
|
"""
|
||||||
|
check_is_fitted(self, "n_features_in_")
|
||||||
|
if len(features) < 1 or len(features) > self.n_features_in_:
|
||||||
|
raise ValueError(
|
||||||
|
"Number of features must be in range [1, "
|
||||||
|
f"{self.n_features_in_}]"
|
||||||
|
)
|
||||||
|
for feature in features:
|
||||||
|
if feature < 0 or feature >= self.n_features_in_:
|
||||||
|
raise ValueError(
|
||||||
|
f"Feature {feature} not in range [0, "
|
||||||
|
f"{self.n_features_in_})"
|
||||||
|
)
|
||||||
|
if target < 0 or target >= self.n_features_in_:
|
||||||
|
raise ValueError(
|
||||||
|
f"Target {target} not in range [0, {self.n_features_in_})"
|
||||||
|
)
|
||||||
|
if target in features:
|
||||||
|
raise ValueError("Target cannot in features to join")
|
||||||
|
y_join = [
|
||||||
|
f"{str(item_y)}{''.join([str(x) for x in items_x])}".encode()
|
||||||
|
for item_y, items_x in zip(self.y_, data[:, features])
|
||||||
|
]
|
||||||
|
self.y_join_ = y_join
|
||||||
|
self.discretizer_[target].fit(self.X_[:, target], factorize(y_join))
|
||||||
|
self.cut_points_[target] = self.discretizer_[target].get_cut_points()
|
||||||
|
# return the discretized target variable with the new cut points
|
||||||
|
return np.searchsorted(self.cut_points_[target], self.X_[:, target])
|
||||||
|
@@ -1,67 +1,46 @@
|
|||||||
import unittest
|
import unittest
|
||||||
import sklearn
|
import sklearn
|
||||||
from sklearn.datasets import load_iris
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from sklearn.datasets import load_iris
|
||||||
|
from sklearn.utils.estimator_checks import check_estimator
|
||||||
|
from ..cppfimdlp import CFImdlp, factorize
|
||||||
from ..mdlp import FImdlp
|
from ..mdlp import FImdlp
|
||||||
from .. import version
|
from .. import __version__
|
||||||
from .._version import __version__
|
|
||||||
|
# from .._version import __version__
|
||||||
|
|
||||||
|
|
||||||
class FImdlpTest(unittest.TestCase):
|
class FImdlpTest(unittest.TestCase):
|
||||||
def test_version(self):
|
def test_version(self):
|
||||||
self.assertEqual(version(), __version__)
|
clf = FImdlp()
|
||||||
|
self.assertEqual(
|
||||||
|
clf.get_version(),
|
||||||
|
f"{__version__}({CFImdlp().get_version().decode()})",
|
||||||
|
)
|
||||||
|
|
||||||
def test_init(self):
|
def test_init(self):
|
||||||
clf = FImdlp()
|
clf = FImdlp()
|
||||||
self.assertEqual(-1, clf.n_jobs)
|
self.assertEqual(-1, clf.n_jobs)
|
||||||
self.assertEqual(0, clf.algorithm)
|
clf = FImdlp(n_jobs=7)
|
||||||
clf = FImdlp(algorithm=1, n_jobs=7)
|
|
||||||
self.assertEqual(1, clf.algorithm)
|
|
||||||
self.assertEqual(7, clf.n_jobs)
|
self.assertEqual(7, clf.n_jobs)
|
||||||
|
|
||||||
def test_fit_definitive(self):
|
def test_fit_definitive(self):
|
||||||
clf = FImdlp(algorithm=0)
|
clf = FImdlp()
|
||||||
clf.fit([[1, 2], [3, 4]], [1, 2])
|
|
||||||
self.assertEqual(clf.n_features_, 2)
|
|
||||||
self.assertListEqual(clf.X_.tolist(), [[1, 2], [3, 4]])
|
|
||||||
self.assertListEqual(clf.y_.tolist(), [1, 2])
|
|
||||||
self.assertListEqual([[2.0], [3.0]], clf.get_cut_points())
|
|
||||||
X, y = load_iris(return_X_y=True)
|
X, y = load_iris(return_X_y=True)
|
||||||
clf.fit(X, y)
|
clf.fit(X, y)
|
||||||
self.assertEqual(clf.n_features_, 4)
|
self.assertEqual(clf.n_features_in_, 4)
|
||||||
self.assertTrue(np.array_equal(X, clf.X_))
|
self.assertTrue(np.array_equal(X, clf.X_))
|
||||||
self.assertTrue(np.array_equal(y, clf.y_))
|
self.assertTrue(np.array_equal(y, clf.y_))
|
||||||
expected = [
|
|
||||||
[5.449999809265137, 6.25],
|
|
||||||
[2.8499999046325684, 3.0, 3.049999952316284, 3.3499999046325684],
|
|
||||||
[2.450000047683716, 4.75, 5.050000190734863],
|
|
||||||
[0.800000011920929, 1.4500000476837158, 1.75],
|
|
||||||
]
|
|
||||||
self.assertListEqual(expected, clf.get_cut_points())
|
|
||||||
self.assertListEqual([0, 1, 2, 3], clf.features_)
|
|
||||||
clf.fit(X, y, features=[0, 2, 3])
|
|
||||||
self.assertListEqual([0, 2, 3], clf.features_)
|
|
||||||
|
|
||||||
def test_fit_alternative(self):
|
|
||||||
clf = FImdlp(algorithm=1)
|
|
||||||
clf.fit([[1, 2], [3, 4]], [1, 2])
|
|
||||||
self.assertEqual(clf.n_features_, 2)
|
|
||||||
self.assertListEqual(clf.X_.tolist(), [[1, 2], [3, 4]])
|
|
||||||
self.assertListEqual(clf.y_.tolist(), [1, 2])
|
|
||||||
self.assertListEqual([[2], [3]], clf.get_cut_points())
|
|
||||||
X, y = load_iris(return_X_y=True)
|
|
||||||
clf.fit(X, y)
|
|
||||||
self.assertEqual(clf.n_features_, 4)
|
|
||||||
self.assertTrue(np.array_equal(X, clf.X_))
|
|
||||||
self.assertTrue(np.array_equal(y, clf.y_))
|
|
||||||
|
|
||||||
expected = [
|
expected = [
|
||||||
[5.449999809265137, 5.75],
|
[5.449999809265137, 5.75],
|
||||||
[2.8499999046325684, 3.3499999046325684],
|
[2.75, 2.8499999046325684, 2.95, 3.05, 3.3499999046325684],
|
||||||
[2.450000047683716, 4.75],
|
[2.45, 4.75, 5.050000190734863],
|
||||||
[0.800000011920929, 1.75],
|
[0.8, 1.75],
|
||||||
]
|
]
|
||||||
self.assertListEqual(expected, clf.get_cut_points())
|
computed = clf.get_cut_points()
|
||||||
|
for item_computed, item_expected in zip(computed, expected):
|
||||||
|
for x_, y_ in zip(item_computed, item_expected):
|
||||||
|
self.assertAlmostEqual(x_, y_)
|
||||||
self.assertListEqual([0, 1, 2, 3], clf.features_)
|
self.assertListEqual([0, 1, 2, 3], clf.features_)
|
||||||
clf.fit(X, y, features=[0, 2, 3])
|
clf.fit(X, y, features=[0, 2, 3])
|
||||||
self.assertListEqual([0, 2, 3], clf.features_)
|
self.assertListEqual([0, 2, 3], clf.features_)
|
||||||
@@ -82,8 +61,12 @@ class FImdlpTest(unittest.TestCase):
|
|||||||
clf.fit([[1, 2], [3, 4]], [1, 2], features=[0, 2])
|
clf.fit([[1, 2], [3, 4]], [1, 2], features=[0, 2])
|
||||||
|
|
||||||
def test_fit_features(self):
|
def test_fit_features(self):
|
||||||
clf = FImdlp()
|
clf = FImdlp(n_jobs=-1)
|
||||||
|
# Two samples doesn't have enough information to split
|
||||||
clf.fit([[1, -2], [3, 4]], [1, 2], features=[0])
|
clf.fit([[1, -2], [3, 4]], [1, 2], features=[0])
|
||||||
|
self.assertListEqual(clf.get_cut_points(), [[], []])
|
||||||
|
clf.fit([[1, -2], [3, 4], [5, 6]], [1, 2, 2], features=[0])
|
||||||
|
self.assertListEqual(clf.get_cut_points(), [[2], []])
|
||||||
res = clf.transform([[1, -2], [3, 4]])
|
res = clf.transform([[1, -2], [3, 4]])
|
||||||
self.assertListEqual(res.tolist(), [[0, -2], [1, 4]])
|
self.assertListEqual(res.tolist(), [[0, -2], [1, 4]])
|
||||||
X, y = load_iris(return_X_y=True)
|
X, y = load_iris(return_X_y=True)
|
||||||
@@ -98,15 +81,15 @@ class FImdlpTest(unittest.TestCase):
|
|||||||
)
|
)
|
||||||
self.assertEqual(X_computed.dtype, np.float64)
|
self.assertEqual(X_computed.dtype, np.float64)
|
||||||
|
|
||||||
def test_transform_definitive(self):
|
def test_transform(self):
|
||||||
clf = FImdlp(algorithm=0)
|
clf = FImdlp()
|
||||||
clf.fit([[1, 2], [3, 4]], [1, 2])
|
clf.fit([[1, 2], [3, 4], [5, 6]], [1, 2, 2])
|
||||||
self.assertEqual(
|
self.assertEqual(
|
||||||
clf.transform([[1, 2], [3, 4]]).tolist(), [[0, 0], [1, 1]]
|
clf.transform([[1, 2], [3, 4]]).tolist(), [[0, 0], [1, 1]]
|
||||||
)
|
)
|
||||||
X, y = load_iris(return_X_y=True)
|
X, y = load_iris(return_X_y=True)
|
||||||
clf.fit(X, y)
|
clf.fit(X, y)
|
||||||
self.assertEqual(clf.n_features_, 4)
|
self.assertEqual(clf.n_features_in_, 4)
|
||||||
self.assertTrue(np.array_equal(X, clf.X_))
|
self.assertTrue(np.array_equal(X, clf.X_))
|
||||||
self.assertTrue(np.array_equal(y, clf.y_))
|
self.assertTrue(np.array_equal(y, clf.y_))
|
||||||
X_transformed = clf.transform(X)
|
X_transformed = clf.transform(X)
|
||||||
@@ -116,46 +99,131 @@ class FImdlpTest(unittest.TestCase):
|
|||||||
self.assertEqual(X_transformed.dtype, np.int32)
|
self.assertEqual(X_transformed.dtype, np.int32)
|
||||||
expected = [
|
expected = [
|
||||||
[1, 0, 1, 1],
|
[1, 0, 1, 1],
|
||||||
[1, 1, 1, 1],
|
[2, 3, 1, 1],
|
||||||
[1, 0, 1, 1],
|
|
||||||
[0, 0, 1, 1],
|
|
||||||
[1, 0, 1, 1],
|
|
||||||
[1, 1, 1, 1],
|
|
||||||
[1, 1, 1, 1],
|
|
||||||
]
|
|
||||||
self.assertTrue(np.array_equal(clf.transform(X[90:97]), expected))
|
|
||||||
with self.assertRaises(ValueError):
|
|
||||||
clf.transform([[1, 2, 3], [4, 5, 6]])
|
|
||||||
with self.assertRaises(sklearn.exceptions.NotFittedError):
|
|
||||||
clf = FImdlp(algorithm=0)
|
|
||||||
clf.transform([[1, 2], [3, 4]])
|
|
||||||
|
|
||||||
def test_transform_alternative(self):
|
|
||||||
clf = FImdlp(algorithm=1)
|
|
||||||
clf.fit([[1, 2], [3, 4]], [1, 2])
|
|
||||||
self.assertEqual(
|
|
||||||
clf.transform([[1, 2], [3, 4]]).tolist(), [[0, 0], [1, 1]]
|
|
||||||
)
|
|
||||||
X, y = load_iris(return_X_y=True)
|
|
||||||
clf.fit(X, y)
|
|
||||||
self.assertEqual(clf.n_features_, 4)
|
|
||||||
self.assertTrue(np.array_equal(X, clf.X_))
|
|
||||||
self.assertTrue(np.array_equal(y, clf.y_))
|
|
||||||
self.assertListEqual(
|
|
||||||
clf.transform(X).tolist(), clf.fit(X, y).transform(X).tolist()
|
|
||||||
)
|
|
||||||
expected = [
|
|
||||||
[1, 0, 1, 1],
|
|
||||||
[2, 1, 1, 1],
|
|
||||||
[2, 0, 1, 1],
|
[2, 0, 1, 1],
|
||||||
[0, 0, 1, 1],
|
[0, 0, 1, 1],
|
||||||
[1, 0, 1, 1],
|
[1, 0, 1, 1],
|
||||||
[1, 1, 1, 1],
|
[1, 3, 1, 1],
|
||||||
[1, 1, 1, 1],
|
[1, 2, 1, 1],
|
||||||
]
|
]
|
||||||
self.assertTrue(np.array_equal(clf.transform(X[90:97]), expected))
|
self.assertTrue(np.array_equal(clf.transform(X[90:97]), expected))
|
||||||
with self.assertRaises(ValueError):
|
with self.assertRaises(ValueError):
|
||||||
clf.transform([[1, 2, 3], [4, 5, 6]])
|
clf.transform([[1, 2, 3], [4, 5, 6]])
|
||||||
with self.assertRaises(sklearn.exceptions.NotFittedError):
|
with self.assertRaises(sklearn.exceptions.NotFittedError):
|
||||||
clf = FImdlp(algorithm=1)
|
clf = FImdlp()
|
||||||
clf.transform([[1, 2], [3, 4]])
|
clf.transform([[1, 2], [3, 4]])
|
||||||
|
|
||||||
|
def test_cppfactorize(self):
|
||||||
|
source = [
|
||||||
|
b"f0",
|
||||||
|
b"f1",
|
||||||
|
b"f2",
|
||||||
|
b"f3",
|
||||||
|
b"f4",
|
||||||
|
b"f5",
|
||||||
|
b"f6",
|
||||||
|
b"f1",
|
||||||
|
b"f1",
|
||||||
|
b"f7",
|
||||||
|
b"f8",
|
||||||
|
]
|
||||||
|
expected = [0, 1, 2, 3, 4, 5, 6, 1, 1, 7, 8]
|
||||||
|
computed = factorize(source)
|
||||||
|
self.assertListEqual(expected, computed)
|
||||||
|
|
||||||
|
def test_join_fit(self):
|
||||||
|
y = np.array([b"f0", b"f0", b"f2", b"f3", b"f4"])
|
||||||
|
x = np.array(
|
||||||
|
[
|
||||||
|
[0, 1, 2, 3, 4],
|
||||||
|
[0, 1, 2, 3, 4],
|
||||||
|
[1, 2, 3, 4, 5],
|
||||||
|
[2, 3, 4, 5, 6],
|
||||||
|
[3, 4, 5, 6, 7],
|
||||||
|
]
|
||||||
|
)
|
||||||
|
expected = [0, 0, 1, 2, 2]
|
||||||
|
clf = FImdlp()
|
||||||
|
clf.fit(x, factorize(y))
|
||||||
|
computed = clf.join_fit([0, 2], 1, x)
|
||||||
|
self.assertListEqual(computed.tolist(), expected)
|
||||||
|
expected_y = [b"002", b"002", b"113", b"224", b"335"]
|
||||||
|
self.assertListEqual(expected_y, clf.y_join_)
|
||||||
|
|
||||||
|
def test_join_fit_error(self):
|
||||||
|
y = np.array([b"f0", b"f0", b"f2", b"f3", b"f4"])
|
||||||
|
x = np.array(
|
||||||
|
[
|
||||||
|
[0, 1, 2, 3, 4],
|
||||||
|
[0, 1, 2, 3, 4],
|
||||||
|
[1, 2, 3, 4, 5],
|
||||||
|
[2, 3, 4, 5, 6],
|
||||||
|
[3, 4, 5, 6, 7],
|
||||||
|
]
|
||||||
|
)
|
||||||
|
clf = FImdlp()
|
||||||
|
clf.fit(x, factorize(y))
|
||||||
|
with self.assertRaises(ValueError) as exception:
|
||||||
|
clf.join_fit([], 1, x)
|
||||||
|
self.assertEqual(
|
||||||
|
str(exception.exception),
|
||||||
|
"Number of features must be in range [1, 5]",
|
||||||
|
)
|
||||||
|
with self.assertRaises(ValueError) as exception:
|
||||||
|
FImdlp().join_fit([0, 4], 1, x)
|
||||||
|
self.assertTrue(
|
||||||
|
str(exception.exception).startswith(
|
||||||
|
"This FImdlp instance is not fitted yet."
|
||||||
|
)
|
||||||
|
)
|
||||||
|
with self.assertRaises(ValueError) as exception:
|
||||||
|
clf.join_fit([0, 5], 1, x)
|
||||||
|
self.assertEqual(
|
||||||
|
str(exception.exception),
|
||||||
|
"Feature 5 not in range [0, 5)",
|
||||||
|
)
|
||||||
|
with self.assertRaises(ValueError) as exception:
|
||||||
|
clf.join_fit([0, 2], 5, x)
|
||||||
|
self.assertEqual(
|
||||||
|
str(exception.exception),
|
||||||
|
"Target 5 not in range [0, 5)",
|
||||||
|
)
|
||||||
|
with self.assertRaises(ValueError) as exception:
|
||||||
|
clf.join_fit([0, 2], 2, x)
|
||||||
|
self.assertEqual(
|
||||||
|
str(exception.exception),
|
||||||
|
"Target cannot in features to join",
|
||||||
|
)
|
||||||
|
|
||||||
|
def test_factorize(self):
|
||||||
|
y = np.array([b"f0", b"f0", b"f2", b"f3", b"f4"])
|
||||||
|
clf = FImdlp()
|
||||||
|
computed = clf.factorize(y)
|
||||||
|
self.assertListEqual([0, 0, 1, 2, 3], computed)
|
||||||
|
y = [b"f4", b"f0", b"f0", b"f2", b"f3"]
|
||||||
|
clf = FImdlp()
|
||||||
|
computed = clf.factorize(y)
|
||||||
|
self.assertListEqual([0, 1, 1, 2, 3], computed)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def test_sklearn_transformer():
|
||||||
|
for check, test in check_estimator(FImdlp(), generate_only=True):
|
||||||
|
test(check)
|
||||||
|
|
||||||
|
def test_states_feature(self):
|
||||||
|
clf = FImdlp()
|
||||||
|
X, y = load_iris(return_X_y=True)
|
||||||
|
clf.fit(X, y)
|
||||||
|
expected = []
|
||||||
|
for i in [3, 6, 4, 3]:
|
||||||
|
expected.append(list(range(i)))
|
||||||
|
for feature in range(X.shape[1]):
|
||||||
|
self.assertListEqual(
|
||||||
|
expected[feature], clf.get_states_feature(feature)
|
||||||
|
)
|
||||||
|
|
||||||
|
def test_states_no_feature(self):
|
||||||
|
clf = FImdlp()
|
||||||
|
X, y = load_iris(return_X_y=True)
|
||||||
|
clf.fit(X, y)
|
||||||
|
self.assertIsNone(clf.get_states_feature(4))
|
||||||
|
Reference in New Issue
Block a user